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Abstract

In this paper, we develop a multitiered competitive supply chain network game theory

model, which includes the supplier tier. The firms are differentiated by brands and can

produce their own components, as reflected by their capacities, and/or obtain components

from one or more suppliers, who also are capacitated. The firms compete in a Cournot-Nash

fashion, whereas the suppliers compete a la Bertrand since firms are sensitive to prices. All

decision-makers seek to maximize their profits with consumers reflecting their preferences

through the demand price functions associated with the demand markets for the firms’

products. We construct supply chain network performance measures for the full supply

chain and the individual firm levels that assess the efficiency of the supply chain or firm,

respectively, and also allow for the identification and ranking of the importance of suppliers

as well as the components of suppliers with respect to the full supply chain or individual firm.

The framework is illustrated through a series of numerical supply chain network examples.

Keywords: supply chains, networks, suppliers, game theory, performance assessment, im-

portance indicators
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1. Introduction

Suppliers are critical in providing essential components and resources for finished goods in

today’s globalized supply chain networks. The number of components comprising a finished

product may be small or immense as in aircraft manufacturing and other complex high-

tech products. Even in the case of simpler products, such as bread, ingredients may travel

across the globe as inputs into production processes. Suppliers are also decision-makers and

they compete with one another to provide components to downstream manufacturing firms.

When suppliers are faced with disruptions, whether due to man-made activities or errors,

natural disasters, unforeseen events, or even terrorist attacks, the ramifications and effects

may propagate through a supply chain or multiple supply chains. Hence, capturing supplier

behavior is essential in modeling the full scope of supply chain network competition and in

identifying the importance of a supplier and the components that he provides to the firms.

There are many vivid examples of supplier failures, due to natural disasters, and associ-

ated supply chain disruptions. A classic example is the Royal Philips Electronics cell phone

chip manufacturing plant fire, due to a lightning strike on March 17, 2000, and subsequent

water and smoke damage, which adversely affected Ericsson, which, unlike Nokia, did not

have a backup, and suffered a second quarter operating loss in 2000 of $200 million in its

mobile phone division (cf. [18]). The Fukushima triple disaster on March 11, 2011 in Japan

resulted in shortages of memory chips, automotive sensors, silicon wafers, and even certain

colors of automotive paints, because of the affected suppliers (see [14]). The worst floods in

50 years that followed in October 2011 in Thailand impacted both Apple and Toyota supply

chains, since Thailand is the world’s largest producer of computer hard disk drives and also

a big automotive manufacturing hub ([47]). However, not all supplier shortcomings need be

due to disasters. Boeing, facing challenges with its 787 Dreamliner supply chain design and

numerous delays, ended up having to buy two suppliers for $2.4 billion because the units

were underperforming in the chain ([42]).

Although there has been extensive research on multitiered supply chain network equi-

librium problems, beginning with the work of Nagurney, Dong, and Zhang [24]; see, e.g.,

[8, 9, 17, 20, 22, 36, 37, 44], there has been less work done on integrating suppliers and

their behavior into general multitiered supply chain network equilibrium frameworks. Also,

since there has been a dearth of general supply chain network models with suppliers, the

identification of which suppliers are important in a supply chain has received less research

attention, although it is a very important issue in practice (see [5]). Some examples, nev-

ertheless, include the work of Liu and Nagurney [16], who developed an integrated supply

chain network equilibrium model with fuel suppliers focusing on the electric power industry
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in New England, and that of Liu and Cruz [15] who modeled supply chains with credit trade

and financial risk. However, those papers did not identify which suppliers or the components

that they produce are the most important from a supply chain network efficiency perspective.

As noted in [39], most supply disruption studies have focused on a local point of view, in

the form of a single-supplier problem (see, e.g., [12, 33]) or a two-supplier problem ([34]). Very

few research papers have examined supply chain risk management with multiple decision-

makers (cf. [43]). We believe that it is imperative to formulate and solve supply chains from

a system-wide holistic perspective and to include both supplier and firm decision-makers

in the supply chain network tiers. Indeed, such an approach has also been argued by Wu,

Blackhurst, and Chidambaram [46].

In this paper, we develop a multitiered competitive supply chain network game theory

model, which includes the supplier tier. The firms are differentiated by brands and can

produce their own components, as reflected by their capacities, and/or obtain components

from one or more suppliers, who also are capacitated. The firms compete in a Cournot-Nash

fashion, whereas the suppliers compete a la Bertrand since firms are sensitive to prices. All

decision-makers seek to maximize their profits with consumers reflecting their preferences

through the demand price functions associated with the demand markets for the firms’

products.

Our contributions to the literature are twofold: 1. the development of a general mul-

titiered competitive supply chain network equilibrium model with suppliers and firms that

includes capacities and constraints to capture the production activities and 2. the construc-

tion of supply chain network performance measures, on the full supply chain and on the

individual firm levels, that assess the efficiency of the supply chain or firm, respectively,

and also allow for the identification and ranking of the importance of suppliers as well as

the components of suppliers with respect to the full supply chain or individual firm. The

supply chain network performance measure is inspired by our work on network performance

assessment in a variety of network systems ranging from transportation to the Internet (see

[28, 29] and the references therein) as well as in supply chains (cf. [7, 38, 39]) but with the

addition of the supplier tier, which is the focus here.

