
Supply Chain Networks with Global Outsourcing and Quick-Response Production
Under Demand and Cost Uncertainty

Zugang Liu
Department of Business and Economics

Pennsylvania State University
Hazleton, Pennsylvania 18202

Anna Nagurney
Department of Finance and Operations Management

Isenberg School of Management
University of Massachusetts

Amherst, Massachusetts 01003

May 2011; revised September 2011
Annals of Operations Research 208(1), (2013), pp 251-289

Abstract

This paper develops a modeling and computational framework for supply chain networks with
global outsourcing and quick-response production under demand and cost uncertainty. Our model
considers multiple off-shore suppliers, multiple manufacturers, and multiple demand markets. Using
variational inequality theory, we formulate the governing equilibrium conditions of the competing
decision-makers (the manufacturers) who are faced with two-stage stochastic programming prob-
lems but who also have to cooperate with the other decision-makers (the off-shore suppliers). Our
theoretical and analytical results shed light on the value of outsourcing from novel real option
perspectives. Moreover, our simulation studies reveal important managerial insights regarding how
demand and cost uncertainty affects the profits, the risks, as well as the global outsourcing and
quick-production decisions of supply chain firms under competition.
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1. Introduction

In the past decade, global outsourcing has become increasingly prevalent and has reshaped
supply chains in almost all industries. The main benefit of offshore outsourcing is cost savings. A
recent study published by PRTM management consultants reported that the average cost reduction
was 17% per globalization initiative among the three hundred surveyed international firms (Cohen
et al. (2008)). However, the supply chain firms that are involved in global outsourcing are exposed
to various risks such as, the demand risk, the supply disruption risk, the exchange rate risk,
etc. A study conducted by The Economist Magazine (The Economist Intelligence Unit (2009))
showed that, among these risks, demand uncertainty is ranked as the top risk factor by 500 global
company executives with responsibility for risk management. Moreover, the long lead time in global
outsourcing, ranging from three months to nine months (Walker (1999), CNN Tech (2004), Sen
(2008)), further amplifies the demand risk since precisely predicting demands months in advance
is extremely difficult, if not impossible.

Demand risk can, nevertheless, be mitigated by increasing the flexibility and the responsiveness
of supply chains. A well-known case is Zara, the Spanish apparel retailer, which achieves great
flexibility by using onshore quick-response production to manufacture 70% to 85% of its products.
As a result, Zara is able to reduce the lead time to only three weeks which helps it to quickly respond
to demand and to be able to reduce both markdowns and lost sales (CNN Tech (2004), Colye et
al. (2008), Cachon and Swinney (2009)). Another example of a fast-response industry is the toy
industry, which has grown to $50 billion, and with supply chains that span the globe. As noted by
Johnson (2006), toys are one of the oldest consumer products, with a volatile demand, and rapid
change and uncertainty, with companies such as Mattel exploiting both in-house manufacturing
capacity as well as outsourcing opportunities, especially in emerging economies.

Due to such success, supply chain flexibility and responsiveness have drawn increasing attention
from international firms. The PRTM supply chain trend survey noted that the enhancement of
supply chain flexibility is expected to overtake product quality and customer service as the top
focus of global supply chain firms (Cohen et al. (2008)).

Another important risk factor faced by firms with both global outsourcing options and quick-
response production capabilities is production cost uncertainty. Note that, at the time the firms
make outsourcing decisions, the quick-response production cost may still be uncertain, and may not
be revealed until months afterwards. Such a decision-making environment is not only relevant to
apparel and toys, but also to consumer electronics, personal computers, and seasonal merchandise,
including merchandise associated with special events and holidays (see Walker (1999)). The focus
of this paper, hence, is to develop an analytical framework for supply chain firms who are faced
with offshore-outsourcing and in-house quick-response production decisions under demand and cost
uncertainty. Our analytical model, theoretical results, and accompanying simulation analysis reveal
important managerial insights for global supply chain managers.

Supply chain outsourcing has been the theme of many studies in the literature. Kouvelis and
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Milner (2002) proposed a two-stage model to investigate a firm’s outsourcing and capacity decisions
with the interplay of demand and supply uncertainty. Lee et al. (2002) considered outsourcing
decisions in advanced planning and scheduling in manufacturing supply chains. Yang et al. (2007)
studied a sourcing problem where a firm is faced with stochastic demand and is allowed to order
from multiple suppliers with random yields. Liu and Nagurney (2011) focused on the impacts
of exchange rate risk and competition intensity on offshore outsourcing decisions of firms with
different risk attitudes. Nagurney et al. (2011) studied supply chain network design for critical
needs products with outsourcing options. For more research regarding global supply chain design
and outsourcing decisions, we refer the reader to the review by Meixell and Gargeya (2005).

A number of studies have considered supply chain outsourcing decisions under cost uncertainty
from a real option perspective. Datta (2005) pointed out that, if a firm has the capability to
outsource certain activities, the firm holds a real call option, the strike price of which is the cost
of producing those activities in-house. Alvarez and Stenbacka (2007) used a real option approach
to analyze a firm’s optimal outsourcing level and optimal organization mode. Jiang et al. (2008)
proposed a real option approach to evaluate the outsourcing contract under cost uncertainty from
the vendors’ perspective. The real option approach has also been widely used to study various
issues in supply chains. Dasu and Li (1997) used a real option approach to develop a two-country,
single-market, stochastic dynamic programming model with deterministic demand under foreign
exchange risk. Burnetas and Ritchken (2005) studied option contracts in supply chains when
the demand curve is downward sloping. The authors derived conditions under which the option
contract will make both the retailer and the manufacturer better off. Nembhard et al (2005) utilized
a real options approach to study the optimal supply chain decisions for supplier selection, plant
location, and market selection under exchange rate risk. Cucchiella and Gastaldi (2006) proposed
an individualized framework to select possible options to protect the supply chain firm against
various risks. For additional research that uses option valuation models to study supply chain
decisions, we refer the reader to the literature review by Cohen and Mallik (1997). For more theory
and applications regarding real options, see Brando and Dyer (2005), Wu et al. (2009), and Ross
et al.(2009).

Quick-response production, in turn, has drawn increasing attention from researchers. Upton
(1995) provided empirical evidence of the connections between quick-response manufacturing and
various technological and managerial characteristics of manufacturing plants. Yang and Wee (2001)
studied a quick-response production strategy for market demand with continuous deterioration in
stock. Barnes-Schuster et al. (2002) examined how a supplier and a retailer in a supply chain can
coordinate, through supply chain contracts with options, in order to quickly respond to market
demand. Cachon and Swinney (2009) considered pricing and purchasing decisions of a retailer with
a quick-response program in the presence of strategic consumers. For more studies regarding the
benefits of quick-response production, see Fisher and Raman (1996), Eppen and Iyer (1997), Iyer
and Bergen (1997), Suri (1998), Fisher et al. (2001), Jones et al. (2001), Petruzzi and Dada (2001),
Nagurney and Yu (2011a, b), and Cachon and Swinney (2011).
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Our paper differs from the above-mentioned ones in that we study the global outsourcing and
quick-response production decisions of supply chain firms from a network perspective in which we
allow multiple suppliers, multiple manufacturers, and multiple demand markets to interact under
both demand and cost uncertainty. In particular, each manufacturer maximizes his own expected
profit through a two-stage stochastic programming problem, while competing with the other man-
ufacturers, but cooperates with the off-shore suppliers in the first stage. We express the governing
equilibrium conditions of the entire supply chain network using a variational inequality formulation.
To the best of our knowledge, this paper is the first modeling effort that captures the behavior of
multiple, competing decision-makers who are faced with two-stage stochastic programming prob-
lems, but also have to cooperate with other decision-makers. In addition, we present theoretical and
analytical results that explain the value of outsourcing from new real options perspectives that are
distinct from those in the literature. We then use our modeling framework, theory, and simulation
studies to investigate the following questions:

(1). How does demand uncertainty affect supply chain firms’ decisions regarding outsourcing, in-
house production, and sales under competition?

(2). How does demand uncertainty affect supply chain firms’ profits and risks under competition?

(3). How does the prevalence of the quick-response in-house production affect supply chain firms’
decisions, profits, and risks under demand uncertainty?

(4). How does cost uncertainty affect supply chain firms’ decisions regarding outsourcing, in-house
production, and sales under competition?

(5). How does cost uncertainty affect supply chain firms’ profits and risks under competition?

Our model provides new real option interpretations for outsourcing decisions which indicate
that the outsourcing cost that the manufacturers without quick-response capability are willing to
pay will increase as the uncertainty of demand gets higher ; and that the outsourcing cost the
manufacturers with quick-response capability are willing to pay will decrease as the uncertainty of
the quick-response production cost gets higher. Our simulation studies show that manufacturers
with quick-response production capability have higher average profits and lower risks than manu-
facturers without such capability. However, the probability that manufacturers with quick-response
production have higher profits than manufacturers without quick-response production ranges from
0.2 to 0.6 at different demand uncertainty levels. In particular, we find that manufacturers without
quick-response production are more profitable when the demand turns out to be at normal levels
while manufacturers with such capability are more profitable when the demand is unexpectedly high
or low.

Our results also show that, as the prevalence of quick-response production increases among
manufacturers, the quick-response production quantity of each manufacturer will decrease while
the outsourcing quantity of each manufacturer will increase. In addition, as the prevalence of
quick-response production increases, the profit gap and the risk gap between manufacturers with
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and without such capability will become smaller. Moreover, we find that, as the uncertainty of the
cost of quick-response production increases, the manufacturers with such capability will increase
their quick-response production and will reduce outsourcing. As a consequence, such manufacturers
will become increasingly more profitable than manufacturers without quick-response production
capabilities.

It is also worth emphasizing that our results reveal that manufacturers without in-house quick-
response production will be indirectly and negatively affected by the uncertainty of the cost of
quick-response production through market competition. For example, when the quick-response
production cost turns out to be lower than expected, the profits of manufacturers without quick-
response production will be greatly reduced due to the competition with manufacturers with such
capabilities. Furthermore, as the quick-response cost uncertainty increases, the risk of manufactur-
ers without quick-response production capability will also increase since they are indirectly exposed
to the cost uncertainty through market competition.

This paper is organized as follows: In Section 2, we develop the global supply chain network
model with outsourcing and quick-response production under demand and cost uncertainty. We
model heterogenous decision-makers in supply chain networks, identify the governing equilibrium
conditions, and derive the variational inequality formulation. We also provide qualitative properties.
In Section 3, we provide some interesting analytical results and real options interpretations. In
Section 4, we use simulation analysis to study the impacts of demand and cost uncertainty on the
profits, the risks, and the decisions of supply chain firms under competition. Section 5 highlights
the managerial insights. Section 6 concludes the paper and discuss future research.

2. The Global Supply Chain Network Model with Cost and Demand Uncertainty

The model that we develop is based on variational inequality theory. Recall that the finite-
dimensional variational inequality problem, VI(F,K), is to determine a vector X∗ ∈ K ⊂ Rn, such
that

〈F (X∗)T , X −X∗〉 ≥ 0, ∀X ∈ K, (1)

where F is a given continuous function from K to Rn, K is a given closed, convex set, and < ·, · >
denotes the inner product in n-dimensional Euclidean space.

The variational inequality formulation allows for a unified treatment of equilibrium and opti-
mization problems, and is closely related to many mathematical programming problems, such as:
constrained and unconstrained optimization problems, fixed point problems, and complementar-
ity problems. For an introduction to finite-dimensional variational inequality theory, we refer the
reader to the book by Nagurney (1999). Variational inequality models allow one to analyze complex
network equilibrium problems in supply chains, transportation, finance, and electric power (see, for
example, Dong et al. (2005), Cruz and Wakolbinger (2008), Nagurney and Ke (2006), and Liu and
Nagurney (2009)).

