
Supply Chains and Transportation Networks

Anna Nagurney

Department of Finance and Operations Management

Isenberg School of Management

University of Massachusetts

Amherst, Massachusetts 01003

December 2011; revised February 2012

Handbook of Regional Science, Springer, Berlin, Germany (2014), pp 787-810.

Manfred Fischer and Peter Nijkamp, Editors

Abstract: We overview some of the major advances in supply chains and transportation

networks, with a focus on their common theoretical frameworks and underlying behavioral

principles. We emphasize that the foundations of supply chains as network systems can be

found in the regional science and spatial economics literature. In addition, transportation

network concepts, models, and accompanying methodologies have enabled the advancement

of supply chain network models from a system-wide and holistic perspective.

We discuss how the concepts of system-optimization and user-optimization have under-

pinned transportation network models and how they have evolved to enable the formulation

of supply chain network problems operating (and managed) under centralized or decentral-

ized, that is, competitive, decision-making behavior.

We highlighted some of the principal methodologies, including variational inequality the-

ory, that have enabled the development of advanced transportation network equilibrium

models as well as supply chain network equilibrium models.
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1. Introduction

Supply chains are networks of suppliers, manufacturers, transportation service providers,

storage facility managers, retailers, and consumers at the demand markets. Supply chains

are the backbones of our globalized Network Economy and provide the infrastructure for

the production, storage, and distribution of goods and associated services as varied as food

products, pharmaceuticals, vehicles, computers and other high tech equipment, building

materials, furniture, clothing, toys, and even electricity.

Supply chains may operate (and be managed) in a centralized or decentralized man-

ner and be underpinned not only by multimodal transportation and logistical networks but

also by telecommunication as well as financial networks. In a centralized supply chain,

there is a central entity or decision-maker, such as a firm, that controls the various supply

chain network activities whereas in a decentralized supply chain, there are multiple eco-

nomic decision-makers and the governing paradigm is that of competitive behavior among

the relevant stakeholders, with different degrees of cooperation. For example, in a vertically

integrated supply chain the same firm may be responsible for production, storage, and distri-

bution of its products. On the other hand, certain industry supply chain network structures

may consist of competitive manufacturers, competitive distributors, as well as competing

retailers. Nevertheless, the stakeholders involved in supply chains must cooperate to the

extent that the products be received and processed as they move downstream in the supply

chain (Nagurney (2006)).

The complexity and interconnectivity of some of today’s product supply chains have been

vividly illustrated through the effects of recent natural disasters, including earthquakes,

tsunamis, and even hurricanes, which have severed critical nodes and/or links and have

disrupted the production and transportation of products, with major economic implications.

Indeed, when supply chain disruptions occur, whether due to natural disasters, human error,

attacks, or even market failure, the ramifications can propagate and impact the health and

well-being of the citizenry thousands of miles away from the initially affected location (cf.

Nagurney and Qiang (2009)).

Since supply chains are network systems, any formalism that seeks to model supply chains

and to provide quantifiable insights and measures must be a system-wide one and network-
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based. Such crucial issues as the stability and resiliency of supply chains, as well as their

adaptability and responsiveness to events in a global environment of increasing risk and

uncertainty, can only be rigorously examined from the view of supply chains as network

systems (Nagurney (2006)).

Supply chains share many of the same characteristics as other network systems; includ-

ing a large-scale nature and complexity of network topology; congestion, which leads to

nonlinearities; alternative behavior of users of the networks, which may lead to paradoxical

phenomena (recall the well-known Braess paradox in which the addition of a new road may

increase the travel time for all); possibly conflicting criteria associated with optimization

(the minimization of time for delivery, for example, may result in higher emissions); inter-

actions among the underlying networks themselves, such as the Internet with electric power

networks, financial networks, and transportation and logistical networks, and the growing

recognition of their fragility and vulnerability. Moreover, policies surrounding supply chain

networks today may have major implications not only economically, but also socially, polit-

ically, and security-wise.

Although, historically, supply chain activities of manufacturing, transportation / distri-

bution, as well as inventorying / storage have each, independently, received a lot of attention

from both researchers and practitioners, the framework of supply chains views the various

activities of production, transportation, and consumption in an integrated, holistic manner.

Indeed, without the critical transportation links what is manufactured cannot be delivered to

points of demand. Moreover, needed inputs into the production processes / manufacturing

links cannot be secured.

While, beginning in the 1980s (cf. Handfield and Nichols, Jr. (1999)), supply chains have

captured wide interest among practitioners as well as researchers, it may be argued that the

foundations of supply chain networks can be found in regional science and spatial economics,

dating to the classical spatial price equilibrium models of Samuelson (1952) and Takayama

and Judge (1971) with additional insights as to production processes, transportation and

distribution provided by Beckmann, McGuire, and Winsten (1956). For example, in spatial

price equilibrium models not only is production of the commodity in question considered at

multiple locations or supply markets, with appropriate underlying functions, but also the
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consumption of the commodity at the demand markets, subject to appropriate functions

(either demand or demand price) as well as the cost associated with transporting the com-

modity between pairs of the spatially separated supply and demand markets. Spatial price

equilibrium models have evolved to include multiple commodities, multiple modes of trans-

portation, and may even include general underlying transportation networks. Moreover, with

advances in theoretical frameworks, including, for example, the theory of variational inequal-

ities (Nagurney (1999)), one can now formulate and solve complex spatial price equilibrium

problems with asymmetric supply price, demand price, and unit transportation/transaction

cost functions (for which an optimization reformulation of the governing spatial price equi-

librium conditions does not hold).

In addition, versions of spatial equilibrium models that capture oligopolistic behavior

under imperfect, as opposed to perfect, competition serve as some of the basic supply chain

network models in which competition is included but, at the same time, the important

demand/consumption side is also captured (see Nagurney (1999) and the references therein).