Our framework adds to the growing literature on supply chain disruptions (cf. [3, 4, 29,

45]) by providing metrics that allow individual firms, industry overseers or regulators, and/or

government policy-makers to identify the importance of suppliers and the components that

they produce for various product supply chains. To the best of our knowledge, such a list of

importance indicators that we provide in terms of supplier importance, and their components,
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at firm and full supply chain levels, has not been constructed before in a general, holistic

supply chain network model with competition.

The paper is organized as follows. In Section 2, we develop the new supply chain network

model, describe the behavior of the firms and the suppliers, identify the governing equilibrium

conditions, and provide the variational inequality formulation. In Section 3, we propose the

supply chain network performance measures at the full supply chain and individual firm

levels, and define the supplier and supplier component importance indicators. In Section

4, we describe an algorithm, which is then applied in Section 5 to compute solutions to

numerical supply chain network examples to illustrate the model and methodology and how

the performance measures and the supplier and component importance indicators can be

applied in practice. We summarize our results and present our conclusions in Section 6.
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2. The Multitiered Supply Chain Network Game Theory Model with Suppliers

In this section, we develop a multitiered supply chain network game theory model with

suppliers and firms that procure components from the suppliers for their products, which

are differentiated by brand. We consider a supply chain network consisting of I firms, with

a typical firm denoted by i, nS suppliers, with a typical supplier denoted by j, and a total

of nR demand markets, with a typical demand market denoted by k.

The firms compete noncooperatively, and each firm corresponds to an individual brand

representing the product that it produces. We assume that product i, which is the product

produced by firm i, requires nli different components, and the total number of different

components required by the I products is nl. We allow for the situation that each supplier

may be able to produce a variety of components for each firm.

The I firms are involved in the processes of assembling the products using the components

needed, transporting the products to the demand markets, and, possibly, producing one or

more of the components of the products. The suppliers, in turn, are involved in the processes

of producing and delivering the components of the products to the firms. Both in-house and

contracted component production activities are captured in the model. The capacity/ability

of production is also considered.

The network topology G of the problem is depicted in Figure 1, where G consists of

the set of nodes N and the set of links L, so that G = [N, L]. Firm i’s network topology;

i = 1, . . . , I, is denoted by Gi. Gi consists of the sets of nodes and links that represent the

economic activities associated with firm i and its suppliers. In Figure 1, the first two sets

of links from the top nodes are links corresponding to distinct supplier components. The

links from the top-tiered nodes j; j = 1, . . . , nS, representing the suppliers, are connected to

the associated manufacturing nodes, denoted by nodes 1, . . . , nl. These links represent the

manufacturing activities of the suppliers. The next set of links that emanate from 1, . . . , nl

to the firms, denoted by nodes 1, . . . , I, reflects the transportation of the components to

the associated firms. In addition, the links that connect nodes 1i, . . . , ni
li , which are firm

i’s component manufacturing nodes, and firm i are the manufacturing links of firm i for

producing its components.

The rest of the links in Figure 1 are links corresponding to the finished products. The link

connecting firm i and node i′, which is the assembly node of firm i, represents the activity of

assembling firm i’s product using the components needed, which may be produced by firm i,

the suppliers, or both. Finally, the links joining nodes 1′, . . . , I ′ with demand market nodes

1, . . . , nR correspond to the transportation of the products to the demand markets.
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Figure 1: The Multitiered Supply Chain Network Topology

In this paper, we seek to determine the optimal component production quantities, both by

the firms and by the suppliers, the optimal product shipments from the firms to the demand

markets, and the prices that the suppliers charge the firms for producing and delivering

their components. The firms compete noncooperatively under the Cournot-Nash equilibrium

concept in product shipments and component production quantities, while the suppliers

compete in Bertrand fashion in the prices that they charge the firms.

The notation for the model is given in Table 1. The vectors are assumed to be column

vectors. The equilibrium solution is denoted by “∗”.
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Table 1: Notation for the Multitiered Supply Chain Network Game Theory Model with
Suppliers

Notation Definition
QS

jil the nonnegative amount of firm i’s component l produced by sup-
plier j; j = 1, . . . , nS; i = 1, . . . , I; l = 1, . . . , nli . For firm i, we
group its {QS

jil} elements into the vector QS
i ∈ R

nSnli

+ . All the

{QS
jil} elements are grouped into the vector QS ∈ R

nS
PI

i=1 nli

+ .

CAP S
jil the capacity of supplier j for producing firm i’s component l.

QF
il the nonnegative amount of firm i’s component l produced by firm i

itself. For firm i, we group its {QF
il} elements into the vector QF

i ∈
R

nli

+ , and group all such vectors into the vector QF ∈ R
PI

i=1 nli

+ .
CAP F

il the capacity of firm i for producing its component l.
Qik the nonnegative shipment of firm i’s product from firm i to demand

market k; k = 1, . . . , nR. For firm i, we group its {Qik} elements
into the vector Qi ∈ RnR

+ , and group all such vectors into the vector
Q ∈ RInR

+ .
πjil the price charged by supplier j for producing one unit of firm i’s

component l. For supplier j, we group its {πjil} elements into the

vector πj ∈ R
PI

i=1 nli

+ , and group all such vectors into the vector

π ∈ R
nS

PI
i=1 nli

+ .
dik the demand for firm i’s product at demand market k. We group all

{dik} elements into the vector d ∈ RInR
+ .