The majority of the notation used throughout our model presentation is given in Table 1. All
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vectors throughout this paper are assumed to be column vectors unless otherwise noted. The
equilibrium solution is denoted by “*”.

Table 1: Notation for the Global Supply Chain Network Model
Notation Definition

ω ∈ Ω the demand scenarios
π ∈ Π the quick-response production cost scenarios
Θω the vector of demand factors in Scenario ω with component for Market m

denoted by θωm

Φπ the vector of cost factors in Scenario π with component for Manufacturer j
denoted by φπj

vi
j the outsourcing quantity from Manufacturer j to Supplier i. We group the

vi
js into the vector V .

V i the total production of Supplier i, that is,
∑J

j=1 vi
j .

uj
ωπ the quick-response production quantity of Manufacturer j in the intersection

of Scenarios ω and π. We group the uj
ωπs in Scenario ω and π into the vector

Uωπ, and group the uj
ωπs into the vector U .

yjm
ωπ the sales of Manufacturer j in Market m in the intersection of Scenarios ω

and π. We group the yjm
ωπ s in Scenario ω and π into the vector Yωπ, group

the yjm
ωπ s in Scenario ω into the vector Yω, and group all Yωs into the vector

Y .
Y m

ωπ the total sales of all manufacturers in Market m in the intersection of Sce-
narios ω and π, that is,

∑J
j=1 yjm

ωπ .
CAPi the production capacity of Supplier i

CAPj the quick-response production capacity of Manufacturer j

ρj
m(θω, Y m

ωπ) the inverse demand function for Manufacturer j’s product in Market m in
demand scenario ω and π

cj(φπ, uj
ωπ) the quick-response in-house production cost function of Manufacturer j in

cost scenario π and demand scenario ω

ci(V i) the production cost function of Supplier i

hi
j the unit transportation and transaction cost between Supplier i and Manu-

facturer j

ρi∗
j the equilibrium product price in the transaction between Supplier i and

Manufacturer j

We now develop the supply chain network equilibrium model with global outsourcing and quick-
response production under demand and cost uncertainty. The network structure and the timeline
are shown in Figure 1. Our model considers a two stage network, with I suppliers, J manufacturers,
and M demand markets. Note that the two stages here are time stages. In the first stage, each
manufacturer j decides how much to order from the suppliers, that is, he determines his vi

js, but
does this before the information regarding the demand (ω ∈ Ω) and the fast-response in-house
production cost (π ∈ Π) is revealed. The links between the suppliers {i} and the manufacturers
{j} in Stage 1 represent these outsourcing decisions, with the associated flows given by the vi

js.

In the second stage, the demand and cost information is first observed, and the manufacturers
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Figure 1: The Global Supply Chain Network and Decision Timeline

receive deliveries from the first stage which are represented (cf. Figure 1) by the flows on the links
crossing from Stage 1 to Stage 2. The manufacturers then decide how much to produce using the
fast-response productions, the uj

ωπs, which are represented by the flows on the links originating
from nodes j′; j′ = 1′, ..., J ′. The manufacturers also decide how much to sell in the demand
markets, that is, they determine their yjm

ωπ s, which are represented by the flows on the links from
the manufacturers to the demand markets. As noted in the Introduction, the second stage is,
typically, three to nine months after the first stage. In addition, as shown in Figure 1, there are
multiple demand and cost scenarios that the manufacturers need to consider.

Note that, if a manufacturer does not have quick-response production capacity, his in-house
quick-response production capacity is equal to zero. In Appendix B, we provide a simple example
to demonstrate the basic ideas of the model.
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2.1 The Behavior of the Manufacturers and their Optimality Conditions

The manufacturers determine their outsourcing quantities, the vi
js, in Stage 1 and decide their

quick-response productions, the uj
ωπs, and their sales volumes, the yjm

ωπ s, in Stage 2. We assume that
each manufacturer maximizes his own expected profit over the scenarios. Note that each manufac-
turer faces a two-stage scenario-based stochastic programming problem (see, e.g., Dupacova (1996),
Barbarosoglu and Arda (2004)). For the theory and applications of stochastic programming, we
refer the reader to the books by Birge and Louveaux (1997) and Shapiro et al. (2009). For excel-
lent coverage of probability theory and applications, see the book by Derman et al. (1973). The
complete optimal set of decisions for manufacturer j includes his optimal outsourcing quantities as
well as his optimal response plan under scenario ω and π in Stage 2. Hence, each manufacturer
maximizes his expected profit across all scenarios, and, when the optimality conditions of all man-
ufacturers hold simultaneously, an equilibrium state is reached in which no decision-maker can be
better off by changing his decisions.

The optimality conditions of all manufacturers can be simultaneously expressed as a varia-
tional inequality problem. We first describe the manufacturers’ decision-making problem as a two
stage stochastic programming problem. We then present the variational inequality governing the
equilibrium state of all the manufacturers.

The Manufacturers’ Optimization Problems

In the first stage, the manufacturers need to determine their outsourcing quantities, that is, their
vi
js. If a manufacturer orders too much from suppliers, he may end up with too many unsold

products in the second stage, while, if a manufacturer orders too little from the suppliers and
the demand turns out to be high in the second stage, he may have to use the more expensive
quick-response in-house production. Moreover, if manufacturer j does not have a quick-response
production capacity (i.e., CAPj = 0) he may lose sales opportunities to other manufacturers when
the demand is high in the second stage. In the second stage, after the demand and cost scenarios
are revealed, the manufacturer determines the quick-response production quantity, the uj

ωπs, and
the sales to the demand markets, the yjm

ωπ s. Hence, the manufacturers need to decide their vi
js,

uj
ωπs, and yjm

ωπ s in order to maximize the expected profits in equilibrium across all scenarios. In
particular, the optimization problem faced by Manufacturer j; j = 1, . . . , J , can be expressed as a
two stage stochastic programming problem as follows:

MAX E(Profit)j = −
I∑

i=1

ρi∗
j vi

j −
I∑

i=1

hi
jv

i
j + E[Qj

ωπ(vj ,Θω,Φπ)] (2)

subject to:
vi
j ≥ 0, i = 1, ..., I, (3)

where ρi∗
j is the equilibrium product price for the transaction between Supplier i and Manufacturer

j, and vj is the vector of all vi
js of manufacturer j. The first and second terms in the objective

function (2) represent the total payout to suppliers and the transportation / transaction costs,

8



respectively. The third term is the expected value of manufacturer j’s net revenue in Stage 2,
Qj

ωπ(vj ,Θω,Φπ), over all scenarios. In particular, Qj
ωπ(vj ,Θω,Φπ) is the optimal value of the

following problem:

MAX NetRevenuejωπ =
M∑

m=1

ρj
m(θmω, Y m

ωπ)yjm
ωπ − cj(φπ, uj

ωπ) (4)

subject to:
M∑

m=1

yjm
ωπ ≤

I∑
i=1

vi
j + uj

ωπ, (5)

uj
ωπ ≤ CAPj , (6)

uj
ωπ ≥ 0, yjm

ωπ ≥ 0, m = 1, ...,M. (7)

Note that the purchased quantities from suppliers, the vi
js, have been determined in the first

stage, and cannot be changed in the second stage. The first term in the objective function (4) is the
total revenue of Manufacturer j from the M demand markets while the second term in (4) is the
in-house production cost. Since the manufacturers engage in competition through their objective
functions as in (4), Manufacturer j’s product price in Market m, ρj

m(θmω, Y m
ωπ), is a function of Y m

ωπ,
the total sales of all the manufacturers. Note that, in Stage 2, θmω has been observed and becomes
a constant in ρj

m(θmω, Y m
ωπ). Moreover, the purchasing costs of outsourced products do not appear

in (4) since these costs have been determined in the first stage and are sunk costs in the second
stage.

Constraint (5) indicates that the total sales are less than or equal to the sum of the purchased
quantity and the in-house produced quantity. Constraint (6), in turn, reflects that the in-house
production cannot exceed the production capacity.

Based on the standard stochastic programming theory, we can reformulate manufacturer j’s
two-stage optimization problem as the following maximization problem:

MAX E(Profit)j = −
I∑

i=1

ρi∗
j vi

j −
I∑

i=1

hi
jv

i
j +

∑
ω∈Ω

∑
π∈Π

f(ω, π)

[
M∑

m=1

ρj
m(θmω, Y m

ωπ)yjm
ωπ − cj(φπ, uj

ωπ)

]
(8)

subject to
M∑

m=1

yjm
ωπ ≤

I∑
i=1

vi
j + uj

ωπ, ∀ω ∈ Ω, π ∈ Π, (9)

uj
ωπ ≤ CAPj , ∀ω ∈ Ω, π ∈ Π, (10)

vi
j ≥ 0, uj

ωπ ≥ 0, yjm
ωπ ≥ 0, i = 1, ..., I, m = 1, ...,M, ω ∈ Ω, π ∈ Π, (11)

where f(ω, π) is the joint probability of demand scenario ω and cost scenario π.
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The Optimality Conditions of All Manufacturers

We assume that the production cost function for each manufacturer is continuously differentiable
and convex (hence, it could be linear) and that the inverse demand function is continuous, con-
tinuously differentiable, and is decreasing. Also, we assume that the manufacturers compete in
a noncooperative manner in the sense of Nash (1950, 1951). The optimality conditions for all
manufacturers simultaneously coincide with the solution of the following variational inequality (cf.
Nagurney (1999), Bazaraa et al. (1993), Gabay and Moulin (1980)): Determine (V ∗, U∗, Y ∗) ∈ K1

satisfying:

I∑
i=1

J∑
j=1

[ρi∗
j + hi

j ]×
[
vi
j − vi∗

j

]
+

∑
ω∈Ω

∑
π∈Π

J∑
j=1

f(ω, π)
∂cj(φπ, uj∗

ωπ)

∂uj
ωπ

×
[
uj

ωπ − uj∗
ωπ

]

−
∑
ω∈Ω

∑
π∈Π

J∑
j=1

M∑
m=1

f(ω, π)[ρj
m(θmω, Y m∗

ωπ )+
∂ρj

m(θmω, Y m∗
ωπ )

∂Y m
ωπ

yjm∗
ωπ ]×

[
yjm

ωπ − yjm∗
ωπ

]
≥ 0, ∀(V,U, Y ) ∈ K1,

(12)
where K1 ≡ ((V,U, Y )|(V,U, Y ) ∈ R

IJ+|Ω||Π|(J+JM)
+ and (9) and (10) hold).

Note that, if variational inequality (12) is satisfied, then the optimality conditions of all manu-
facturers are satisfied simultaneously and, thus, an equilibrium state is reached.

Lemma 1

Suppose that variational inequality (12) holds. Then the optimality conditions of the second stage
problem (4) for all manufacturers are simultaneously satisfied in each scenario.

Proof: See the Appendix A.

Lemma 1 indicates that, if variational inequality (12) holds, then the manufacturers also achieve
equilibrium in each possible scenario in Stage 2.

2.2 The Behavior of the Offshore Suppliers and their Optimality Conditions

The offshore suppliers only transact with the manufacturers in the first stage, and do not need
to consider the scenarios in the second stage. The optimization problem faced by Supplier i;
i = 1, ..., I, can be expressed as follows:

MAX Profiti =
J∑

j=1

ρi∗
j vi

j − ci(V i) (13)

subject to:
J∑

j=1

vi
j ≤ CAPi, (14)

vi
j ≥ 0, ∀j.