Interestingly, spatial price equilibrium problems can be reformulated and solved as trans-

portation network equilibrium problems with elastic demands over appropriately constructed

abstract networks or supernetworks (see Nagurney and Dong (2002)). Hence, the plethora of

algorithms that have been developed for transportation networks (cf. Sheffi (1985), Patriks-

son (1994), Nagurney (1999), and Ran and Boyce (1996)) can also be applied to compute

solutions to spatial price equilibrium problems. It is worth noting that Beckmann, McGuire,

and Winsten in their classical 1956 book, Studies in the Economics of Transportation, for-

mulated transportation network equilibrium problems with elastic demands. They proved

that, under the assumed user link cost functional forms and the travel disutility functional

forms associated with the origin/destination pairs of nodes that the governing equilibrium

conditions (now known as user-optimized conditions) in which no traveler has any incentive

to alter his route of travel, given that the behavior of others is fixed, could be reformulated

and solved as an associated optimization problem. In their book, they also hypothesized that

electric power generation and distribution networks, or in today’s terminology, electric power

supply chains, could be transformed into transportation network equilibrium problems. This

has now been established (cf. Nagurney (2006) and the references therein).
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Today, the behavior of travelers on transportation networks is assumed to follow one of

Wardrop’s (1952) two principles of travel behavior, now renamed, according to Dafermos and

Sparrow (1969), as user-optimized (selfish or decentralized) or system-optimized (unselfish

or centralized). The former concept captures individuals’ route-taking decision-making be-

havior, whereas the latter assumes a central controller that routes the flow on the network

so as to minimize the total cost.

Moreover, a plethora of supply chain network equilibrium models, originated by Nagur-

ney, Dong, and Zhang (2002), have been developed in order to address competition among

decision-makers in a tier of a supply chain whether among the manufacturers, the distribu-

tors, the retailers, and/or even the consumers at the demand markets. Such models capture

the behavior of the individual economic decision-makers, as in the case, for example, of

profit maximization and acknowledge that consumers also take transaction/transportation

costs into consideration in making their purchasing decisions. Prices for the product associ-

ated with each decision-maker at each tier are obtained once the entire supply chain network

equilibrium problem is solved, yielding also the equilibrium flows of the product on the links

of the supply chain network. Such supply chain network equilibrium models also possess (as

spatial price equilibrium problems highlighted above) a transportation network equilibrium

reformulation.

Supply chain network models have been generalized to include electronic commerce op-

tions, multiple products, as well as risk and uncertainty, on the demand-side as well as on

the supply-side (cf. Nagurney (2006) and the referenced therein). In addition, and, this is

product-specific, supply chain network models have also been constructed to handle time-

sensitive products (fast fashion, holiday-based, and even critical needs as in disasters) as

well as perishable products (such as food, cut flowers, certain vaccines and medicines, etc.)

using multicriteria decision-making formalisms for the former and generalized networks for

the latter (see Masoumi, Yu, and Nagurney (2012)). Both static as well as dynamic supply

chain network models, including multiperiod ones with inventorying have been formulated,

solved, and applied.

It is important to note that not all supply chains are commercial and, in fact, given that

the number of disasters is growing, as is the number of people affected by them, humanitar-
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ian supply chains have emerged as essential elements in disaster recovery. Unlike commercial

or corporate supply chains, humanitarian supply chains are not managed using profit maxi-

mization as a decision-making criterion (since donors, for example, would not approve) but

rather cost minimization subject to demand satisfaction under uncertainty is relevant (see

Nagurney and Qiang (2009)). In addition, such supply chains may need to be constructed

quickly and with the cognizant decision-makers working under conditions of damaged, if not

destroyed, infrastructure, and limited information.

Supply chain decision-making occurs at different levels – at the strategic, tactical, and

operational levels. Strategic decisions may involve where to locate manufacturing facilities

and distribution centers, whereas tactical decisions may include with which suppliers to

partner and which transportation service providers (carriers) to use. Decisions associated

with operational supply chain decision-making would involve how much of the product to

produce at which manufacturing plants, which storage facilities to use and how much to

store where, as well as how much of the product should be supplied to the different retailers

or points of demand. In addition, because of globalization, supply chain decision-making

may now involve outsourcing decisions as well as the accompanying risk management.

Today, it has been argued that, increasingly, in the Network Economy it is not only

competition within a product supply chain that is taking place but, rather, supply chain

versus supply chain competition. Zhang, Dong, and Nagurney (2003) generalized Wardrop’s

first principle of travel behavior to formulate competition among supply chains.

Location-based decisions are fundamental to supply chain decision-making, design, and

management. Furthermore, such decisions affect spatial competition as well as trade, with

Ohlin (1933) and Isard (1954) noting the need to integrate industrial location and interna-

tional trade in a common framework.

Nagurney (2010) constructed a system-optimization model that can be applied to the

design or redesign of a supply chain network and has as endogenous variables both the

capacities associated with the links (corresponding to manufacturing, transportation, and

storage), as well as the operational flows of the product in order to meet the demands. The

model has been extended in various directions to handle oligopolistic competition as well as

product perishability in specific applications (cf. Masoumi, Yu, and Nagurney (2012) and
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the references therein).

At the same time that supply chains have become increasingly globalized, environmental

concerns due to global warming and associated risks have drawn the attention of numer-

ous constituencies. Firms are increasingly being held accountable not only for their own

performance in terms of their environmental performance, but also for that of their suppli-

ers, subcontractors, joint venture partners, distribution outlets and, ultimately, even for the

disposal of their products. Consequently, poor environmental performance at any stage of

the supply chain may damage the most important asset that a company has, which is its

reputation. Hence, the topic of sustainable supply chain network modeling and analysis has

emerged as an essential area for research, practice, as well as for policy analysis (see Boone,

Jayaraman, and Ganeshan (2012)).
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2. Fundamental Decision-Making Concepts and Models

In this section of this essay, we interweave fundamental concepts in transportation that

have been used successfully and with wide application in supply chain network modeling,

analysis, operations management, and design. Our goal is to provide the necessary back-

ground from which additional explorations and advances can be made using a readable and

accessible format.