θil the amount of component l needed by firm i to produce one unit
product i.

fS
jl(Q

S) supplier j’s production cost for producing component l; l =
1, . . . , nl.

tcS
jil(Q

S) supplier j’s transportation cost for shipping firm i’s component l.

ocj(π) supplier j’s opportunity cost.
fi(Q) firm i’s cost for assembling its product using the components

needed.
fF

il (Q
F ) firm i’s production cost for producing its component l.

tcF
ik(Q) firm i’s transportation cost for shipping its product to demand mar-

ket k.
cijl(Q

S) the transaction cost paid by firm i for transacting with supplier j
for its component l.

ρik(d) the demand price for firm i’s product at demand market k.
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2.1 The Behavior of the Firms and Their Optimality Conditions

Given the prices π∗ of the components charged by the suppliers, the objective of firm i;

i = 1, . . . , I, is to maximize its utility/profit UF
i , which is the difference between its total

revenue and its total cost. The total cost includes the assembly cost, the production cost,

the transportation costs, the payments to the suppliers, and the transaction costs. As noted

in Table 1, the assembly cost functions, the production cost functions, the transportation

cost functions, and the demand price functions are general functions in vectors of quantities,

which capture the competition among firms for resources.

Hence, firm i seeks to

MaximizeQi,QF
i ,QS

i
UF

i =

nR∑
k=1

ρik(d)dik − fi(Q)−
nli∑
l=1

fF
il (Q

F )−
nR∑
k=1

tcF
ik(Q)

−
nS∑
j=1

nli∑
l=1

π∗jilQ
S
jil −

nS∑
j=1

nli∑
l=1

cijl(Q
S) (1a)

subject to:

Qik = dik, i = 1, . . . , I; k = 1, . . . , nR, (2)

nR∑
k=1

Qikθil ≤
nS∑
j=1

QS
jil + QF

il , i = 1, . . . , I; l = 1, . . . , nli , (3)

Qik ≥ 0, i = 1, . . . , I; k = 1, . . . , nR, (4)

CAP S
jil ≥ QS

jil ≥ 0, j = 1, . . . , nS; i = 1, . . . , I; l = 1, . . . , nli , (5)

CAP F
il ≥ QF

il ≥ 0, i = 1, . . . , I; l = 1, . . . , nli . (6)

We assume that all the cost functions and the demand price functions in (1) are contin-

uous and continuously differentiable. The cost functions are convex, and the demand price

functions are monotone decreasing. According to constraint (2), the product shipment from

a firm to a demand market should be equal to the quantity of the firm’s product consumed

at that demand market. Constraint (3) captures the material requirements in the assembly

process. Constraint (4) is the nonnegativity constraint for product shipments. Constraints

(5) and (6) indicate that the component production quantities should be nonnegative and

limited by the associated capacities, which can capture the abilities of producing. If a sup-

plier or a firm is not capable of producing a certain component, the associated capacity

would be 0.
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In light of (2), we can define the demand price function ρ̂ik in product shipments of the

firms, so that ρ̂ik(Q) ≡ ρik(d); i = 1, . . . , I, k = 1, . . . , nR. Therefore, (1a) is equivalent to:

MaximizeQi,QF
i ,QS

i
UF

i =

nR∑
k=1

ρ̂ik(Q)Qik − fi(Q)−
nli∑
l=1

fF
il (Q

F )−
nR∑
k=1

tcF
ik(Q)

−
nS∑
j=1

nli∑
l=1

π∗jilQ
S
jil −

nS∑
j=1

nli∑
l=1

cijl(Q
S). (1b)

The firms compete in the sense of Nash (1950, 1951). The strategic variables for each

firm i are the product shipments to the demand markets, the in-house component production

quantities, and the contracted component production quantities produced by the suppliers.

We define the feasible set K
F

i as K
F

i ≡ {(Qi, Q
F
i , QS

i )|(3) - (6) are satisfied}. All K
F

i ;

i = 1, . . . , I, are closed and convex. We also define the feasible set KF ≡ ΠI
i=1K

F

i .

Definition 1: A Cournot-Nash Equilibrium

A product shipment, in-house component production, and contracted component production

pattern (Q∗, QF ∗, QS∗) ∈ KF
is said to constitute a Cournot-Nash equilibrium if for each

firm i; i = 1, . . . , I,

UF
i (Q∗

i , Q̂
∗
i , Q

F ∗

i , Q̂F ∗

i , QS∗

i , Q̂S∗

i , π∗) ≥ UF
i (Qi, Q̂

∗
i , Q

F
i , Q̂F ∗

i , QS
i , Q̂S∗

i , π∗),

∀(Qi, Q
F
i , QS

i ) ∈ K
F

i , (7)

where

Q̂∗
i ≡ (Q∗

1, . . . , Q
∗
i−1, Q

∗
i+1, . . . , Q

∗
I),

Q̂F ∗

i ≡ (QF ∗

1 , . . . , QF ∗

i−1, Q
F ∗

i+1, . . . , Q
F ∗

I ),

Q̂S∗

i ≡ (QS∗

1 , . . . , QS∗

i−1, Q
S∗

i+1, . . . , Q
S∗

I ).