10



We assume that the production cost function for each offshore supplier is continuously differ-
entiable and convex (hence, it could also be linear), and that the offshore suppliers also compete
in a noncooperative manner in the sense of Nash (1950, 1951). The optimality conditions for all
offshore suppliers simultaneously coincide with the solution of the following variational inequality:
Determine V ∗ ∈ K2 satisfying:

I∑
i=1

J∑
j=1

[
∂ci(V i∗)

∂vi
j

− ρi∗
j ]×

[
vi
j − vi∗

j

]
≥ 0, ∀V ∈ K2, (15)

where K2 ≡ (V |V ∈ RIJ
+ and (14) hold).

2.3 The Equilibrium Conditions of the Global Supply Chain Network

In equilibrium, the optimality conditions for all offshore suppliers and the optimality conditions
for all manufacturers must hold simultaneously. Also, the shipments that the suppliers ship to the
manufacturers must be equal to the shipments that the manufacturers accept from the suppliers;
hence, these two tiers of decision-makers cooperate (see also Nagurney (2006) and the references
therein).

Definition 1: Two-Stage Supply Chain Network Equilibrium

The equilibrium state of the supply chain network is one where the sum of (12) and (15) is satisfied,
so that no decision-maker has any incentive to alter his decisions.

Theorem 1: Variational Inequality Formulation

The equilibrium conditions governing the two stage supply chain network model are equivalent to
the solution of the variational inequality problem given by: Determine (V ∗, U∗, Y ∗) ∈ K3 satisfying:

I∑
i=1

J∑
j=1

[
∂ci(V i∗)

∂vi
j

+ hi
j ]×

[
vi
j − vi∗

j

]
+

∑
ω∈Ω

∑
π∈Π

J∑
j=1

f(ω, π)
∂cj(φπ, uj

ωπ)

∂uj
ωπ

×
[
uj

ωπ − uj∗
ωπ

]

−
∑
ω∈Ω

∑
π∈Π

J∑
j=1

M∑
m=1

f(ω, π)[ρj
m(θmω, Y m∗

ωπ ) +
∂ρj

m(θmω, Y m∗
ωπ )

∂Y m
ωπ

yjm∗
ωπ ]×

[
yjm

ωπ − yjm∗
ωπ

]
≥ 0,

∀(V,U, Y ) ∈ K3, (16)

where K3 ≡ ((V,U, Y )|(V,U, Y ) ∈ R
IJ+|Ω||Π|(J+JM)
+ and (9), (10), and (14) hold).

Proof: See the Appendix A.

The variational inequality problem (16) can be rewritten in standard form as follows: Determine
X∗ ∈ K satisfying 〈

F (X∗)T , X −X∗〉 ≥ 0, ∀X ∈ K, (17)

where X ≡ (V,U, Y )T , K ≡ K3,
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F (X) ≡ (F V
ij , FU

jωπ, F Y
jmωπ), (18)

with the functional terms (F V
ij , FU

jωπ, F Y
jmωπ) preceding the multiplication signs in (16), and with

indices i = 1, . . . , I; j = 1, . . . , J ; m = 1, . . . ,M ; ω ∈ Ω; and π ∈ Π. Here < ·, · > denotes the inner
product in H-dimensional Euclidean space where H = IJ + |Ω||Π|(J + JM).

In Appendix B, we provide simple numerical examples for illustration purposes.

2.4. Qualitative Properties

We now provide existence results and also establish conditions under which the function F

that enters variational inequality (16) is monotone. Such a property is useful for establishing
convergence of the algorithmic scheme that we use in our simulation study. It is important to note
that monotonicity plays a role in variational inequalities similar to the role that convexity plays in
optimization problems.

Theorem 2: Existence

If all the cost functions are continuously differentiable and the inverse demand functions are con-
tinuous and continuously differentiable then there exists a solution to variational inequality (16).

Proof: Since the production quantities are limited by capacities, the feasible set of (16) is compact,
and it is also nonempty. Under the above assumptions, F (X) is continuous in (16) and, hence,
according to the theory of variational inequality (cf. Nagurney (1999)), there exists a solution to
variational inequality (16).

Theorem 3: Monotonicity

Suppose that all the cost functions in the model are continuously differentiable and convex. Also,
suppose that all inverse demand functions are continuously differentiable, decreasing, and concave
(hence, it could be linear). Then the vector F that enters the variational inequality (16) as expressed
in (17) is monotone, that is,〈

(F (X ′)− F (X ′′))T , X ′ −X ′′〉 ≥ 0, ∀X ′, X ′′ ∈ K, X ′ 6= X ′′. (19)

Proof: See the Appendix A.

The algorithm that we utilize in Section 4 for the computation of solutions to variational in-
equality (16) is the modified projection method (see, e.g., Nagurney (1999)). The method converges
to a solution of our model provided that F (X) is monotone and Lipschitz continuous, and that a
solution exists, which is the case for our model. The algorithm is presented in the Appendix A.
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3. Some Analytical Results and Real Options

We now provide certain analytical results for a simple case where there is a single supplier
(I = 1), a single manufacturer (J = 1), and a single demand market (M = 1). In Propositions
1 and 2 we establish connections between the value of outsourcing and real call and put options.
Recall that a call option gives the option holder the right, but not the obligation, to purchase the
underlying asset (e.g., a stock) at a pre-determined price (strike price) before/on a future expiration
day. The payoff function of a call option on the expiration day is as follows:

payoff = MAX(0, S −K), (20)

where S is the stock price in the market on the expiration day and K is the strike price. If S is
higher than K the option holder can exercise the option and the payoff is S − K, while if S is
lower than K, the option holder can let the option expire without doing anything, in which case
the payoff is zero. The option premium is the price paid by the option holder in the beginning to
obtain the option.

A put option, on the other hand, gives the option holder the right but not the obligation to sell
the underlying asset at a pre-determined price (strike price, K) before/on a future expiration day.
The payoff function of a put option on the expiration day is as follows:

payoff = MAX(0,K − S). (21)

If S is lower than K, the option holder can exercise the option and the payoff is K − S, while, if S

is higher than K, the option holder can let the option expire without doing anything in which case
the payoff is zero. For additional theory and applications regarding financial and real options see
the book by Ross et al. (2009).

Next, we present two Propositions. We use λj
ωπs to denote Lagrange multipliers associated

with constraints (9). Note that since λj
ωπ is the shadow price associated with constraint (9), it

represents the marginal value (the value of an additional unit) of the product for Manufacturer
j under scenarios ω and π in Stage 2. We first assume that the in-house production cost is
deterministic, and focus on the random demand factor. Thus, for notational simplicity, we can
suppress the indices, i, j, m, and π. In particular, we assume that the random demand factor is
additive in the inverse demand function as follows:

ρ(θω, y) = a + θω − b× y, (22)

where a + θω > 0 ∀ω ∈ Ω.

Proposition 1

Suppose that the manufacturer’s capacity for quick-response in-house production is zero and that
the manufacturer’s outsourcing activity is positive (v∗ > 0). The marginal value of the product in
the second stage resembles the payoff of a real call option on the random demand factor, θω, with
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Figure 2: Marginal Value of the Product in Stage 2 with Uncertain Demand.

strike price K = 2bv∗ − a, that is, λ∗ω = MAX(0, θω − (2bv∗ − a)). Moreover, in the first stage the
outsourcing cost the manufacturer is willing to pay, ρ∗ + h, is equal to the expected value of this
real call option,

∑
ω∈Ω f(ω)λ∗ω.

Proof: See the Appendix A.

Proposition 1 states that the marginal benefit of the product in Stage 2, λ∗ω, is analogous to
the payoff of a call option on the demand factor, θω, i.e., λ∗ω = MAX(0, S − K) where S = θω

and K = 2bv∗ − a (see equation (20)). This relationship is illustrated by the solid lines in Figure
2.A, which shows that if θω is greater than 2bv∗ − a, then λ∗ω increases as θω increases while if θω

is less than 2bv∗ − a, then λ∗ω is zero. The economic explanation is as follows. When the demand
factor, θω, is high the manufacturer is able to optimally charge a higher price for the product which
results in higher marginal benefit of the product, λ∗ω. As the demand factor decreases the optimal
price charged for the product by the manufacturer will also decrease which will reduce the marginal
benefit, λ∗ω. Finally, if the demand factor, θω, drops below K = 2bv∗ − a then the manufacturer is
not able to sell all of the product which implies that the marginal benefit of the product is zero.
The flat dash line in Figure 2.A, in turn, represents ρ∗ + h, the outsourcing cost the manufacturer
is willing to pay in the first stage which does not depend on the realized value of θω since θω will
not be observed till the second stage.

Proposition 1 also states that, in the optimal solution, ρ∗+h, the marginal cost of the product, is
equal to

∑
ω∈Ω f(ω)λ∗ω, the expected marginal benefit, which can be also written as

∑
ω∈Ω f(ω)λ∗ω−

ρ∗ − h = 0. However, the realized value of λ∗ω minus ρ∗ + h can be positive or negative which is
shown in Figure 2.B.
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Remark

Such a real option analogy can help one to apply option theory in finance to understand the value
of global outsourcing from another angle. For example, from finance theory, we know that the value
of a call option increases as the uncertainty of the underlying factor increases, which indicates that,
in our case, if the manufacturer has no quick-response production capability the unit outsourcing
price the manufacturer is willing to pay will increase as the uncertainty of demand gets higher.
We recognize that this analytical result is based on a simple supply chain where competition
and quick-response production are not considered. In Section 4, we extend the analysis to more
complex and general cases through the use of simulation studies to analyze multiple heterogenous
manufacturers’ behaviors, their interactions, profits, and the risks with/without quick-response
capacities and under competition.

Note that the real option relationship derived in Proposition 1 is distinct from the real option
analysis in the outsourcing research literature. In the outsourcing literature, a real option usu-
ally refers to the choice and timing of outsourcing versus in-house production under varying costs.
However, here we show a new real option perspective for offshore outsourcing where the underlying
asset is the varying demand. In particular, in Proposition 1, the real option refers to the manufac-
turer’s capability to sell more of the product when the demand is high, which relies on the level of
availability of the product provided by the outsourcing order placed in Stage 1. In other words, if
the manufacturer orders more in the first stage, he has the option to sell more products and can
avoid stockout when the demand turns out to be high. Of course, if the demand turns out to be
low and there are unsold products, the manufacturer loses the premium of the option which is the
outsourcing price of the product.

We now focus on the random cost factor, and assume that the demand is deterministic. Thus,
for notational simplicity, we can suppress the indices, i, j, m, and ω. In particular, we assume that
the random cost factor is additive in the manufacturer’s unit cost function as follows:

cj(φπ, uπ) = (cj + φπ)× uπ. (23)

We assume that the inverse demand function takes the form:

ρ(y) = a− b× y. (24)

Proposition 2

Suppose that the manufacturer’s capacity for quick-response in-house production is sufficiently large
and that the manufacturer’s outsourcing activity is positive (v∗ > 0). The marginal value of the
outsourcing product in the second stage resembles the payoff of the short position of a real put
option on the random cost factor, φπ, with strike price K = a− 2bv∗ − cj, plus a constant, that is,
λ∗π = (a− 2bv∗)−MAX(0, (a− 2bv∗ − cj)− φπ). Moreover, in the first stage, the outsourcing cost
the manufacturer is willing to pay is equal to the expected payoff of such position,

∑
π∈Π f(π)λ∗π.
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Figure 3: Marginal Value of the Product in Stage 2 with Uncertain In-House Production Cost.

Proof: See the Appendix A.