As noted in the Introduction, over half a century ago, Wardrop (1952) considered alter-

native possible behaviors of users of transportation networks, notably, urban transportation

networks, and stated two principles, which are named after him:

First Principle: The journey times of all routes actually used are equal, and less than

those which would be experienced by a single vehicle on any unused route.

Second Principle: The average journey time is minimal.

The first principle corresponds to the behavioral principle in which travelers seek to

(unilaterally) determine their minimal costs of travel; the second principle corresponds to

the behavioral principle in which the total cost in the network is minimal.

Beckmann, McGuire, and Winsten (1956) were the first to rigorously formulate these

conditions mathematically and proved the equivalence between the transportation network

equilibrium conditions, which state that all used paths connecting an origin/destination

(O/D) pair will have equal and minimal travel times (or costs) (corresponding to Wardrop’s

first principle), and the Kuhn-Tucker conditions of an appropriately constructed optimiza-

tion problem, under a symmetry assumption on the underlying functions. Hence, in this

case, the equilibrium link and path flows could be obtained as the solution of a mathemat-

ical programming problem. Their fundamental result made the formulation, analysis, and

subsequent computation of solutions to transportation network problems based on actual

transportation networks realizable.

Dafermos and Sparrow (1969) coined the terms user-optimized (U-O) and system-optimized

(S-O) transportation networks to distinguish between two distinct situations in which, re-

spectively, travelers act unilaterally, in their own self-interest, in selecting their routes, and

8



Table 1: Distinct Behavior on Transportation Networks

User-Optimization System-Optimization
⇓ ⇓

User Equilibrium Principle: System Optimality Principle:
User travel costs on used paths for
each O/D pair are equalized and
minimal.

Marginals of the total travel cost on
used paths for each O/D pair are
equalized and minimal.

in which travelers choose routes/paths according to what is optimal from a societal point

of view, in that the total cost in the network system is minimized. In the latter problem,

marginal total costs rather than average costs are equilibrated. As noted in the Introduction,

the former problem coincides with Wardrop’s first principle, and the latter with Wardrop’s

second principle. Table 1 highlights the two distinct behavioral principles underlying trans-

portation networks.

The concept of “system-optimization” is also relevant to other types of “routing mod-

els” in transportation, including those concerned with the routing of freight. Dafermos and

Sparrow (1969) also provided explicit computational procedures, that is, algorithms , to com-

pute the solutions to such network problems in the case where the user travel cost on a link

was an increasing (in order to handle congestion) function of the flow on the particular

link, and linear. Today, the concepts of user-optimization versus system-optimization also

capture, respectively, decentralized versus centralized decision-making on supply chain net-

works after the proper identifications are made (Boyce, Mahmassani, and Nagurney (2005)

and Nagurney (2006)).

2.1 User-Optimization versus System-Optimization

In this section, the basic transportation network models are first recalled, under distinct

assumptions as to their operation and the underlying behavior of the users of the network.

The models are classical and are due to Beckmann, McGuire, and Winsten (1956) and

Dafermos and Sparrow (1969). In subsequent sections, we present more general models

in which the user link cost functions are no longer separable but, rather, are asymmetric.
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For such models we also provide the variational inequality formulations of the governing

equilibrium conditions, since, in such cases, the governing equilibrium conditions can no

longer be reformulated as the Kuhn-Tucker conditions of a convex optimization problem.

The presentation follows that in Nagurney (2007) with addition of material on supply chains

with synthesis.

For easy accessibility, we recall the classical user-optimized network model in Section

2.1.1 and then the classical system-optimized network model in Section 2.1.2. The Braess

(1968) paradox is, subsequently, highlighted in Section 2.1.3.

2.1.1 The User-Optimized Problem

The user-optimized network problem is also commonly referred to in the transportation

literature as the traffic assignment problem or the traffic network equilibrium problem.

Consider a general network G = [N ,L], where N denotes the set of nodes, and L the set

of directed links. Links connect pairs of nodes in the network and are denoted by a, b, etc.

Let p denote a path consisting of a sequence of links connecting an origin/destination (O/D)

pair of nodes. Paths are assumed to be acyclic and are denoted by p, q, etc. In transportation

networks, nodes correspond to origins and destinations, as well as to intersections. Links,

on the other hand, correspond to roads/streets in the case of urban transportation networks

and to railroad segments in the case of train networks. A path in its most basic setting,

thus, is a sequence of “roads” which comprise a route from an origin to a destination. In the

supply chain network context, links correspond to supply chain activities (with appropriate

associated cost functions) and represent manufacturing, transportation/shipment, storage,

etc. In addition, links can correspond to outsourcing links (see Nagurney (2006)).

Here we consider paths , rather than routes , since the former subsumes the latter. The

network concepts presented here are sufficiently general to abstract not only transportation

decision-making but also combined/integrated location-transportation decision-making as

well as a spectrum of supply chain decisions. In addition, in the setting of supernetworks ,

that is, abstract networks, in which nodes need to correspond to locations in space (see

Nagurney and Dong (2002)), a path is viewed more broadly and need not be limited to

a route-type decision but may, in fact, correspond to not only transportation but also to
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manufacturing and inventorying/storage decision-making.

Let Pω denote the set of paths connecting the origin/destination (O/D) pair of nodes

ω. Let P denote the set of all paths in the network and assume that there are J ori-

gin/destination pairs of nodes in the set Ω. Let xp represent the nonnegative flow on path

p and let fa denote the flow on link a. All vectors here are assume to be column vectors.

The path flows on the network are grouped into the vector x ∈ RnP
+ , where nP denotes

the number of paths in the network. The link flows, in turn, are grouped into the vector

f ∈ RnL
+ , where nL denotes the number of links in the network.