According to (7), a Cournot-Nash equilibrium is established if no firm can unilaterally

improve upon its profit by selecting an alternative vector of product shipments, in-house

component production quantities, and contracted component production quantities produced

by the suppliers.

2.1.1 Variational Inequality Formulations

We now derive the variational inequality formulation of the Cournot-Nash equilibrium (see

[6, 11, 31, 32]) in the following theorem.
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Theorem 1

Assume that, for each firm i; i = 1, . . . , I, the utility function UF
i (Q,QF , QS, π∗) is concave

with respect to its variables in Qi, QF
i , and QS

i , and is continuous and continuously differ-

entiable. Then (Q∗, QF ∗, QS∗) ∈ KF
is a Counot-Nash equilibrium according to Definition 1

if and only if it satisfies the variational inequality:

−
I∑

i=1

nR∑
k=1

∂UF
i (Q∗, QF ∗, QS∗, π∗)

∂Qik

×(Qik−Q∗
ik)−

I∑
i=1

nli∑
l=1

∂UF
i (Q∗, QF ∗, QS∗, π∗)

∂QF
il

×(QF
il−QF ∗

il )

−
nS∑
j=1

I∑
i=1

nli∑
l=1

∂UF
i (Q∗, QF ∗, QS∗, π∗)

∂QS
jil

× (QS
jil −QS∗

jil) ≥ 0, ∀(Q, QF , QS) ∈ KF
, (8)

with notice that: for i = 1, . . . , I; k = 1, . . . , nR:

−∂UF
i

∂Qik

=

[
∂fi(Q)

∂Qik

+

nR∑
h=1

∂tcF
ih(Q)

∂Qik

−
nR∑
h=1

∂ρ̂ih(Q)

∂Qik

Qih − ρ̂ik(Q)

]
,

for i = 1, . . . , I; l = 1, . . . , nli:

−∂UF
i

∂QF
il

=

[ nli∑
m=1

∂fF
im(QF )

∂QF
il

]
,

for j = 1, . . . , nS; i = 1, . . . , I; l = 1, . . . , nli:

− ∂UF
i

∂QS
jil

=

[
π∗jil +

nS∑
g=1

nli∑
m=1

∂cigm(QS)

∂QS
jil

]
,

or, equivalently, (Q∗, QF ∗
, QS∗

, λ∗) ∈ KF is a vector of the equilibrium product shipment, in-

house component production, contracted component production pattern, and Lagrange multi-

pliers if and only if it satisfies the variational inequality

I∑
i=1

nR∑
k=1

[
∂fi(Q

∗)

∂Qik

+

nR∑
h=1

∂tcF
ih(Q

∗)

∂Qik

−
nR∑
h=1

∂ρ̂ih(Q
∗)

∂Qik

Q∗
ih − ρ̂ik(Q

∗) +

nli∑
l=1

λ∗ilθil

]
× (Qik −Q∗

ik)

+
I∑

i=1

nli∑
l=1

[ nli∑
m=1

∂fF
im(QF ∗

)

∂QF
il

− λ∗il

]
× (QF

il −QF ∗

il )

+

nS∑
j=1

I∑
i=1

nli∑
l=1

[
π∗jil +

nS∑
g=1

nli∑
m=1

∂cigm(QS∗
)

∂QS
jil

− λ∗il

]
× (QS

jil −QS∗

jil)

+
I∑

i=1

nli∑
l=1

[
nS∑
j=1

QS∗

jil + QF ∗

il −
nR∑
k=1

Q∗
ikθil

]
× (λil − λ∗il) ≥ 0, ∀(Q, QF , QS, λ) ∈ KF , (9)
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where KF ≡ ΠI
i=1K

F
i and KF

i ≡ {(Qi, Q
F
i , QS

i , λi)|λi ≥ 0 with (4) - (6) satisfied}. λi is the

nli-dimensional vector with component l being the element λil corresponding to the Lagrange

multiplier associated with the (i, l)-th constraint (3). Both the above-defined feasible sets are

convex.

Proof: For a given firm i, under the imposed assumptions, (8) holds if and only if (see

Bertsekas and Tsitsiklis (1989) page 287) the following holds:

nR∑
k=1

[
∂fi(Q

∗)

∂Qik

+

nR∑
h=1

∂tcF
ih(Q

∗)

∂Qik

−
nR∑
h=1

∂ρ̂ih(Q
∗)

∂Qik

Q∗
ih − ρ̂ik(Q

∗) +

nli∑
l=1

λ∗ilθil

]
× (Qik −Q∗

ik)

+

nli∑
l=1

[ nli∑
m=1

∂fF
im(QF ∗

)

∂QF
il

]
× (QF

il −QF ∗

il )

+

nS∑
j=1

nli∑
l=1

[
π∗jil +

nS∑
g=1

nli∑
m=1

∂cigm(QS∗
)

∂QS
jil

− λ∗il

]
× (QS

jil −QS∗

jil)

+

nli∑
l=1

[
nS∑
j=1

QS∗

jil + QF ∗

il −
nR∑
k=1

Q∗
ikθil

]
× (λil − λ∗il) ≥ 0, ∀(Qi, Q

F
i , QS

i , λi) ∈ KF
i . (10)

Variational inequality (10) holds for each firm i; i = 1, . . . , I, and, hence, the summation

of (10) yields variational inequality (9).�

For additional background on the variational inequality problem, please refer to the book

by Nagurney [19].