Proposition 2 states that the marginal benefit of the product in Stage 2, λ∗π, is analogous to
the payoff of a constant, (a− 2bv∗), plus the short position of a call option on the cost factor, φπ,
i.e., λ∗π = (a − 2bv∗) − MAX(0,K − S) where S = φπ and K = (a − 2bv∗ − cj) (see equation
(21)). This relationship is illustrated by the solid lines in Figure 3.A, which shows that if φπ is
greater than (a − 2bv∗ − cj), then λ∗π stays at the level of (a − 2bv∗) as φπ increases while if φπ

is less than (a − 2bv∗ − cj), then λ∗π decreases as φπ decreases. The economic explanation is as
follows. When the quick-response production cost factor, φπ, is higher than K = (a − 2bv∗ − cj)
the manufacturer will not use the quick-response production so that the cost factor, φπ, does not
influence λ∗π. If the cost factor, φπ, drops below K = (a − 2bv∗ − cj) then the manufacturer has
the option to use the quick-response facility to produce the product at lower cost. These newly
produced products will increase the manufacturer’s total supply in the market and lower the price
charged, which will reduce λ∗π, the marginal benefit of the product. It is also worth noting that
when the manufacturer outsources a unit of the product to suppliers in the first stage it gives up
the option of producing the unit later at a possible lower cost, which implies a short position of the
option. Similar to Figure 2.A, the flat dash line in Figure 3.A represents ρ∗ + h, the outsourcing
cost the manufacturer is willing to pay in the first stage which does not depend on the realized
value of φπ since φπ will not be observed till the second stage.

Similar to Proposition 1, Proposition 2 also states that in the optimal solution ρ∗ + h, the
marginal cost of the product, is equal to

∑
π∈Π f(π)λ∗π, the expected marginal benefit, which can

be also written as
∑

π∈Π f(π)λ∗π − ρ∗ − h = 0. However, the realized value of λ∗π minus ρ∗ + h can
be positive or negative which is shown in Figure 3.B.
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Remark

This real option interpretation can help one to utilize financial option theory to better understand
the value of global outsourcing from a new perspective. For example, from the theory we know
that the values of put options increase as the uncertainty of the underlying factor increases. In
Proposition 2, outsourcing the production is analogous to the short position of the put option
which indicates that, in our case, the unit outsourcing cost the manufacturer is willing to pay
will decrease as the uncertainty of the quick-response production cost gets higher. Although this
analytical result is based on a simple supply chain in which competition and capacity limits are not
taken into consideration, in Section 4, we extend the analysis to more complex and general cases
through the use of simulation studies in order to analyze multiple heterogenous manufacturers’
behaviors, their interactions, profits, and the risks with/without quick-response capacities, and
under competition.

Note that the idea of Proposition 2 is distinct from that of real option analysis in the outsourcing
literature. In the literature, the real option usually means whether or not to outsource. However, in
Proposition 2, we assume that the manufacturer has already decided to outsource, and the question
is how the value of the outsourcing contract is influenced by the manufacturer’s quick-response
production capability. Proposition 2 demonstrates that the quick-response capability creates a
real put option for the manufacturer where the option is whether or not to use the quick-response
production, and the value of outsourcing represents a short position of such an option.

4. Simulation Studies

In this section we investigate the impact of demand and cost uncertainty on decision-making,
profitability, and the risk of the various decision-makers in the supply chain network. We utilize a
series of simulation studies to analyze the five questions posed in the Introduction.

In particular, we answer Questions 1 and 2 using Example 1; we answer Question 3 using
Example 2, and we answer Questions 4 and 5 using Example 3.

Simulation Example 1

In Example 1, we focus on the first and the second questions raised in the Introduction. We consider
two suppliers (I = 2), two manufacturers (J = 2), and one demand market (M = 1). Since the
purpose of this example is to study the impact of demand uncertainty on the decisions, profits, and
risks of manufacturers, with and without quick-response in-house production capabilities, in the
examples we assume that the two manufacturers have the same cost factors but different in-house
production capability. In particular, we assume that Manufacturer 1’s in-house production capacity
is 10 while Manufacturer 2’s in-house production capacity is 0. We use Monte Carlo simulation to
generate 200 demand factor scenarios (|Ω| = 200) where θω follows a normal distribution. We let
E(θω) = 20 and vary the standard deviation, σ(θω), from 0 to 10. In Example 1, we assume that
the in-house production cost is deterministic and we suppress π. The parameters of Example 1 are
specified in Table 2.
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Table 2: Parameter Specification for Example 1
Notation value

E(θω) 20
σ(θω) from 0 to 10 with interval = 2
CAPi 10, i = 1, 2
CAPj CAP1 = 10; CAP2 = 0

ρj
m(θω, Y m

ω ) ρj
m(θω, Y m

ω ) = θω −
∑2

j=1 yjm
ω , j = 1, 2; m = 1

cj(u
j
ω) cj(u

j
ω) = 13uj

ω + 0.2uj2
ω , j = 1

ci(V i) ci(V i) = 10
∑2

j=1 vi
j + 0.2(

∑2
j=1 vi

j)
2, i = 1, 2

hi
j hi

j = 0.5, i = 1, 2; j = 1, 2

The results are shown in Figures 5 and 6. In particular, Figure 4 explains the details of the
interplay between the two manufacturers when the standard deviation of the demand factor, θω,
is equal to 10. Figure 4.A shows that the in-house production of Manufacturer 1 is zero when the
realized value of θω is low, and linearly increases as the realized value of of θω increases until it
reaches the capacity. Note that the in-house production of Manufacturer 2 is always zero since it
does not have such capability. Figure 4.B compares the different behaviors of the two manufacturers
in terms of sales. We can see that when the demand factor is lower than level a both manufacturers
increase their sales as the demand factor increases. When the demand factor is between levels a
and b, Manufacturer 1’s sales are flat since it does not have more product purchased from suppliers
and it has not started quick-response production yet. Manufacturer 2’s sales, on the other hand,
increase with a slightly steeper slope from levels a to b, due to the fact that Manufacturer 2 orders
products from suppliers. When the demand factor is between levels b and c we can see that both
manufacturers’ sales are flat since they both have sold out products ordered from suppliers and
it is still not economically justifiable for Manufacturer 1 to start in-house production. When the
demand factor is between levels c and d Manufacturer 2 starts to use quick-response production
and its sales linearly increase until it reaches its production capacity.

Figure 4.C compares the marginal values of the product perceived by the two manufacturers at
Stage 2. First, in general, marginal values of the product of both manufacturers increase as the
demand factor gets higher. Second, the slopes of the product marginal values of both manufacturers
change when the demand factor reaches each of the levels (a, b, c, d) where the manufacturers’
sales decisions change. Recall that, without interaction with Manufacturer 2, Manufacturer 1’s
marginal value of the product is described in Proposition 1 and is shown in Figure 2.A. In this
example, however, Manufacturer 2’s marginal value of product is altered due to the interaction
with Manufacturer 1.

Figure 4.D shows the profits of the two manufacturers at different demand factor values. Recall
that the mean of the demand factor θω is 20. We can observe that, if the demand factor is close
to the mean, Manufacturer 2’s profit is higher, whereas, if the demand factor is far from the mean,
Manufacturer 1’s profit is higher. In addition, since the demand factor follows s normal distribution,
the demand factor that is closer to the mean is more likely to occur. Hence, Figure 4.D indicates
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Figure 4: The Marginal Value of Products, Manufacturers’ Decisions, and Manufacturers’ Profits
in Different Demand Scenarios

that Manufacturer 2 is more profitable when the demand turns out to be at a normal level while
Manufacturer 1 is more profitable when the demand is unexpectedly high or low.

Figure 5, in turn, compares the two manufacturers’ decisions, profits, and risks as the standard
deviation of the demand uncertainty factor rises from 0 to 10. Figure 5.A presents the trends of the
two manufacturers’ outsourcing of in-house production activities. We can see that Manufacturer
2, which does not have a quick-response production facility, increases its outsourcing quantity
as demand uncertainty increases. This is consistent with the discussion following Proposition
1 which implies that as demand uncertainty increases the value of the product outsourced to
suppliers will increase, and, as a consequence, the manufacturer will tend to increase its outsourcing
quantity. Figure 5.A also shows that Manufacturer 2, which has quick-response in-house production
capability, will increase its in-house production and will reduce its outsourcing quantity as the
demand uncertainty increases. Figure 5.B compares the average profits of the two manufacturers
where we can see that the profit of Manufacturer 1 increases as the demand uncertainty increases,
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and is consistently higher than that of Manufacturer 2. This result is expected since Manufacturer 1
has the option to use quick-response production which creates additional value to its supply chain.

It is interesting to see that, in Figure 5.C, the probability that the profit of Manufacturer 1 is
higher than that of Manufacturer 2 increases from 0.2 to 0.6 as the demand uncertainty increases.
This indicates that when the uncertainty is relatively low Manufacturer 2 has a greater chance to
gain higher profit than Manufacturer 1 has. This result can be explained by Figure 4.D where we
can see that, when the demand uncertainty factor is around the mean (E(θω) = 20), Manufacturer
2 has higher profit but only beats Manufacturer 1 slightly, whereas when the demand uncertainty
factor is far from the mean, Manufacturer 1 has a profit higher than that of Manufacturer 2 and the
difference is much greater. Note that, with a normal distribution, most values of θω are around the
mean , which increases the frequency that Manufacturer 2 beats Manufacturer 1. This situation is
more pronounced when the standard deviation of θω is low so that the vast majority of the values
of θω concentrate around the mean, which gives Manufacturer 2 a greater chance to obtain a higher
profit.

Figure 5.D, in turn, compares the 5th percentile profits of the two manufacturers. The 5th

percentile profit of Manufacturer 2 almost linearly decreases as the standard deviation of θω goes
up, while the 5th percentile profit of Manufacturer 1 first decreases and then becomes almost
flat as the demand uncertainty increases. Note that, since the 5th percentile profit/return is a
commonly used measure for risk, Figure 5.D indicates that a fast-response production capability
can significantly reduce risk and the benefit becomes greater as the demand uncertainty increases.
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Figure 5: Manufacturers’ Decisions, Profits, and Risks at Different Levels of Demand Uncertainty
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Simulation Example 2

In Example 2, we focus on the third question raised in the beginning of this section. In particular,
we consider ten suppliers (I = 5), ten manufacturers (J = 5), and a single demand market (M = 1).
Since the purpose of this example is to study how the prevalence of the quick-response in-house
production affects supply chain firms’ decisions, profits, and risks under demand uncertainty, in
this example, we vary the number of manufacturers that have quick-response in-house production
capability from 0 to 5. We use Monte Carlo simulation to generate 200 demand factor scenarios
(|Ω| = 200) where θω follows a normal distribution. Similar to Example 1, we assume that the
in-house production cost is deterministic and suppress π. The parameters of Example 2 are spec-
ified in Table 3. Throughout this example, we call the manufacturers with in-house production
capacity Type 1 manufacturers and the manufactures without in-house production capacity Type
2 manufacturers.

Table 3: Parameter Specification for Example 2
Notation value

E(θω) 20
σ(θω) 8
CAPi 10, i=1,2
CAPj 10 for Type 1 manufacturers; 0 for Type 2 manufacturers
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j = 0.5, i = 1, ..., 5; j = 1, ..., 5

Figure 6 presents the results for Example 2. Note that in Figure 6 the curves of Type 1
manufacturers do not have values when the percentage of such manufacturers is 0; and the curves
of Type 2 manufacturers do not have values when the percentage of Type 1 manufacturers is 100%.

Figure 6.A shows that, as the prevalence of quick-response production among manufacturers
increases, the outsourcing quantities of both Type 1 and Type 2 manufacturers increase. However,
it is worth noting that the total outsourcing quantity of all manufacturers should decrease since
the percentage of Type 2 manufacturers becomes lower. The quick-response production quantities
of Type 1 manufacturers decrease as the percentage of Type 1 manufacturers increases. This is
because of the following reason: When there are more manufacturers who have quick-response
production capability the competition among those manufacturers becomes more intense and the
benefit gets smaller. Therefore, the Type 1 manufacturers reduce quick-response production and
turn back to outsourcing to lower costs.