Assume, as given, the demand associated with each O/D pair ω, which is denoted by dω,

for ω ∈ Ω. In the network, the following conservation of flow equations must hold:

dω =
∑

p∈Pω

xp, ∀ω ∈ Ω, (1)

where xp ≥ 0, ∀p ∈ P ; that is, the sum of all the path flows between an origin/destination

pair ω must be equal to the given demand dω.

In addition, the following conservation of flow equations must also hold:

fa =
∑
p∈P

xpδap, ∀a ∈ L, (2)

where δap = 1, if link a is contained in path p, and 0, otherwise. Expression (2) states that

the flow on a link a is equal to the sum of all the path flows on paths p that contain (traverse)

link a.

Equations (1) and (2) guarantee that the flows in the network (be they travelers, products,

etc.) are conserved, that is, do not disappear (or are lost) in the network and arrive at the

designated destinations from the origins.

Let ca denote the user link cost associated with traversing link a, and let Cp denote the

user cost associated with traversing the path p. Assume that the user link cost function is

given by the separable function in which the cost on a link depends only on the flow on the

link, that is,

ca = ca(fa), ∀a ∈ L, (3)
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where ca is assumed to be continuous and an increasing function of the link flow fa in order

to model the effect of the link flow on the cost and, in particular, congestion.

The cost on a path is equal to the sum of the costs on the links that make up that path,

that is,

Cp =
∑
a∈L

ca(fa)δap, ∀p ∈ P. (4)

Transportation Network Equilibrium Conditions

In the case of the user-optimization (U-O) problem one seeks to determine the path flow

pattern x∗ (and the corresponding link flow pattern f ∗) which satisfies the conservation

of flow equations (1) and (2), and the nonnegativity assumption on the path flows, and

which also satisfies the transportation network equilibrium conditions given by the following

statement. For each O/D pair ω ∈ Ω and each path p ∈ Pω:

Cp

{
= λω, if x∗

p > 0
≥ λω, if x∗

p = 0.
(5)

In the user-optimization problem there is no explicit optimization criterion, since users

of the transportation network system act independently, in a non-cooperative manner, until

they cannot improve on their situations unilaterally and, thus, an equilibrium is achieved,

governed by the above equilibrium conditions. Conditions (5) are simply a restatement of

Wardrop’s (1952) first principle mathematically and mean that only those paths connecting

an O/D pair will be used which have equal and minimal user costs. In (5) the minimal cost

for O/D pair ω is denoted by λω and its value is obtained once the equilibrium flow pattern is

determined. Otherwise, a user of the network could improve upon his situation by switching

to a path with lower cost.

Beckmann, McGuire, and Winsten (1956) established that the solution to the network

equilibrium problem, in the case of user link cost functions of the form (3), in which the

cost on a link only depends on the flow on that link and is assumed to be continuous and

an increasing function of the flow, could be obtained by solving the following optimization
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problem:

Minimize
∑
a∈L

∫ fa

0
ca(y)dy (6)

subject to: ∑
p∈Pω

xp = dω, ∀ω ∈ Ω, (7)

fa =
∑
p∈P

xpδap, ∀a ∈ L, (8)

xp ≥ 0, ∀p ∈ P. (9)

The objective function given by (6) is simply a device constructed to obtain a solution

using general purpose convex programming algorithms. It does not possess the economic

meaning of the objective function encountered in the system-optimization problem which will

be recalled below. Note that in the case of separable, as well as nonseparable, but symmetric

(which we come back to later), user link cost functions, the λω term in (5) corresponds to

the Lagrange multiplier associated with the constraint (7) for that O/D pair ω. However, in

the case of nonseparable and asymmetric functions there is no optimization reformulation of

the transportation network equilibrium conditions (5) and the λω term simply reflects the

minimum user cost associated with the O/D pair ω at the equilibrium. As noted as early

as Dafermos and Sparrow (1969), the above network equilibrium conditions also correspond

to a Nash equilibrium (see Nash (1951)). The equilibrium link flow pattern is unique for

problem (6), subject to (7) – (9), if the objective function (6) is strictly convex (for additional

background on optimization theory.

It has also been established (cf. Nagurney (2006) and the references therein) that mul-

titiered supply chain network problems in which decision-makers (manufacturers, retailers,

and even consumers) compete across a tier of the supply chain network but cooperate be-

tween tiers, as depicted in Figure 1, could be transformed into a transportation network

equilibrium problem using a supernetwork transformation, as in Figure 2. In Figure 2, the

activities of manufacturing and retailer handling/storage are associated with the top-most

and the third sets of links, respectively. The second and fourth sets of links from the top

in Figure 2 are the transportation links (as is the case with the links in Figure 1). This

connection provides us with a path flow efficiency interpretation of supply chain network

equilibria. She utilized variational inequality theory (see below) to establish the equivalence.
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2.1.2 The System-Optimized Problem

We now recall the system-optimized problem. As in the user-optimized problem of Section

2.1.1, the network G = [N ,L], the demands associated with the origin/destination pairs, and

the user link cost functions are assumed as given. In the system-optimized problem, there is

a central controller who routes the flows in an optimal manner so as to minimize the total

cost in the network. This problem has direct relevance to the management of operations of

a supply chain.

The total cost on link a, denoted by ĉa(fa), is given by:

ĉa(fa) = ca(fa)× fa, ∀a ∈ L, (10)

that is, the total cost on a link is equal to the user link cost on the link times the flow on the

link. As noted earlier, in the system-optimized problem, there exists a central controller who

seeks to minimize the total cost in the network system, which can correspond to a supply

chain, where the total cost is expressed as∑
a∈L

ĉa(fa), (11)

and the total cost on a link is given by expression (10).

The system-optimization (S-O) problem is, thus, given by:

Minimize
∑
a∈L

ĉa(fa) (12)

subject to the same conservation of flow equations as for the user-optimized problem, as well

as the nonnegativity assumption of the path flows; that is, constraints (7), (8), and (9) must

also be satisfied for the system-optimized problem.