2.2 The Behavior of the Suppliers and Their Optimality Conditions

Opportunity costs of the suppliers are included in this model. The opportunity cost is

“the loss of potential gain from other alternatives when one alternative is chosen” ([41]). It

can include the time and effort put in (see [35]), and the profit that the decision-maker could

have earned, if he had made other choices ([40]).

The suppliers’ opportunity costs are functions of the prices that they charge the firms

for producing and delivering the components, as in Table 1. The suppliers may not be able

to recover their costs if the prices that they charge are too low. If the prices are too high,

the suppliers may lose the contracts. Here, we capture the opportunity cost of a supplier

with a general function that depends on the vector of prices, since the opportunity cost of a

supplier may also be affected by the prices charged by the other suppliers (see also [26]).

Given the QS∗
determined by the firms, the objective of supplier j; j = 1, . . . , nS, is to

maximize its total profit, denoted by US
j . Its revenue is obtained from the payments of the
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firms, while its costs are the costs of production and delivery, and the opportunity cost. The

strategic variables of a supplier are the prices that it charges the firms.

The decision-making problem for supplier j is the following:

Maximizeπj
US

j =
I∑

i=1

nli∑
l=1

πjilQ
S∗

jil −
nl∑

l=1

fS
jl(Q

S∗
)−

I∑
i=1

nli∑
l=1

tcS
jil(Q

S∗
)− ocj(π) (11)

subject to:

πjil ≥ 0, j = 1, . . . , nS; i = 1, . . . , I; l = 1, . . . , nli . (12)

We assume that the cost functions of each supplier are continuous, continuously differen-

tiable, and convex.

The suppliers compete in a noncooperative in the sense of Nash (1950, 1951), with each

one trying to maximize its own profit. We define the feasible sets KS
j ≡ {πj|πj ∈ R

PI
i=1 nli

+ },
KS ≡ ΠnS

j=1K
S
j , and K ≡ KF ×KS. All the above-defined feasible sets are convex.

Definition 2: A Bertrand-Nash Equilibrium

A price pattern π∗ ∈ KS is said to constitute a Bertrand-Nash equilibrium if for each supplier

j; j = 1, . . . , nS,

US
j (QS∗

, π∗j , π̂
∗
j ) ≥ US

j (QS∗
, πj, π̂

∗
j ), ∀πj ∈ KS

j , (13)

where

π̂∗j ≡ (π∗1, . . . , π
∗
j−1, π

∗
j+1, . . . , π

∗
nS

).

According to (13), a Bertrand-Nash equilibrium is established if no supplier can unilat-

erally improve upon its profit by selecting an alternative vector of prices charged to the

firms.

2.2.1 Variational Inequality Formulations

The variational inequality formulation of the Bertrand-Nash equilibrium according to Defi-

nition 2 (see [1, 11, 20, 31, 32]) is given in the following theorem.

12



Theorem 2

Assume that, for each supplier j; j = 1, . . . , nS, the profit function US
j (QS∗

, π) is concave

with respect to the variables in πj, and is continuous and continuously differentiable. Then

π∗ ∈ KS is a Bertrand-Nash equilibrium according to Definition 2 if and only if it satisfies

the variational inequality:

−
nS∑
j=1

I∑
i=1

nli∑
l=1

∂US
j (QS∗

, π∗)

∂πjil

× (πjil − π∗jil) ≥ 0,

∀π ∈ KS, (14)

with notice that: for j = 1, . . . , nS; i = 1, . . . , I; l = 1, . . . , nli:

−
∂US

j

∂πjil

=
∂ocj(π)

∂πjil

−QS∗

jil .

2.3 The Equilibrium Conditions for the Multitiered Supply Chain Network with

Suppliers

In equilibrium, the optimality conditions for all firms and the optimality conditions for

all suppliers must hold simultaneously, according to the definition below.

Definition 3: Multitiered Supply Chain Network Equilibrium with Suppliers

The equilibrium state of the multitiered supply chain network with suppliers is one where both

variational inequalities (8) (or (9)) and (14) hold simultaneously.