Figure 6.B compares the profits of Types 1 and 2 manufacturers. The average profit of Type
1 manufacturers decreases as the percentage of Type 1 manufacturers increases, which is due
to the fact the benefit of quick-response production declines as more manufacturers have such
capability. From Figure 6.B we can also see that the average profit of Type 2 manufacturers is
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Figure 6: Manufacturers’ Decisions, Profits, and Risks at Different Levels of Prevalence of Quick-
response Production
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always significantly lower than the average profit of Type 1 manufacturers.

Figure 6.C shows that the probability that Type 1 manufacturers beat Type manufacturers
decreases from around 0.67 to around 0.5 as the percentage of Type 1 manufacturers increases from
20% to 80%, which is consistent with Figure 6.B. Figure 6.D, in turn, presents the 5th percentile
profits of Type 1 and Type 2 manufacturers. The trend is similar to that of the mean profits in
Figure 6.B, which indicates that the risk of Type 1 manufacturers increases as the percentage of
Type 1 manufacturers increases, and is still consistently lower than that of Type 2 manufacturers.

Simulation Example 3

Example 3 focuses on the last two questions raised in the Introduction. In particular, we consider
two suppliers (I = 2), two manufacturers (J = 2), and one demand market (M = 1). Since the
purpose of this example is to study the impact of the uncertainty of in-house production cost on the
decisions, profits, and risks of manufacturers, with and without quick-response in-house production
capability, in this example we assume that the two manufacturers have the same cost factors but
different in-house production capability. Similar to the discussion for Example 1, we assume that
Manufacturer 1’s in-house production capacity is 10 while Manufacturer 2’s in-house production
capacity is 0. We use Monte Carlo simulation to generate 200 demand factor scenarios (|π| = 200)
where φπ follows normal distribution. We let E(φπ) = 0 and vary the standard deviation, σ(φπ),
from 0 to 4. In Example 3, we assume that the inverse demand function is deterministic and
suppress ω. The parameters of Example 3 are specified in Table 4.

Table 4: Parameter Specification for Example 3
Notation value

E(φπ) 0
σ(φπ) from 0 to 4 with interval = 1
CAPi 10, i=1,2
CAPj CAPj = 10; j = 1, 2
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The results are shown in Figures 8 and 9. Similar to Example 1, we first explain the details of
the interplay between the two manufacturers in Figure 7 where the standard deviation of the cost
is equal to 4. We then use Figure 8 to compare the trends of the decisions, profits, and risks of the
two manufacturers as the standard deviation of cost increases from 0 to 4.

Figure 7.A shows that the in-house production of Manufacturer 1 is zero when the quick-response
production cost turns out to be high and increases as the production cost decreases. As a result,
in Figure 7.B, we can see that the sales of Manufacturer 1 are flat when the cost factor is high and
increases as the in-house production cost becomes lower. Figure 7.C compares the marginal value
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Figure 7: The Marginal Value of Products, Manufacturers’ Decisions, and Manufacturers’ Profits
in Different Cost Scenarios
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of the supplier’s product perceived by the two manufacturers in Stage 2. The marginal value of the
product is higher for Manufacturer 1 than for Manufacturer 2 when the cost factor is high while
the marginal value for Manufacturer 1 decreases faster than that for Manufacturer 2 when the cost
becomes lower. Such a difference is due to the utilization of in-house production by Manufacturer
2 when the cost is lower.

Figure 7.D presents results regarding the trends of the profits of the two interacting manufac-
turers. We can see that, when the cost is high Manufacturer 2’s profit is higher than Manufacturer
1, since Manufacturer 2 orders more products from suppliers in Stage 1, and makes more sales
(see Figure 7.B). However, as the in-house production cost factor declines, Manufacturer 1 enjoys
a lower production cost and the profit of Manufacturer 1 increases. The profit of Manufacturer
2, however, decreases as the in-house production cost decreases due to the market interaction be-
tween the manufacturers where the increasing sales from Manufacturer 1 reduce the profit margin
of Manufacturer 2. Note that since Manufacturer 2 does not have in-house production capacity the
changing in-house production cost would not affect its profit if Manufacturer 1 did not exist.

Figure 8, in turn, compares the two manufacturers’ decisions, profits, and risks as the standard
deviation of the in-house production cost rises from 0 to 4. Figure 8.A shows that, as the cost
uncertainty increases, Manufacturer 1’s in-house production increases and the outsourcing quan-
tity decreases since the quick-response production cost variations provide more opportunity for
Manufacturer 1. This is also consistent with the discussion following Proposition 2, which predicts
that the value of outsourcing decreases as the uncertainty of the quick-response production cost
increases.
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Figure 8: Manufacturers’ Decisions, Profits, and Risks at Different Levels of Uncertainty of Quick-
response Production Cost

Figure 8.B shows that Manufacturer 1 becomes increasingly more profitable than Manufacturer
2 as the cost uncertainty increases. This is also due to the fact that an increase in the cost
uncertainty gives more opportunity for low cost production to Manufacturer 1.

Figure 8.C, however, shows that the median profit of Manufacturer 1 is lower than that of
Manufacturer 2, and that the gap becomes larger as the cost uncertainty increases. This seeming
contraction can be explained by Figure 7.D, which shows that, when the production cost is high,
Manufacturer 2 beats Manufacturer 1 marginally, while when the production is low, Manufacturer
1 beats Manufacturer 2 by a large amount. As a result, although Manufacturer 2 can earn higher
profits in more scenarios, Manufacturer 1 has a higher average profit across all scenarios.

Figure 8.D compares the risks (5th percentile profits) of the two manufacturers. Similar to
results in other examples, the risk of Manufacturer 1 is always lower than that of Manufacturer 2.
Moreover, we can see that the 5th percentile profit of Manufacturer 2 decreases from around 16 to
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around 4 when the cost uncertainty increases even though Manufacturer 2 does not have any in-
house production capacity. This is because Manufacturer 2 is indirectly exposed to the production
cost uncertainty due to the competition with Manufacturer 1.

5. Managerial Insights

Our results reveal important managerial insights for supply chain decision-makers who are
faced with decisions regarding outsourcing and quick-response production under demand and cost
uncertainty. First, for manufacturers who do not have quick-response production capability, rising
demand uncertainty will increase the value of outsourcing. In such a case, the manager should
optimally increase the outsourcing quantity in order to reduce lost sales when the demand for
and the market price of the product are high. On the other hand, rising demand uncertainty will
not increase the value of outsourcing for manufacturers with quick-response capability since when
demand turns out to be significantly higher than expected additional amounts of the product can
be manufactured through the quick-response production.

Second, manufacturers with quick-response production can expect higher average profit and
lower risk than their competitors who do not have such capability. However, these manufacturers
may not have a higher chance to beat their competitors in terms of profit when the demand
uncertainty is low. Moreover, they may have lower profits if the demand turns out to be at normal
levels. Indeed, the main benefit of quick-response production is due to the gains in lower probability
scenarios where demands unexpectedly differ from the normal level.

Third, the prevalence of quick-response production will reduce the benefit. If more and more
firms have the quick-response capability then each company’s outsourcing activity will rise since
the focus of the competition turns back to cost reduction. In such a case, the managers should be
vigilant about the competitors’ strategies, and carefully balance between the supply chain flexibility
and the cost.

Fourth, for decision-makers who have quick-response production capability, rising cost uncer-
tainty will decrease the value of outsourcing. In such a case, the managers should reduce outsourcing
quantities and keep the flexibility of producing in-house if the cost significantly declines. It is worth
noting that manufacturers without quick-response capability should understand that they can still
be indirectly and negatively affected by the cost variations of quick-response production through
market competition. Therefore, even if a firm does not have quick-response capability the man-
ager should be aware of the cost variations as well as the competitors’ strategies, and take such
information into consideration when making supply chain decisions.

6. Conclusions and Future Research

This paper studied the impact of demand and cost uncertainty on the profits, risks, and decisions
of a network of supply chain firms. In particular, we developed a variational inequality model that
considers heterogeneous supply chain firms’ decision-making and determines the equilibrium of the
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supply chain network. We also established interesting theoretical and analytical results, provided
important qualitative properties for the model, and presented an algorithm that was guaranteed
to converge, under reasonable assumptions. We utilized a series of computational examples to
answer several questions regarding supply chain firms’ profitability, risk, and decision-making under
demand and cost uncertainty.

Our analytical results revealed new real option interpretations for outsourcing decisions, which
suggest that the outsourcing cost the manufacturers without quick-response production capability
are willing to pay will increase when the demand uncertainty increases; and that the unit outsourc-
ing cost the manufacturer with quick-response production is willing to pay will decrease when the
uncertainty of the quick-response production cost increases. Our first simulation example showed
that manufacturers with quick-response production capability have higher average profits and lower
risks than manufacturers without quick-response production capability. However, the probability
that manufacturers with quick-response production have higher profits than manufacturers without
such capacity ranges from 0.2 to 0.6 at different demand uncertainty levels. In particular, we found
that manufacturers without quick-response production are more profitable when the demand turns
out to be at normal levels while manufacturers with such capability are more profitable when the
demand is unexpectedly high and unexpectedly low.

Our second simulation example indicates that, as the prevalence of quick-response production
increases, the profit gap and the risk gap between manufacturers, with and without such capability,
will become smaller. Our results also show that as the prevalence of quick-response production
increases among manufacturers the quick-response production quantity of each manufacturer with
such capability will decrease while the outsourcing quantity of each manufacturer will increase.

Our third example shows that, as the cost uncertainty of quick-response production increases,
the manufacturers with such capability will increase their quick-response production levels and
will reduce outsourcing. Moreover, they become increasingly more profitable than manufacturers
without quick-response production.

It is also worth noting that the third example indicates that manufacturers without in-house
quick-response production will be indirectly affected by the uncertainty of the cost of quick-response
production through competition with manufacturers who have such capability. For example, when
the quick-response production cost turns out to be lower than expected, the profits of manufac-
turers without the quick-response production will be greatly reduced due to the competition with
manufacturers with such capabilities. As the quick-response cost uncertainty increases, the risk
of manufacturers without quick-response production will also increase since they are indirectly
exposed to the cost uncertainty through market competition.

This paper has certain limitations. First, we only included simple contracts between the sup-
pliers and the manufacturers in the model. More sophisticated contracts such as contracts with
options and risk-sharing contracts are not considered. In addition, we focused on demand and cost
risks, and did not considered other risk factors that may influence outsourcing decisions such as
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foreign exchange risk, quality risk, and supply disruption risk. These limitations can be addressed
in future research. For example, more sophisticated contracts and more risk factors can be incorpo-
rated into the network framework so that the values of various outsourcing contracts can be studied
under additional risk factors. It is also worth noting that in future research the idea developed in
this paper can be extended in other directions. In particular, the two-stage network equilibrium
framework can be utilized to investigate other supply chain issues including supply chain design
and redesign, supply chain relationships as well as supply chain disruption and risk management.
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Appendix A

Proof of Lemma 1:

In each scenario ω and π, the optimality conditions of problem (4), subject to (5) – (7), of
all manufacturers coincide with the solution of the following variational inequality (cf. Nagurney
(1999), Bazaraa et al. (1993), Gabay and Moulin (1980)): Determine (U∗

ωπ, Y ∗
ωπ) ∈ K4 satisfying:

J∑
j=1

∂cj(φπ, uj
ωπ)

∂uj
ωπ

×
[
uj

ωπ − uj∗
ωπ

]

−
J∑

j=1

M∑
m=1

[ρj
m(θmω, Y m∗

ωπ ) +
∂ρj

m(θmω, Y m∗
ωπ )

∂Y m
ωπ

yjm∗
ωπ ]×

[
yjm

ωπ − yjm∗
ωπ

]
≥ 0, ∀(Uωπ, Yωπ) ∈ K4, (A1)

where K4 ≡ ((Uωπ, Yωπ)|(Uωπ, Yωπ) ∈ RJ+JM
+ and (5) and (6) hold).