The total cost on a path, denoted by Ĉp, is the user cost on a path times the flow on a

path, that is,

Ĉp = Cpxp, ∀p ∈ P, (13)

where the user cost on a path, Cp, is given by the sum of the user costs on the links that

comprise the path (as in (4)), that is,

Cp =
∑
a∈L

ca(fa)δap, ∀a ∈ L. (14)

15



In view of (2), (3), and (4), one may express the cost on a path p as a function of the path

flow variables and, hence, an alternative version of the above system-optimization problem

with objective function (12) can be stated in path flow variables only, where one has now

the problem:

Minimize
∑
p∈P

Cp(x)xp (15)

subject to constraints (7) and (9).

System-Optimality Conditions

Under the assumption of increasing user link cost functions, the objective function (12) in

the S-O problem is convex, and the feasible set consisting of the linear constraints (7) – (9)

is also convex. Therefore, the optimality conditions, that is, the Kuhn-Tucker conditions

are: for each O/D pair ω ∈ Ω, and each path p ∈ Pω, the flow pattern x (and corresponding

link flow pattern f), satisfying (7)–(9) must satisfy:

Ĉ ′
p

{
= µω, if xp > 0
≥ µω, if xp = 0,

(16)

where Ĉ ′
p denotes the marginal of the total cost on path p, given by:

Ĉ ′
p =

∑
a∈L

∂ĉa(fa)

∂fa

δap, (17)

evaluated in (16) at the solution and µω is the Lagrange multiplier associated with constraint

(7) for that O/D pair ω.

The system-optimization approach has been applied to supply chain networks in order to

assess synergy associated with a possible merger or acquisition before such a decision, which

may be very costly, is made. Nagurney and Qiang (2009) overview such an approach, which

assesses the total cost prior to the merger and post.
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Figure 3: Case 0: Firms A and B Pre-Merger

The pre-merger supply chains corresponding to the individual firms, prior to the merger,

are depicted in Figure 3, whereas the post-merger supply chain network is given in Figure

4. The top-most links correspond to the manufacturing links in Figure 3, followed by the

transportation links ending in the storage/distribution facility links, followed by additional

shipment links to the demand markets. In Figure 4, on the other hand, the topmost links

represent the merger/acquisition with appropriate total cost functions assigned to those

links.
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Figure 4: Post-Merger Network

2.1.3 The Braess Paradox

In order to illustrate the difference between user-optimization and system-optimization in

a concrete example, and to reinforce the above concepts, we now recall the well-known Braess

(1968) paradox; see also Braess, Nagurney, and Wakolbinger (2005). Assume a network as

the first network depicted in Figure 5 in which there are four nodes: 1, 2, 3, 4; four links:

a, b, c, d; and a single O/D pair ω1 = (1, 4). There are, hence, two paths available to travelers

between this O/D pair: p1 = (a, c) and p2 = (b, d).

The user link travel cost functions are:

ca(fa) = 10fa, cb(fb) = fb + 50, cc(fc) = fc + 50, cd(fd) = 10fd.

Assume a fixed travel demand dω1 = 6.

It is easy to verify that the equilibrium path flows are: x∗
p1

= 3, x∗
p2

= 3, the equilibrium

link flows are: f ∗
a = 3, f ∗

b = 3, f ∗
c = 3, f ∗

d = 3, with associated equilibrium path travel

costs: Cp1 = ca + cc = 83, Cp2 = cb + cd = 83.
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Figure 5: The Braess Network Example

Assume now that, as depicted in Figure 5, a new link “e”, joining node 2 to node 3 is

added to the original network, with user link cost function ce(fe) = fe + 10. The addition

of this link creates a new path p3 = (a, e, d) that is available to the travelers. The travel

demand dω1 remains at 6 units of flow. The original flow pattern xp1 = 3 and xp2 = 3

is no longer an equilibrium pattern, since, at this level of flow, the user cost on path p3,

Cp3 = ca + ce + cd = 70. Hence, users on paths p1 and p2 would switch to path p3.

The equilibrium flow pattern on the new network is: x∗
p1

= 2, x∗
p2

= 2, x∗
p3

= 2, with

equilibrium link flows: f ∗
a = 4, f ∗

b = 2, f ∗
c = 2, f ∗

e = 2, f ∗
d = 4, and with associated

equilibrium user path travel costs: Cp1 = 92, Cp2 = 92. Indeed, one can verify that any

reallocation of the path flows would yield a higher travel cost on a path.

Note that the travel cost increased for every user of the network from 83 to 92 without a

change in the travel demand!

The system-optimizing solution, on the other hand, for the first network in Figure 5 is:

xp1 = xp2 = 3, with marginal total path costs given by: Ĉ ′
p1

= Ĉ ′
p2

= 116. This would remain

the system-optimizing solution, even after the addition of link e, since the marginal cost of

path p3, Ĉ ′
p3

, at this feasible flow pattern is equal to 130.

The addition of a new link to a network cannot increase the total cost of the network
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system, but can, of course, increase a user’s cost since travelers act individually.

3. Models with Asymmetric Link Costs

In this section, we consider network models in which the user cost on a link is no longer

dependent solely on the flow on that link. We present a fixed demand transportation network

equilibrium model in Section 3.1 and an elastic demand one in Section 3.2.

We note that fixed demand supply chain network problems are relevant to applications

in which there are good estimates of the demand as would be the case in certain healthcare

applications. Elastic demand supply chain network problems can capture price sensitivity

associated with the product and are used in profit-maximizing settings (cf. Nagurney (2006)).

Asymmetric link costs are relevant also in the case of competitive supply chain network

equilibrium problems.