Theorem 3

The equilibrium conditions governing the multitiered supply chain network model with suppli-

ers are equivalent to the solution of the variational inequality problem: determine (Q∗, QF ∗
,

QS∗
, π∗) ∈ K, such that:

−
I∑

i=1

nR∑
k=1

∂UF
i (Q∗, QF ∗

, QS∗
, π∗)

∂Qik

×(Qik−Q∗
ik)−

I∑
i=1

nli∑
l=1

∂UF
i (Q∗, QF ∗

, QS∗
, π∗)

∂QF
il

×(QF
il −QF ∗

il )

−
nS∑
j=1

I∑
i=1

nli∑
l=1

∂UF
i (Q∗, QF ∗

, QS∗
, π∗)

∂QS
jil

× (QS
jil −QS∗

jil)

−
nS∑
j=1

I∑
i=1

nli∑
l=1

∂US
j (QS∗

, π∗)

∂πjil

× (πjil − π∗jil) ≥ 0, ∀(Q,QF , QS, π) ∈ K, (15)

13



or, equivalently: determine (Q∗, QF ∗
, QS∗

, λ∗, π∗) ∈ K, such that:

I∑
i=1

nR∑
k=1

[
∂fi(Q

∗)

∂Qik

+

nR∑
h=1

∂tcF
ih(Q

∗)

∂Qik

−
nR∑
h=1

∂ρ̂ih(Q
∗)

∂Qik

Q∗
ih − ρ̂ik(Q

∗) +

nli∑
l=1

λ∗ilθil

]
× (Qik −Q∗

ik)

+
I∑

i=1

nli∑
l=1

[ nli∑
m=1

∂fF
im(QF ∗

)

∂QF
il

− λ∗il

]
× (QF

il −QF ∗

il )

+

nS∑
j=1

I∑
i=1

nli∑
l=1

[
π∗jil +

nS∑
g=1

nli∑
m=1

∂cigm(QS∗
)

∂QS
jil

− λ∗il

]
× (QS

jil −QS∗

jil)

+
I∑

i=1

nli∑
l=1

[
nS∑
j=1

QS∗

jil + QF ∗

il −
nR∑
k=1

Q∗
ikθil

]
× (λil − λ∗il)

+

nS∑
j=1

I∑
i=1

nli∑
l=1

[
∂ocj(π

∗)

∂πjil

−QS∗

jil

]
× (πjil − π∗jil) ≥ 0, ∀(Q,QF , QS, λ, π) ∈ K, (16)

where K ≡ KF ×KS.

Proof: Summation of variational inequalities (8) (or (9)) and (14) yields variational inequal-

ity (15) (or (16)). A solution to variational inequality (15) (or (16)) satisfies the sum of (8)

(or (9)) and (14) and, hence, is an equilibrium according to Definition 3.�

We now put variational inequality (16) into standard form (cf. [19]): determine X∗ ∈ K
where X is a vector in RN , F (X) is a continuous function such that F (X) : X 7→ K ⊂ RN ,

and

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (17)

where 〈·, ·〉 is the inner product in the N -dimensional Euclidean space, N = InR+2nS

∑I
i=1 nli

+ 2
∑I

i=1 nli , and K is closed and convex. We define the vector X ≡ (Q, QF , QS, λ, π) and

the vector F (X) ≡ (F 1(X), F 2(X), F 3(X), F 4(X), F 5(X)), such that:

F 1(X) =

[
∂fi(Q)

∂Qik

+

nR∑
h=1

∂tcF
ih(Q)

∂Qik

−
nR∑
h=1

∂ρ̂ih(Q)

∂Qik

Qih − ρ̂ik(Q) +

nli∑
l=1

λilθil;

i = 1, . . . , I; k = 1, . . . , nR] , (18a)

F 2(X) =

[ nli∑
m=1

∂fF
im(QF )

∂QF
il

− λil; i = 1, . . . , I; l = 1, . . . , nli

]
, (18b)

F 3(X) =

[
πjil +

nS∑
g=1

nli∑
m=1

∂cigm(QS)

∂QS
jil

− λil; j = 1, . . . , nS; i = 1, . . . , I; l = 1, . . . , nli

]
, (18c)
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F 4(X) =

[
nS∑
j=1

QS
jil + QF

il −
nR∑
k=1

Qikθil; i = 1, . . . , I; l = 1, . . . , nli

]
, (18d)

F 5(X) =

[
∂ocj(π)

∂πjil

−QS
jil; j = 1, . . . , nS; i = 1, . . . , I; l = 1, . . . , nli

]
. (18e)

Similarly, we also put variational inequality (15) into standard form: determine Y ∗ ∈ K
where Y is a vector in RM , G(Y ) is a continuous function such that G(Y ) : Y 7→ K ⊂ RM ,

and

〈G(Y ∗), Y − Y ∗〉 ≥ 0, ∀Y ∈ K, (19)

where M = InR +
∑I

i=1 nli + 2nS

∑I
i=1 nli , and K is closed and convex. We define Y ≡

(Q, QF , QS, π), G(Y ) ≡ (− ∂UF
i

∂Qik
,−∂UF

i

∂QF
il
,− ∂UF

i

∂QS
jil

,− ∂US
j

∂πjil
); j = 1, . . . , nS; i = 1, . . . , I; l = 1, . . . , nli .

Hence, (15) can be put into standard form (19).

The equilibrium solution (Q∗, QF ∗
, QS∗

, π∗) to (19) and the (Q∗, QF ∗
, QS∗

, π∗) in the

equilibrium solution to (17) are equivalent for this multitiered supply chain network problem

with suppliers. In addition to (Q∗, QF ∗
, QS∗

, π∗), the equilibrium solution to (17) also

contains the equilibrium Lagrange multipliers (λ∗).