On the other hand, suppose that (V ∗, U∗, Y ∗) is a solution to variational inequality (12). We
can select any pair of ω̄ ∈ Ω and π̄ ∈ Π, and set qi

j = qi∗
j , uj

ωπ = uj∗
ωπ,∀ω 6= ω̄ or π 6= π̄, and

yjm
ωπ = yjm∗

ωπ ,∀ω 6= ω̄ or π 6= π̄. Variational inequality (12) then reduces to the following variational
inequality.

J∑
j=1

f(ω̄, π̄)
∂cj(φπ, uj

ω̄π̄)

∂uj
ω̄π̄

×
[
uj

ω̄π̄ − uj∗
ω̄π̄

]

−
J∑

j=1

M∑
m=1

f(ω̄, π̄)[ρj
m(θmω̄, Y m∗

ω̄π̄ ) +
∂ρj

m(θmω̄, Y m∗
ω̄π̄ )

∂Y m
ω̄π̄

yjm∗
ω̄π̄ ]×

[
yjm

ω̄π̄ − yjm∗
ω̄π̄

]
≥ 0, ∀(Uω̄π̄, Yω̄π̄) ∈ K̄4,

(A2)
where K̄4 ≡ ((Uω̄π̄, Yω̄π̄)|(Uω̄π̄, Yω̄π̄) ∈ RJ+JM

+ and (5) and (6) hold). Since f(ω̄, π̄) is positive and
constant, we can divide f(ω̄, π̄) on both sides of (A2), to obtain:

J∑
j=1

∂cj(φπ, uj
ω̄π̄)

∂uj
ω̄π̄

×
[
uj

ω̄π̄ − uj∗
ω̄π̄

]

−
J∑

j=1

M∑
m=1

[ρj
m(θmω̄, Y m∗

ω̄π̄ ) +
∂ρj

m(θmω̄, Y m∗
ω̄π̄ )

∂yjm
ω̄π̄

yjm∗
ω̄π̄ ]×

[
yjm

ω̄π̄ − yjm∗
ω̄π̄

]
≥ 0, ∀(Uω̄π̄, Yω̄π̄) ∈ K̄4. (A3)

Note that variational inequality (A3) is (A1) under scenario ω̄ and π̄(U∗
ω̄π̄, Y ∗

ω̄π̄) is also a solution
to (A1) under scenario ω̄ and π̄. Thus, the optimality conditions of all manufacturers are satisfied
in scenario ω̄ and π̄.

Since ω̄ and π̄ are arbitrarily selected, we conclude that the optimality conditions of all manu-
facturers are satisfied in every possible individual scenario. Q.E.D.
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Lemma 2

Suppose X∗ ∈ Rn
+ is a solution to the variatoinal inequality

〈F (X∗)T , X −X∗〉 ≥ 0, ∀X ∈ Rn
+, (A4)

where F is a given continuous function from Rn
+ to Rn with the lth element denoted by f l(X∗). In

addition, let xl denote the lth element of X. Then the following conditions hold:

If xl∗ > 0 then f l(X∗) = 0;

If xl∗ = 0 then f l(X∗) ≥ 0;

If f l(X∗) > 0 then xl∗ = 0.

Proof: For an arbitrary l we can construct X̂ ∈ Rn
+ where x̂k = xk∗, ∀k 6= l. Since (A4) holds for

all X ∈ Rn
+ it also holds for X̂, that is,

〈F (X∗)T , X̂ −X∗〉 ≥ 0, (A5)

which reduces to
f l(X∗)× (xl − xl∗) ≥ 0, ∀xl ∈ R1

+, (A6)

Since (A6) holds for all xl ≥ 0 we can easily verify the below:

If xl∗ > 0 then f l(X∗) = 0;

If xl∗ = 0 then f l(X∗) ≥ 0;

If f l(X∗) > 0 then xl∗ = 0.

Given that l is selected arbitrarily these results hold for all the elements. Q.E.D.

Proof of Theorem 1:

Summation of inequalities (12) and (15) yields, after algebraic simplification, the variational
inequality (16). We now establish the converse, that is, that a solution to variational inequality (16)
satisfies the sum of conditions (12) and (15) and is, hence, an equilibrium according to Definition 1.
To inequality (16) add the term +ρi∗

j − ρi∗
j to the first set of brackets preceding the multiplication

sign. The addition of such terms does not alter (16) since the value of these terms is zero. The
resulting inequality can be rewritten to become equivalent to the price and flow pattern satisfying
the sum of the conditions (12) and (15). The proof is complete. Q.E.D.

Proof of Proposition 1:

First, since the production cost function for each manufacturer is continuously differentiable
and convex (hence, it could be linear) and the inverse demand function is decreasing, each man-
ufacturer’s objective function (8) is concave. In addition, the constraints (9)-(11) are all linear
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constraints. Therefore, the KKT conditions of the problem defined by (8)-(11) are both necessary
and sufficient conditions for optimal solutions. We can express the KKT conditions of all manu-
facturers using the following variational inequality: Determine (V ∗, U∗, Y ∗, λ∗, µ∗) ∈ K1 satisfying:

I∑
i=1

J∑
j=1

[ρi∗
j + hi

j −
∑
ω∈Ω

∑
π∈Π

f(ω, π)λj∗
ωπ]×

[
vi
j − vi∗

j

]

+
∑
ω∈Ω

∑
π∈Π

J∑
j=1

f(ω, π)[
∂cj(φπ, uj

ωπ)

∂uj
ωπ

+ µj∗
ωπ − λj∗

ωπ]×
[
uj

ωπ − uj∗
ωπ

]

+
∑
ω∈Ω

∑
π∈Π

J∑
j=1

M∑
m=1

f(ω, π)[λj∗
ωπ − ρj

m(θmω, Y m∗
ωπ )− ∂ρj

m(θmω, Y m∗
ωπ )

∂Y m
ωπ

yjm∗
ωπ ]×

[
yjm

ωπ − yjm∗
ωπ

]

+
∑
ω∈Ω

∑
π∈Π

J∑
j=1

f(ω, π)[
I∑

i=1

vi∗
j + uj∗

ωπ −
M∑

m=1

yjm∗
ωπ ]×

[
λj

ωπ − λj∗
ωπ

]

+
∑
ω∈Ω

∑
π∈Π

J∑
j=1

f(ω, π)[CAPj−uj∗
ωπ]×

[
µj

ωπ − µj∗
ωπ

]
≥ 0, ∀(V,U, Y, λ, µ) ∈ R

IJ+|Ω||Π|(3J+JM)
+ , (A7)

where λ and µ denote the vectors of Lagrange multipliers associated with constraints (9) and
(10), respectively. Since the KKT conditions are sufficient and necessary conditions for optimality,
variational inequalities (A7) and (12) are equivalent. Variational inequality (A7) will be used to
prove Propositions 1 and 2.

Since we now consider a single supplier, a single manufacturer without in-house production
capacity, and a single market with deterministic cost factor we can suppress indices i, j, m, and π.
After we substitute (22) into ρ(θω, y), variational inequality (A7) reduces to the following form:

[ρ∗ + h−
∑
ω∈Ω

f(ω)λ∗ω]× [q − v∗] +
∑
ω∈Ω

f(ω)[λ∗ω − (a + θω − 2by∗ω)]× [yω − y∗ω]

+
∑
ω∈Ω

f(ω)[v∗ − y∗ω]× [λω − λ∗ω] ≥ 0, ∀(V, y, λ) ∈ R
1+2|Ω|
+ . (A8)

We only consider the scenarios the probabilities of which are positive, that is, f(ω) > 0,∀ω ∈ Ω.

Next, we will prove that λ∗ω = MAX(0, θω − (2bv∗ − a)) by showing that if θω − (2bv∗ − a) > 0
then λ∗ω = θω − (2bv∗ − a) in Step 1, and if θω − (2bv∗ − a) ≤ 0 then λ∗ω = 0 in Step 2.

Step 1

First, note that since λ∗ω ≥ 0 we have that v∗ ≥ y∗ω, ∀ω ∈ Ω (see Lemma 2). Hence, if
θω − (2bv∗ − a) > 0 then θω − (2by∗ω − a) > 0, ∀ω ∈ Ω, equivalently, (a + θω − 2by∗ω) > 0, ∀ω ∈ Ω.

According to Lemma 2 since y∗ ≥ 0 we also have that λ∗ω ≥ (a+ θω − 2by∗ω). Thus, we now have
λ∗ω > 0.
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Since λ∗ω > 0 according to Lemma 2 we must have that

v∗ − y∗ω = 0. (A9)

Given that v∗ > 0 we have y∗ω > 0. Now, since y∗ω > 0 based on Lemma 2 we have λ∗ω − (a + θω −
2by∗ω) = 0, which is equivalent to λ∗ω = (a+θω−2by∗ω). Finally, given (A9) we have λ∗ω = a+θω−2bv∗.

We have now that if θω − (2bv∗ − a) > 0 then λ∗ω = a + θω − 2bv∗ (λ∗ω = θω − (2bv∗ − a)).

Step 2

Next, we show that if θω − (2bv∗ − a) ≤ 0 then λ∗ω = 0. Recall that since λ∗ω ≥ 0 we have
v∗ ≥ y∗ω, ∀ω ∈ Ω (see Lemma 2). Now, we discuss the cases for v∗ = y∗ω and v∗ > y∗ω separately.

First, if v∗ = y∗ω since v∗ > 0 we have that y∗ω > 0 which implies that λ∗ω − (a + θω − 2by∗ω) = 0.
Since v∗ = y∗ω we have that λ∗ω = (a + θω − 2bv∗), equivalently, λ∗ω = θω − (2bv∗ − a). Given that
θω − (2bv∗ − a) ≤ 0 and λ∗ω ≥ 0, we have λ∗ω = 0.

Next, if v∗ > y∗ω we directly have that λ∗ω = 0 from Lemma 2. Hence, we have now if θω −
(2bv∗ − a) ≤ 0 then λ∗ω = 0.

In summary, if θω − (2bv∗ − a) > 0 then λ∗ω = θω − (2bv∗ − a)), and if θω − (2bv∗ − a) ≤ 0 then
λ∗ω = 0. Therefore, we have λ∗ω = MAX(0, θω − (2bv∗ − a)).

Since v∗ > 0, we have ρ∗ + h =
∑

ω∈Ω f(ω)λ∗ω (see Lemma 2), which indicates that in Stage 1
the unit cost the manufacturer is willing to pay for the product is equal to the expected payoff of
this real call option. Q.E.D.