Assume that user link cost functions are now of a general form, that is, the cost on a link

may depend not only on the flow on the link but on other link flows on the network, that is,

ca = ca(f), ∀a ∈ L. (18)

In the case where the symmetry assumption exists, that is, ∂ca(f)
∂fb

= ∂cb(f)
∂fa

, for all links

a, b ∈ L, one can still reformulate the solution to the network equilibrium problem satisfying

equilibrium conditions (5) as the solution to an optimization problem, albeit, again, with an

objective function that is artificial and simply a mathematical device. However, when the

symmetry assumption is no longer satisfied, such an optimization reformulation no longer

exists and one must appeal to variational inequality theory (cf. Nagurney (1999) and the

references therein). Models of supply chains and transportation networks with asymmetric

cost functions are important since they allow for the formulation, qualitative analysis, and,

ultimately, solution to problems in which the cost on a link may depend on the flow on

another link in a different way than the cost on the other link depends on that link’s flow.

It was in the domain of such network equilibrium problems that the theory of finite-

dimensional variational inequalities realized its earliest success, beginning with the contri-

butions of Smith (1979) and Dafermos (1980). For an introduction to the subject, as well as
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applications ranging from transportation network and spatial price equilibrium problems to

financial equilibrium problems, see the book by Nagurney (1999). Below we present varia-

tional inequality formulations of both fixed demand and elastic demand network equilibrium

problems.

The system-optimization problem, in turn, in the case of nonseparable (cf. (18)) user link

cost functions becomes (see also (12)):

Minimize
∑
a∈L

ĉa(f), (19)

subject to (7)–(9), where ĉa(f) = ca(f)× fa, ∀a ∈ L.

The system-optimality conditions remain as in (16), but now the marginal of the total

cost on a path becomes, in this more general case:

Ĉ ′
p =

∑
a,b∈L

∂ĉb(f)

∂fa

δap, ∀p ∈ P. (20)

3.1 Variational Inequality Formulations of Fixed Demand Problems

As mentioned earlier, in the case where the user link cost functions are no longer sym-

metric, one cannot compute the solution to the U-O, that is, to the network equilibrium,

problem using standard optimization algorithms. We emphasize, again, that such general

cost functions are very important from an application standpoint since they allow for asym-

metric interactions on the network. For example, allowing for asymmetric cost functions

permits one to handle the situation when the flow on a particular link affects the cost on

another link in a different way than the cost on the particular link is affected by the flow on

the other link.

First, the definition of a variational inequality problem is recalled. For further back-

ground, theoretical formulations, derivations, and the proofs of the results below, see the

books by Nagurney (1999) and by Nagurney and Dong (2002) and the references therein.

We provide the variational inequality of the network equilibrium conditions in path flows as

well as in link flows since different formulations suggest different computational methods for

solution.
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Specifically, the variational inequality problem (finite-dimensional) is defined as follows:

Definition 1: Variational Inequality Problem

The finite-dimensional variational inequality problem, VI(F,K), is to determine a vector

X∗ ∈ K such that

〈F (X∗)T , X −X∗〉 ≥ 0, ∀X ∈ K, (21)

where F is a given continuous function from K to RN , K is a given closed convex set, and

〈·, ·〉 denotes the inner product in RN .

Variational inequality (21) is referred to as being in standard form. Hence, for a given

problem, typically an equilibrium problem, one must determine the function F that enters

the variational inequality problem, the vector of variables X, as well as the feasible set K.

The variational inequality problem contains, as special cases, such well-known problems

as systems of equations, optimization problems, and complementarity problems. Thus, it is

a powerful unifying methodology for equilibrium analysis and computation and continues to

be utilized for the formulation, analysis, and solution of a spectrum of supply chain network

problems (cf. Nagurney (2006)).

A geometric interpretation of the variational inequality problem VI(F,K) is given in

Figure 6. Specifically, F (X∗) is “orthogonal” to the feasible set K at the point X∗.

Theorem 1: Variational Inequality Formulation of Network

Equilibrium with Fixed Demands – Path Flow Version

A vector x∗ ∈ K1 is a network equilibrium path flow pattern, that is, it satisfies equilibrium

conditions (5) if and only if it satisfies the variational inequality problem:∑
ω∈Ω

∑
p∈Pω

Cp(x
∗)× (x− x∗) ≥ 0, ∀x ∈ K1, (22)

or, in vector form:

〈C(x∗)T , x− x∗〉 ≥ 0, ∀x ∈ K1, (23)

where C is the nP -dimensional vector of path user costs and K1 is defined as: K1 ≡ {x ≥
0, such that (7) holds}.
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Theorem 2: Variational Inequality Formulation of Network

Equilibrium with Fixed Demands – Link Flow Version

A vector f ∗ ∈ K2 is a network equilibrium link flow pattern if and only if it satisfies the

variational inequality problem:∑
a∈L

ca(f
∗)× (fa − f ∗

a ) ≥ 0, ∀f ∈ K2, (24)

or, in vector form:

〈c(f ∗)T , f − f ∗〉 ≥ 0, ∀f ∈ K2, (25)

where c is the nL-dimensional vector of link user costs and K2 is defined as:

K2 ≡ {f | there exists anx ≥ 0 and satisfying (7) and (8)}.

One may put variational inequality (23) into standard form (21) by letting F ≡ C, X ≡ x,

and K ≡ K1. One may also put variational inequality (25) into standard form where now

F ≡ c, X ≡ f , and K ≡ K2. Hence, fixed demand transportation network equilibrium

problems in the case of asymmetric user link cost functions can be solved as variational

inequality problems, as given above.
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The theory of variational inequalities (see Kinderlehrer and Stampacchia (1980) and

Nagurney (1999)) allows one to qualitatively analyze the equilibrium patterns in terms of

existence, uniqueness, as well as sensitivity and stability of solutions, and to apply rigorous

algorithms for the numerical computation of the equilibrium patterns. Variational inequality

algorithms usually resolve the variational inequality problem into series of simpler subprob-

lems, which, in turn, are often optimization problems, which can then be effectively solved

using a variety of algorithms.