2.4. Qualitative Properties

We now present some qualitative properties of the solution to variational inequalities (17)

and (19), equivalently, (16) and (15). In particular, we provide the existence result and the

uniqueness result.

In a supply chain network with suppliers, it is reasonable to expect that the price charged

by each supplier j for producing one unit of firm i’s component l, πjil, is bounded by a

sufficiently large value, since, in practice, each supplier cannot charge unbounded prices to

the firms. Therefore, the following assumption is not unreasonable:

Assumption 1

Suppose that in our supply chain network model with suppliers there exists a sufficiently large

Π, such that,

πjil ≤ Π, j = 1, . . . , nS; i = 1, . . . , I; l = 1, . . . , nli . (20)

With this assumption, we have the following existence result.
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Theorem 4: Existence

With Assumption 1 satisfied, there exists at least one solution to variational inequalities (17)

and (19); equivalently, (16) and (15).

Proof : We first prove that there exists at least one solution to variational inequality (19)

(cf. (15)). Due to constraint (3), the product quantities Qik; i = 1, . . . , I; k = 1, . . . , nS

are bounded, since the components quantities are nonnegative and capacitated (cf. (5) and

(6)). Therefore, with Assumption 1, the feasible set of variational inequality (19) is bounded.

Since the cost functions and the demand price functions are continuously differentiable, and

the feasible set is convex and compact, the existence of a solution to (19) is then guaranteed

(cf. [13] and Theorem 1.5 in [19]). Since (19) and (17) (cf. (16)) are equivalent (Theorem 3

in [25]), the existence of (17) is guaranteed. �

Theorem 5: Uniqueness

If Assumption 1 is satisfied, the equilibrium product shipment, in-house component produc-

tion, contracted component production, and suppliers’ price pattern (Q∗, QF ∗
, QS∗

, π∗) in

variational inequality (19), equivalently, (17), is unique under the following conditions:

(i) one of the two families of convex functions fi(Q); i = 1, . . . , I, and tcF
ik(Q); k = 1 . . . .nR,

is strictly convex in Qik;

(ii) the fF
il (Q

F ); i = 1, . . . , I, l = 1, . . . .nli, are strictly convex in QF
il ;

(iii) the cijl(Q
S); j = 1, . . . , nS, i = 1, . . . , I, l = 1, . . . .nli, are strictly convex in QS

jil;

(iv) the ocj(π); j = 1, . . . , nS, are strictly convex in πjil;

(v) the ρik(d); i = 1, . . . , I, k = 1, . . . .nR, are strictly monotone decreasing of dik.

Proof : Assume the above conditions. Then the negative utility functions, −UF
i and −US

j ;

∀i = 1, . . . , I, j = 1, . . . , nS, are strictly convex in associated variables (cf. (1b), (11), and

Theorems 1 and 2). Therefore,

IX
i=1

nRX
k=1

"
(−

∂UF
i (Q′, QF ′

, QS′
, π′)

∂Qik
)− (−

∂UF
i (Q′′, QF ′′

, QS′′
, π′′)

∂Qik
)

#
× (Q′

ik −Q′′
ik)

+
IX

i=1

n
liX

l=1

"
(−

∂UF
i (Q′, QF ′

, QS′
, π′)

∂QF
il

)− (−
∂UF

i (Q′′, QF ′′
, QS′′

, π′′)

∂QF
il

)

#
× (QF ′

il −QF ′′
il )

+

nSX
j=1

IX
i=1

n
liX

l=1

"
(−

∂UF
i (Q′, QF ′

, QS′
, π′)

∂QS
jil

)− (−
∂UF

i (Q′′, QF ′′
, QS′′

, π′′)

∂QS
jil

)

#
× (QS′

jil −QS′′
jil )

+

nSX
j=1

IX
i=1

n
liX

l=1

"
(−

∂US
j (QS′

, π′)

∂πjil
)− (−

∂US
j (QS′′

, π′′)

∂πjil
)

#
× (π′

jil − π′′
jil) > 0,
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∀(Q′, QF ′
, QS′

, π′), (Q′′, QF ′′
, QS′′

, π′′) ∈ K, (Q′, QF ′
, QS′

, π′) 6= (Q′′, QF ′′
, QS′′

, π′′), (21)

that is,

〈G(Y ′)−G(Y ′′), Y ′ − Y ′′〉 > 0, ∀Y ′, Y ′′ ∈ K, Y ′ 6= Y ′′, (22)

where Y ′ = (Q′, QF ′
, QS′

, π′), Y ′′ = (Q′′, QF ′′
, QS′′

, π′′). (22) proves that G(Y ) is strictly

monotone. Under the existence (Theorem 4) and the strict monotonicity, the proof of unique-

ness follows the standard variational inequality theory (cf. [13]). �

Theorem 6: Lipschitz Continuity

The function that enters the variational inequality problem (17) is Lipschitz continuous, that

is,

‖ F (X ′)− F (X ′′) ‖≤ L ‖ X ′ −X ′′ ‖, ∀X ′, X ′′ ∈ K, where L > 0. (23)

Proof : Since we have assumed that all the cost functions have bounded second-order par-

tial derivatives, and the demand price functions have bounded first-order and second-order

partial derivatives, the result is direct by applying a mid-value theorem from calculus to the

F (X) that enters variational inequality (17). �

3. Supply Chain Network Performance Measures

We now present the supply chain network performance measure for the whole competitive

supply chain network G and that for the supply chain network of each individual firm i;

i = 1, . . . , I, under competition. Such measures capture the efficiency of the supply chains

in that the higher the demand to price ratios normalized over associated firm and demand

market pairs, the higher the efficiency. Hence, a supply chain network is deemed to perform

better if it can satisfy higher demands, on the average, relative to the product prices.