Proof of Proposition 2:

Since we now consider a single supplier, a single manufacturer with sufficient in-house production
capacity, and a single market with a deterministic demand factor we can suppress indices i, j, m,
and ω. After we substitute (23) and (24) into (A7), variational inequality (A7) reduces to the
following form:

[ρ∗ + h−
∑
π∈Π

f(π)λ∗π]× [q − v∗] +
∑
π∈Π

f(π)[cj + φπ + µ∗π − λ∗π]× [uπ − u∗π]

+
∑
π∈Π

f(π)[λ∗π − (a− 2b× y∗π)]× [yπ − y∗π] +
∑
π∈Π

f(π)[v∗ + u∗π − y∗π]× [λπ − λ∗π]

+
∑
π∈Π

f(π)[CAPj − u∗π]× [µπ − µ∗π] ≥ 0, ∀(V,U, Y, λ, µ) ∈ R
1+4|Π|
+ . (A10)

Since this analytical analysis focuses on the case where the manufacturer’s in-house production is
sufficiently large, we have CAPj − u∗π > 0, ∀π ∈ Π. Therefore, µ∗π = 0,∀π ∈ Π (see Lemma 2) and
variational inequality (A10) reduces to:

[ρ∗ + h−
∑
π∈Π

f(π)λ∗π]× [q − v∗] +
∑
π∈Π

f(π)[cj + φπ − λ∗π]× [uπ − u∗π]
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+
∑
π∈Π

f(π)[λ∗π − (a− 2b× y∗π)]× [yπ − y∗π] +
∑
π∈Π

f(π)[v∗ + u∗π − y∗π]× [λπ − λ∗π] ≥ 0,

∀(V,U, Y, λ) ∈ R
1+3|Π|
+ , (A11)

We only consider the scenarios the probabilities of which are positive, that is, f(π) > 0,∀π ∈ Π.

Next, we will prove that λ∗π = (a − 2bv∗) − MAX(0, (a − 2bv∗ − cj) − φπ) by showing that
if (a − 2bv∗ − cj) − φπ > 0 then λ∗π = cj + φπ in Step 1, and if (a − 2bv∗ − cj) − φπ ≤ 0 then
λ∗π = a− 2bv∗ in Step 2.

Before we prove the results in Steps 1 and 2, we first show that a − 2bv∗ > 0. Since the
outsourcing activity is nonzero, i.e., v∗ > 0, (A11) implies that ρ∗ +h =

∑
π∈Π f(π)λ∗π (see Lemma

2). Since the total outsourcing cost should be positive, i.e., ρ∗ + h > 0, we have that there must
exist π̄ ∈ Π such that λ∗π̄ > 0. If λ∗π̄ > 0, (A11) implies that v∗ + u∗π̄ = y∗π̄ (see Lemma 2). Since
v∗ > 0 and u∗π̄ is non-negative we have y∗π̄ > 0. If y∗π̄ > 0, (A11) implies that λ∗π̄ − (a − 2by∗π̄) = 0
(see Lemma 2). Since λ∗π̄ > 0 we have a− 2by∗π̄ > 0. On the other hand v∗ + u∗π̄ = y∗π̄ implies that
v∗ ≤ y∗π̄. Therefore, we have that a− 2bv∗ > 0.

Step 1

We now investigate the case where (a− 2bv∗− cj)−φπ > 0, or, equivalently, a− 2bv∗ > cj +φπ.
Since (A11) implies that cj + φπ ≥ λ∗π and λ∗π ≥ a − 2by∗π (see Lemma 2), we have a − 2bv∗ >

a−2by∗π, ∀π. Hence, v∗ < y∗π. On the other hand, (A11) also implies that v∗+u∗π ≥ y∗π (see Lemma
2). Hence, we have now that u∗π > 0, which according to (A11), implies that λ∗π = cj + φπ (see
Lemma 2).

Step 2

We now investigate the situation where (a−2bv∗−cj)−φπ ≤ 0, or, equivalently, a−2bv∗ ≤ cj+φπ.
We now have to discuss two cases: u∗π > 0 and u∗π = 0, separately.

We first prove that u∗π > 0 cannot be possible, by contraction. If u∗π > 0, (A11) implies that
cj + φπ = λ∗π (see Lemma 2). Since we have assumed that the cost has to be positive (cj + φπ > 0)
we have λ∗π > 0. Since λ∗π > 0, (A11) implies that v∗ + u∗π = y∗π (see Lemma 2). Since u∗π > 0,
we have y∗π > v∗, which implies that a − 2bv∗ > a − 2by∗π. Since we have that cj + φπ = λ∗π and
a − 2bv∗ ≤ cj + φπ, we now have λ∗π > a − 2by∗π which, based on (A11), implies that y∗π = 0 (see
Lemma 2). Note that y∗π = 0 contradicts the relationship, y∗π > v∗ (v∗ ≥ 0), which we have shown
previously.

We now focus on the case u∗π = 0. If u∗π = 0, the last term of (A11) implies that v∗ ≥ y∗π (see
Lemma 2). The third term of (A11) also implies that λ∗π − (a − 2by∗π) ≥ 0 (see Lemma 2). So,
we now have λ∗π − (a − 2bv∗) ≥ 0. Note that, in the beginning of the proof, we have shown that
(a − 2bv∗) > 0. Hence, now we have λ∗π > 0. If λ∗π > 0, (A11) implies that v∗ = y∗π given that
u∗π = 0 (see Lemma 2). Since v∗ > 0, we have y∗π > 0 which implies that λ∗π − (a− 2by∗π) = 0 (see
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Lemma 2). Again, since we have proved v∗ = y∗π, we now have λ∗π = a− 2bv∗.

Therefore, we have established that if (a − 2bv∗ − cj) − φπ > 0 then λ∗π = cj + φπ, and if
(a−2bv∗−cj)−φπ ≤ 0 then λ∗π = a−2bv∗, which is λ∗π = (a−2bv∗)−MAX(0, (a−2bv∗−cj)−φπ).

Q.E.D.

Proof of Theorem 3:

The Jacobian of F (X) that enters (16) can be written as

Jacobian =

A 0 0
0 B 0
0 0 C

 , (A12)

where A is the IJ × IJ submatrix corresponding to F V
ij , i = 1, . . . , I and j = 1, . . . , J ; B is the

J |Ω||Π| × J |Ω||Π| submatrix corresponding to FU
jωπ, j = 1, . . . , J ; ω ∈ Ω; and π ∈ Π, and C is the

JM |Ω||Π| × JM |Ω||Π| submatrix corresponding to F Y
jmωπ, j = 1, . . . , J , m = 1, . . . ,M ; ω ∈ Ω; and

π ∈ Π.

Since all cost functions are continuously differentiable and convex (hence, they can be linear),
we can verify that A and B are positive semidefinite. Next, we will show that C is also positive
semidefinite. C can be written as

C =



f(ω1, π1)C1
ω1π1

0 · · · · · · 0

0
. . . · · · · · · 0

... · · · f(ω, π)Cm
ωπ · · ·

...

0 · · · · · · . . . 0
0 · · · · · · 0 f(ω|Ω|, π|Π|)CM

ω|Ω|π|Π|


, (A13)

where Cm
ωπ is a J ×J submatrx corresponding to F Y

jmωπ, j = 1, . . . , J , for market m and in scenario
ω and π.

Note that the elements in Cm
ωπ are

∂F Y
jmωπ

∂ylm
ωπ

, j = 1, . . . , J and l = 1, . . . , J , where
∂F Y

jmωπ

∂ylm
ωπ

=

−2∂ρj
m(θmω ,Y m

ωπ)
∂Y m

ωπ
− ∂2ρj

m(θmω ,Y m
ωπ)

∂Y m
ωπ

2 × yjm
ωπ if l = j, and

∂F Y
jmωπ

∂ylm
ωπ

= −∂ρj
m(θmω ,Y m

ωπ)
∂Y m

ωπ
− ∂2ρj

m(θmω ,Y m
ωπ)

∂Y m
ωπ

2 × yjm
ωπ

if l 6= j. Therefore, Cm
ωπ can be written as the sum of three matrices, Cm

ωπ = Cm1
ωπ + Cm2

ωπ + Cm3
ωπ ,

where

Cm1
ωπ = −



∂ρj
m(θmω ,Y m

ωπ)
∂Y m

ωπ
0 · · · · · · 0

0
. . . · · · · · · 0

... · · · ∂ρj
m(θmω ,Y m

ωπ)
∂Y m

ωπ
· · ·

...

0 · · · · · · . . . 0

0 · · · · · · 0 ∂ρj
m(θmω ,Y m

ωπ)
∂Y m

ωπ


, (A14)
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Cm2
ωπ = −∂ρj

m(θmω, Y m
ωπ)

∂Y m
ωπ



1 1 · · · · · · 1

1
. . . · · · · · · 1

... · · · 1 · · ·
...

1 · · · · · · . . . 1
1 · · · · · · 1 1


, (A15)

and

Cm3
ωπ = −∂2ρj

m(θmω, Y m
ωπ)

∂Y m
ωπ

2



y1m
ωπ y1m

ωπ · · · · · · y1m
ωπ

y2m
ωπ

. . . · · · · · · y2m
ωπ

... · · · yjm
ωπ · · ·

...

y
(J−1)m
ωπ · · · · · · . . . y

(J−1)m
ωπ

yJm
ωπ · · · · · · yJm

ωπ yJm
ωπ


. (A16)

Since the inverse demand function ρj
m(θmω, Y m

ωπ) is a decreasing function of the total sales, Y m
ωπ,

−∂ρj
m(θmω ,Y m

ωπ)
∂Y m

ωπ
is positive. Hence, Cm1

ωπ is positive semidefinite. We can verify that the only non-zero

eigenvalue of Cm2
ωπ is −J ∂ρj

m(θmω ,Y m
ωπ)

∂Y m
ωπ

. Since −∂ρj
m(θmω ,Y m

ωπ)
∂Y m

ωπ
is positive, Cm2

ωπ is also positive semidef-

inite. We can also verify that the only non-zero eigenvalue of Cm3
ωπ is −∂2ρj

m(θmω ,Y m
ωπ)

∂Y m
ωπ

2 ×
∑J

j=1 yjm
ωπ ,

which is equal to −∂2ρj
m(θmω ,Y m

ωπ)

∂Y m
ωπ

2 Y m
ωπ. Since ρj

m(θmω, Y m
ωπ) is concave, −∂2ρj

m(θmω ,Y m
ωπ)

∂Y m
ωπ

2 Y m
ωπ ≥ 0. So,

Cm3
ωπ is also positive semidefinite. Since Cm1

ωπ , Cm2
ωπ , and Cm3

ωπ are all positive semidefinite, Cm
ωπ is

positive semidefinite and C is positive semidefinite.

Finally, since A, B, and C are all positive semidefinite, the Jacobian of F (X) is positive semidef-
inite and F (X) is monotone. Q.E.D

The Computational Procedure: The Extragradient Algorithm (Modified Projection
Method)

Step 0: Initialization

Start with an X0 ∈ K and select ω, such that 0 < ω ≤ 1
L , where L is the Lipschitz constant for

function F (X). Let T = 1.

Step 1: Construction and Computation

Compute X̄T −1 by solving the variational inequality subproblem:〈
(X̄T −1 + (ωF (XT −1)−XT −1))T , X ′ − X̄T −1

〉
≥ 0, ∀X ′ ∈ K. (A17)

Step 2: Adaptation

Compute XT by solving the variational inequality subproblem:〈
(XT + (ωF (X̄T −1)−XT −1))T , X ′ −XT 〉

≥ 0, ∀X ′ ∈ K. (A18)
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Step 3: Convergence Verification

If ||XT −XT −1||∞ ≤ ε with ε > 0, a pre-specified tolerance, then stop; otherwise, set T := T +1 and
go to Step 1. (We set the parameter ω = 0.1 and the tolerance ε = 0.00001 for all the computations
of the numerical examples in Section 4.)

Note that the subproblems in Steps 1 and 2 above are separable quadratic programming prob-
lems and, hence, there are numerous algorithms that can be used to solve these embedded sub-
problems.
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Figure 9: The Supply Chain Network and Decision Timeline for the Numerical Example with the
Manufacturer with No Quick-Response Capability

Appendix B

In order to fix ideas and, for completeness and illustrative purposes, we here provide simple
numerical examples, which illustrate two cases; a manufacturer without a quick-response capability
and a manufacturer with such capability.