We emphasize that the above network equilibrium framework is sufficiently general to

also formalize the entire transportation planning process (consisting of origin selection, or

destination selection, or both, in addition to route selection, in an optimal fashion) as path

choices over an appropriately constructed abstract network or supernetwork. Further discus-

sion can be found in the books by Nagurney (1999, 2000) and Nagurney and Dong (2002)

who also developed more general models in which the costs (as described above) need not

be separable nor asymmetric.

3.2 Variational Inequality Formulations of Elastic Demand Problems

We now describe a general network equilibrium model with elastic demands due to Dafer-

mos (1982) but we present the single-modal version, for simplicity. It is assumed that one

has associated with each O/D pair ω in the network a travel disutility function λω, where

here the general case is considered in which the disutility may depend upon the entire vector

of demands, which are no longer fixed, but are now variables, that is,

λω = λω(d), ∀ω ∈ Ω, (26)

where d is the J-dimensional vector of the demands.

The notation is as described earlier, except that here we also consider user link cost

functions which are general, that is, of the form (18). The conservation of flow equations

(see also (1) and (2)), in turn, are given by

fa =
∑
p∈P

xpδap, ∀a ∈ L, (27)

dω =
∑

p∈Pω

xp, ∀ω ∈ Ω, (28)
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xp ≥ 0, ∀p ∈ P. (29)

In the elastic demand case, the demands in expression (28) are variables and no longer

given, in contrast to the fixed demand expression in (1).

Network Equilibrium Conditions in the Case of Elastic Demands

The network equilibrium conditions (see also (5)) take on in the elastic demand case the

following form. For every O/D pair ω ∈ Ω, and each path p ∈ Pω, a vector of path flows

and demands (x∗, d∗) satisfying (28) and (29) (which induces a link flow pattern f ∗ through

(27)) is a network equilibrium pattern if it satisfies:

Cp(x
∗)

{
= λω(d∗), if x∗

p > 0
≥ λω(d∗), if x∗

p = 0.
(30)

Equilibrium conditions (30) state that the costs on used paths for each O/D pair are

equal and minimal and equal to the disutility associated with that O/D pair. Costs on

unutilized paths can exceed the disutility. Observe that in the elastic demand model users

of the network can forego travel altogether for a given O/D pair if the user costs on the

connecting paths exceed the travel disutility associated with that O/D pair. This model,

hence, allows one to ascertain the attractiveness of different O/D pairs based on the ultimate

equilibrium demand associated with the O/D pairs. In addition, this model can handle such

situations as the equilibrium determination of employment location and route selection, or

residential location and route selection, or residential and employment selection as well as

route selection through the appropriate transformations via the addition of links and nodes,

and given, respectively, functions associated with the residential locations, the employment

locations, and the network overall (cf. Nagurney (1999) and Nagurney and Dong (2002)).

In the next two theorems, both the path flow version and the link flow version of the

variational inequality formulations of the network equilibrium conditions (30) are presented.

These are analogues of the formulations (22) and (23), and (24) and (25), respectively, for

the fixed demand model, and are due to Dafermos (1982).
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Theorem 3: Variational Inequality Formulation of Network

Equilibrium with Elastic Demands – Path Flow Version

A vector (x∗, d∗) ∈ K3 is a network equilibrium path flow pattern, that is, it satisfies equilib-

rium conditions (30) if and only if it satisfies the variational inequality problem:∑
ω∈Ω

∑
p∈Pω

Cp(x
∗)× (x− x∗)−

∑
ω∈Ω

λω(d∗)× (dω − d∗ω) ≥ 0, ∀(x, d) ∈ K3, (31)

or, in vector form:

〈C(x∗)T , x− x∗〉 − 〈λ(d∗)T , d− d∗〉 ≥ 0, ∀(x, d) ∈ K3, (32)

where λ is the J-dimensional vector of disutilities and K3 is defined as: K3 ≡ {x ≥
0, such that (28) holds}.

Theorem 4: Variational Inequality Formulation of Network

Equilibrium with Elastic Demands – Link Flow Version

A vector (f ∗, d∗) ∈ K4 is a network equilibrium link flow pattern if and only if it satisfies

the variational inequality problem:∑
a∈L

ca(f
∗)× (fa − f ∗

a )−
∑
ω∈Ω

λω(d∗)× (dω − d∗ω) ≥ 0, ∀(f, d) ∈ K4, (33)

or, in vector form:

〈c(f ∗)T , f − f ∗〉 − 〈λ(d∗)T , d− d∗〉 ≥ 0, ∀(f, d) ∈ K4, (34)

where K4 ≡ {(f, d), such that there exists anx ≥ 0 satisfying (27), (28)}.

Under the symmetry assumption on the disutility functions, that is, if ∂λw

∂dω
= ∂λω

∂dw
, for all

w, ω, in addition to such an assumption on the user link cost functions (see following (18)),

one can obtain (see Beckmann, McGuire, and Winsten (1956)) an optimization reformulation

of the network equilibrium conditions (30), which in the case of separable user link cost

functions and disutility functions is given by:

Minimize
∑
a∈L

∫ fa

0
ca(y)dy −

∑
ω∈Ω

∫ dω

0
λω(z)dz (35)
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subject to: (27)–(29).

Variational inequality theory has become a fundamental methodological framework for

the formulation and solution of competitive supply chain problems in which the governing

concept is that of Nash equilibrium (see, e.g., Masoumi, Yu, and Nagurney (2012)).
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Figure 7: The Competitive Supply Chain Network Topology

In Figure 7, a competitive supply chain network is depicted in which the firms have ver-

tically integrated supply chains but compete in common demand markets. The top-most

links represent manufacturing activities at different plants with different such links denoting

alternative manufacturing technologies. The second set of links from the top reflects trans-

portation and alternative links depict the possibility of alternative modes of transportation.