These simplified examples are given in order to explain the basic ideas of the model in this
paper. They do not include all of the features of the model.

We consider (see the above figure), a supply chain in which there is one supplier, one manufac-
turer, and one demand market. We assume that there are two demand scenarios:

Scenario 1: Low demand (demand potential=100);

Scenario 2: High demand (demand potential=200).
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One and only one scenario will occur in the second stage. However, in the first stage, the
decision-makers do not know which scenario will occur.

The two stages are time stages. Note that the nodes (A1 and A2) represent the same manufac-
turer (Manufacturer A), respectively, in the two time stages. The demand for the product occurs
in the second stage. However, due to the long lead time in off-shore outsourcing (see the Introduc-
tion), the manufacturer needs to decide the outsourcing quantity from the supplier in Stage 1, which
occurs several months before the demand occurs. When Manufacturer A makes the outsourcing
decisions in Stage 1 the demand is still unknown. Therefore, if, in the first stage, Manufacturer A

orders too much from the supplier, and, in the second stage, the demand potential turns out to be
low (low demand scenario) then Manufacturer A will have unsold inventory. On the other hand,
if Manufacturer A orders too little from the supplier in the first stage and the demand potential
in the second stage turns out to be high (higher demand scenario), Manufacturer A will have lost
sales.

We assume that each of the two scenarios has equal probability given by 0.5.

The inverse demand functions in the two scenarios are:

Scenario 1: ρ(θ1, y1) = 100− y1,

Scenario 2: ρ(θ2, y2) = 200− y2.

Case 1: Manufacturer Has No Quick-Response Capability

Since, in this case, the manufacturer does not have a quick-response capability, it is not faced
with cost uncertainty. Hence, we can suppress the notation related to the quick-response production
and the cost uncertainty. We let the transportation/transaction costs be zero. The optimization
problem faced by the manufacturer (cf. equations (2) and (3)) is as follows:

MAX E(Profit) = −ρ̄∗ × v + E [Qω(v,Θω)] (B1)

subject to:
v ≥ 0. (B2)

Note that ρ̄∗ represents the equilibrium price of the product from the supplier in the market,
and can be recovered after the complete model has been solved. Qω(v,Θω) is the optimal value of
the following optimization problem (cf. equations (4) – (7)):

Max NetRevenueω = ρ(θω, yω)yω (B3)

subject to:
yω ≤ v, ω = 1, 2, (B4)

yω ≥ 0, ω = 1, 2. (B5)
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Note that since the manufacturer has no quick-response facility, parts of the model related to u do
not need to appear.

Based on standard stochastic programming theory, and, after substituting the parameters into
the model, we can reformulate the manufacturer’s two-stage optimization problem as the following
maximization problem (see equations (8) to (11)).

MAX E(Profit) = −ρ̄∗ × v + .5(100− y1)y1) + 0.5(200− y2)y2 (B6)

subject to:
yω ≤ v, ω = 1, 2, (B7)

v ≥ 0, yω ≥ 0, ω = 1, 2. (B8)

Note that the decision variables in the problem above are: v and yω; ω = 1, 2.

Next, we assume that the supply capacity is 100, and that the supply cost function of the
supplier is c(v) = 12v + 0.1v2. The optimization problem faced by the supplier can be expressed
as follows (cf. equations (13) and (14)):

MAX Profit = ρ̄∗ × v − 12v − 0.1v2 (B9)

subject to:
v ≤ 100, (B10)

v ≥ 0. (B11)

The decision variable for this problem is v.

Using the above data, the variational inequality (16) in Theorem 1 reduces to the following
problem: Determine (v∗, Y ∗)] ∈ K such that:

[12 + 0.2v∗]× [v − v∗]− 0.5 [100− 2y∗1]× [y1 − y∗1]− 0.5 [200− 2y∗2]× [y2 − y∗2] ≥ 0, ∀(v, Y ) ∈ K,

(B12)
where K ≡ {(v, Y )|(v, y) ∈ R3

+ and (B7) and (B10) hold}.

We can solve variational inequality (B12) and obtain the following solution:

v∗ = 73.33, y∗1 = 50, y∗2 = 73.33.

Note that, in Scenario 1, when the demand potential is low, the manufacturer will end up with
73.33− 50 = 23.33 unsold products.

The market prices of the product in the two scenarios are:

ρ(θ1, y
∗
1) = 100− y∗1 = 50, ρ(θ2, y

∗
2) = 200− y∗2 = 126.67.

We can recover the supply price using the same approach as in Dong et al. (2004), Nagurney
and Toyasaki (2005), Nagurney et al. (2005), and Cruz et al. (2006). In particular, if variational
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inequality (16) holds, the variational inequality (12) will also hold. Thus, the equivalent form of
variational inequality (12), variational inequality (A7), in the paper will also hold. Using the data
of this example, variational inequality (A7) reduces to: Determine (v∗, Y ∗, λ∗) ∈ R5

+, satisfying:

[ρ̄∗ − (0.5λ∗1 + 0.5λ∗2)]× [v − v∗]

+0.5 [λ∗1 − 100 + 2y∗1]× [y1 − y∗1] + 0.5 [λ2 − 200 + 2y∗2]× [y2 − y∗2]

+ [v∗ − y∗1]× [λ1 − λ∗1] + [v∗ − y∗2]× [λ2 − λ∗2] ≥ 0, ∀(v, Y, λ) ∈ R5
+. (B13)

Based on (B13) and the equilibrium solution: v∗ = 73.33, y∗1 = 50, and y∗2 = 73.33, we can
recover ρ̄∗. First, since y∗1 > 0 and y∗2 > 0, we have that λ∗1 − 100 + 2y∗1 = 0, which indicates that
λ∗1 = 100−2y∗1 = 0, and we have that λ∗2−100+2y∗2 = 0, which indicates that λ∗2 = 200−2y∗2 = 53.34.

Next, since v∗ > 0, we have that ρ̄∗ − (0.5λ∗1 + 0.5λ∗2) = 0, which implies that

ρ̄∗ = (0.5λ∗1 + 0.5λ∗2) = 26.67.

Now, we substitute v∗ = 73.33, y∗1 = 50, and y∗2 = 26.67 into (B7) to obtain that the Expected
Profit =3, 938.60.

Next, we illustrate the second case in which the manufacturer has a quick-response capability.
We will compare the two cases in the end.
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Figure 10: The Supply Chain Network and Decision Timeline for the Numerical Example with the
Manufacturer with Quick-Response Capability

Case 2: Manufacturer Has Quick-Response Capability

Suppose that, now, Manufacturer B, as depicted in the figure above is facing the same problem
as Manufacturer A did in Case 1, but has a quick-response capability (B′) in the second stage,
which can provide products when demand is high.

The optimization problem faced by the manufacturer (see equations (2) and (3)) is as follows:

MAX E(Profit) = −ρ̄∗ × v + E [Qωπ(v,Θω,Φπ)] (B14)

subject to:
v ≥ 0. (B15)

Note that ρ̄∗ represents the equilibrium price of the product from the supplier in the market,
and can be recovered after the entire model has been solved. Qωπ(v,Θω,Φπ) is the optimal value
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of the following optimization problem (see (4) and (7)):

MAX NetRevenueωπ = ρ(θω, yω)yω − c(φπ, uπ) (B16)

subject to:
yωπ ≤ v + uωπ, ∀ω, π, (B17)

uωπ ≤ 100, ∀ω, π, (B18)

u, uωπ, yωπ ≥ 0, ∀ω, π. (B19)

Note that we have assumed that the quick-response capacity is 100. There are two scenarios:

Scenario 1: Low cost scenario, cost parameter φ1 = 10

Scenario 2: High cost scenario, cost parameter φ2 = 20.

Since the cost scenarios and the demand scenarios need not be independent, we can combine
them as follows.

Scenario 1: Low cost and low demand potential, cost parameter φ1 = 10, demand
potential φ1 = 100

Scenario 2: High cost and high demand potential, cost parameter φ2 = 20, demand
potential, φ2 = 200.

The two scenarios have equal probability, of 0.5. The inverse demand functions remain as in
Case 1.

The quick-response production cost functions in the two scenarios are:

Scenario 1: c(φ1, u1) = 10u1 + 0.1u2
1;

Scenario 2: c(φ2, u2) = 20u2 + 0.1u2
2.

Based on standard stochastic programming theory, and, after substituting the parameters into
the model, we can reformulate the manufacturer’s two-stage optimization problem as the following
maximization problem (cf. (8) through (11)):

MAX E(Profit) = −ρ̄∗ × v + 0.5
[
(100− y1)y1)− 10u1 − 0.1u2

1

]
+ 0.5

[
(200− y2)y2 − 20u2 − 0.1u2

2

]
(B20)

Subject to:
y1 ≤ v + u1, (B21)

y2 ≤ v + u2, (B22)

u1 ≤ 100, (B23)

u2 ≤ 100, (B24)

48



v ≥ 0, u1 ≥ 0, u2 ≥ 0, y1 ≥ 0, y2 ≥ 0. (B25)

The decision variables are: u1, u2, y1, y2.

The optimization problem of the supplier remains as in the Case 1 example.

Using the above data, variational inequality (16) in Theorem 1 reduced to the following problem:
Determine (v∗, U∗, Y ∗) ∈ K such that:

[12 + 0.2v∗]× [v − v∗] + 0.5 [10 + 0.2u∗1]× [u1 − u∗1] + 0.5 [20 + 0.2u∗2]× [u2 − u∗2]

−0.5 [100− 2y∗1]× [y1 − y∗1]− 0.5 [200− 2y∗2]× [y2 − y∗2] ≥ 0, ∀(v, U, Y ) ∈ K, (B26)

where K ≡ {(v, U, Y )|(v, U, Y ) ∈ R5
+ and (B10) and (B21)− (B24) hold}.

The solution of variational inequality (B26) yields:

v∗ = 40.00, u∗1 = 4.54, u∗2 = 45.45, y∗1 = 44.54, y∗2 = 85.45.

Note that, in both scenarios, the manufacturer does not have any unsold product.

The market prices in the two scenarios are:

ρ(θ1, y
∗
1) = 100− y∗1 = 55.46, ρ(θ2, y

∗
2) = 200− y∗2 = 114.55.

We can recover the supply price by using the same approach as in Case 1 to obtain:

ρ̄∗ = 20.

We then substitute v∗ = 40.00, u∗1 = 4.54, u∗2 = 45.45, y∗1 = 44.54, y∗2 = 85.45, ρ̄∗ = 20 into (B21)
to obtain the Expected Profit= 4, 747.70.

In comparing the results in Case 1 and Case 2, we reach the following conclusions.

(1). The manufacturer with quick-response capability (Case 2) orders less from the supplier
(v∗ = 40.00) than the manufacturer without such capability (Case 1) does (v∗ = 73.33).

(2). In Case 1 the manufacturer has unsold inventory left under the low demand scenario
(73.33−50 = 23.33 units) while in Case 2 the manufacturer does not have any unsold products left
in either scenario.

(3). In the low demand scenario, the quantity of product sold in Case 2 is lower than that in
Case 1 (45.45 < 50) so that, in Case 2, the manufacturer can optimally maintain a higher price
and avoid unsold inventory.

(4). In the high demand scenario, the manufacturer with quick-response capability (Case 1) is
able to sell more products (y∗2 = 85.45) while the manufacturer without such capability cannot sell
more (y∗2 = 73.33)) since it is limited by the quantity ordered in the first stage.
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(5). The profit in Case 2 is higher than that in Case 1 (4, 747.7 > 3, 938.6).

Of course, in our model, Manufacturer A may be considered as a special case of Manufacturer
B where the quick-response capacity is equal to zero.

50