The next set of links corresponds to storage at the distribution centers and the final set of
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links the transportation to the demand markets. Here we also use multiple links to denote

alternative technologies and transportation modes, respectively. The costs on the links can

be separable or not and asymmetric, depending on the specific product application. Prod-

uct differentiation and branding has also been incorporated into such supply chain networks

using variational inequality theory. Observe that in the supply chain network depicted in

Figure 7, direct shipments from the manufacturing plants to the demand points / retailers

are allowed and depicted by the corresponding links.

Finally, it is important to emphasize that the dynamics of the underlying interactions

can be formulated and has been done so using projected dynamical systems (Nagurney and

Zhang (1996)).

4. Conclusions

In this essay, we have highlighted some of the major advances in supply chains and trans-

portation networks, with a focus on the common elements as to the theoretical frameworks

and underlying behavioral principles. We have also argued that the foundations of sup-

ply chains as network systems can be found in the regional science and spatial economics

literature.

Specifically, we have discussed how the concepts of system-optimization and user-optimization

have underpinned transportation network models and, more recently, have evolved to enable

the formulation of supply chain network problems operating (and managed) under central-

ized or decentralized, that is, competitive, decision-making behavior.

We have also highlighted some of the principal methodologies, including variational in-

equality theory that have enabled the development not only of advanced transportation

network equilibrium models but also supply chain network equilibrium models.

We have aimed to include both primary references as well as tertiary references; the

interested reader can delve further, at his/her convenience and according to interest.

In conclusion, transportation network concepts, models, and accompanying methodolo-

gies have enabled the advancement of supply chain network models from a system-wide and

holistic perspective.

28



References

Beckmann MJ, McGuire CB, Winsten CB (1956) Studies in the economics of transportation.

Yale University Press, New Haven, Connecticut

Boone T, Jayaraman V, Ganeshan R (2012) Sustainable supply chains: Models, methods,

and public policy implications. Springer, in press.

Boyce DE, Mahmassani HS, Nagurney A (2005) A retrospective on Beckmann, McGuire,

and Winsten’s studies in the economics of transportation. Papers in Regional Science 84:

85-103

Braess, D (1968) Uber ein paradoxon der verkehrsplanung. Unternehmenforschung 12: 258-

268

Braess D, Nagurney A, Wakolbinger T (2005) On a paradox of traffic planning, translation

of the original D. Braess paper from German to English. Transportation Science 39: 446-450

Dafermos S (1980) Traffic equilibrium and variational inequalities. Transportation Science

14: 42-54

Dafermos S (1982) The general multimodal network equilibrium problem with elastic de-

mand. Networks 12: 57-72

Dafermos SC, Sparrow FT (1969) The traffic assignment problem for a general network.

Journal of Research of the National Bureau of Standards 73B: 91-118

Handfield RB, Nichols Jr., EL (1999) Introduction to supply chain management. Prentice-

Hall, Englewood Cliffs, New Jersey

Isard W (1954) Location theory and trade theory: Short-run analysis. The Quarterly Journal

of Economics 68: 305-320

Masoumi AH, Yu M, Nagurney A (2012) A supply chain generalized network oligopoly model

for pharmaceuticals under brand differentiation and perishability. Transportation Research

E 48: 762-780.

29



Nagurney A (1999) Network economics: A variational inequality approach, second and re-

vised edition. Kluwer Academic Publishers, Dordrecht, The Netherlands

Nagurney A. (2000) Sustainable transportation networks. Edward Elgar Publishing, Chel-

tenham, England

Nagurney A (2006) Supply chain network economics: Dynamics of prices, flows and profits.

Edward Elgar Publishing, Cheltenham, England

Nagurney A (2007) Mathematical models of transportation and networks. In: Zhang W-

B (ed) Mathematical models in economics, a volume in the Encyclopedia of Life Support

Systems (EOLSS), United Nations Educational, Scientific and Cultural Organization (UN-

ESCO)

Nagurney A (2010) Optimal supply chain network design and redesign at minimal total cost

and with demand satisfaction. International Journal of Production Economics 128: 200-208

Nagurney A, Dong J, 2002 Supernetworks: Decision-making for the Information Age. Ed-

ward Elgar Publishing, Cheltenham, England

Nagurney A, Dong J, Zhang D (2002) A supply chain network equilibrium model. Trans-

portation Research E, 38, 281-303

Nagurney A, Qiang Q (2009) Fragile networks: Identifying vulnerabilities and synergies in

an uncertain world. John Wiley & Sons, Hoboken, New Jersey

Nagurney A, Zhang D (1997) Projected dynamical systems and variational inequalities with

applications. Kluwer Academic Publishers, Norwell, Massachusetts

Nash JF (1951) Noncooperative games. Annals of Mathematics 54: 286-298

Ohlin B (1933) Interregional and international trade. Harvard University Press, Cambridge,

Massachusetts

Patriksson M (1994) The traffic assignment problem. VSP, Utrecht, The Netherlands

30



Ran B, Boyce DE (1996) Modeling dynamic transportation networks, second revised edition,

Springer-Verlag, Berlin, Germany

Samuelson PA (1952) Spatial price equilibrium and linear programming. American Economic

Review 42: 283-303

Sheffi Y (1985) Urban transportation networks. Prentice-Hall, Englewood Cliffs, New Jersey

Smith MJ (1979) Existence, uniqueness, and stability of traffic equilibria. Transportation

Research B 13: 259-304

Takayama T, Judge GG (1971) Spatial and temporal price and allocation models, North--

Holland, Amsterdam, The Netherlands

Wardrop JG (1952) Some theoretical aspects of road traffic research. In Proceedings of the

Institution of Civil Engineers, Part II 1, pp 325-278

Zhang D, Dong J, Nagurney A (2003) A supply chain network economy: modeling and

qualitative analysis. In: Nagurney A (ed), Innovations in financial and economic networks.

Edward Elgar Publishing, Cheltenham, England, pp 197-213

31