Definition 4.1: The Supply Chain Network Performance Measure for the Whole

Competitive Supply Chain Network G

The supply chain network performance/efficiency measure, E(G), for a given competitive

supply chain network topology G and the equilibrium demand vector d∗, is defined as follows:

E = E(G) =

∑I
i=1

∑nR

k=1

d∗ik
ρik(d∗)

I × nR

, (24)

where recall that I is the number of firms and nR is the number of demand markets in the

competitive supply chain network, and d∗ik and ρik(d
∗) denote the equilibrium demand and

the equilibrium price, respectively, associated with firm i and demand market k.
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Definition 4.2: The Supply Chain Network Performance Measure for an Indi-

vidual Firm under Competition

The supply chain network performance/efficiency measure, Ei(Gi), for the supply chain net-

work topology of a given firm i, Gi, under competition and the equilibrium demand vector

d∗, is defined as:

Ei = Ei(Gi) =

∑nR

k=1

d∗ik
ρik(d∗)

nR

, i = 1, . . . , I. (25)

3.1 The Importance of Supply Chain Network Suppliers and Their Components

With our supply chain network performance/efficiency measures, we are ready to inves-

tigate the importance of suppliers and their components, which correspond to nodes in our

supply chain, for the whole competitive supply chain network and for each individual firm

under competition. The importance is determined by studying the impact of the suppliers

and the components on the supply chain efficiency through their removal.

We define the importance of a supplier for the whole competitive supply chain network

as follows:

Definition 5.1: Importance of a Supplier for the Whole Competitive Supply

Chain Network G

The importance of a supplier j, corresponding to a supplier node j ∈ G, I(j), for the whole

competitive supply chain network, is measured by the relative supply chain network efficiency

drop after j is removed from the whole supply chain:

I(j) =
4E
E

=
E(G)− E(G− j)

E(G)
, j = 1, . . . , nS, (26)

where G − j is the resulting supply chain after supplier j is removed from the competitive

supply chain network G.

The upper bound of the importance of a supplier is 1. The higher the value, the more

important a supplier is to the supply chain.

We also can construct using an adaptation of (26) a robustness-type measure for the

whole competitive supply chain by evaluating how the supply chain is impacted if all the

suppliers are eliminated due to a major disruption. One may recall the triple disaster in
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Fukushima, Japan in March 2011 as an illustration of such an event. Specifically, we let:

I(

nS∑
j=1

j) =
4E
E

=
E(G)− E(G−

∑nS

j=1 j)

E(G)
, (27)

measure how the whole supply chain can respond if all of its suppliers are unavailable.

The importance of a supplier for the supply chain network of an individual firm under

competition is defined as follows:

Definition 5.2: Importance of a Supplier for the Supply Chain Network of an

Individual Firm under Competition

The importance of a supplier j, corresponding to a supplier node j ∈ Gi, Ii(j), for the supply

chain network of a given firm i under competition, is measured by the relative supply chain

network efficiency drop after j is removed from Gi:

Ii(j) =
4Ei

Ei

=
Ei(Gi)− Ei(Gi − j)

Ei(Gi)
, i = 1, . . . , I; j = 1, . . . , nS. (28)

The corresponding robustness measure for the supply chain of firm i if all the suppliers

are eliminated is:

Ii(

nS∑
j=1

j) =
4Ei

Ei

=
Ei(Gi)− Ei(Gi −

∑nS

j=1 j)

Ei(Gi)
, i = 1, . . . , I. (29)

In addition, we define the importance of a supplier’s component for the whole competitive

supply chain network as follows:

Definition 5.3: Importance of a Supplier’s Component for the Whole Competi-

tive Supply Chain Network G

The importance of a supplier j’s component lj; lj = 1j, . . . , nlj, corresponding to j’s compo-

nent node lj ∈ G, I(lj), for the whole competitive supply chain network, is measured by the

relative supply chain network efficiency drop after lj is removed from G:

I(lj) =
4E
E

=
E(G)− E(G− lj)

E(G)
, j = 1, . . . , nS; lj = 1j, . . . , nlj. (30)

where G − lj is the resulting supply chain after supplier j’s component lj is removed from

the whole competitive supply chain network.

19



The corresponding robustness measure for the whole competitive supply chain network if

all suppliers’ component lj; lj = 1j, . . . , nlj, are eliminated is:

I(

nS∑
j=1

lj) =
4E
E

=
E(G)− E(G−

∑nS

j=1 lj)

E(G)
, lj = 1j, . . . , nlj. (31)

The importance of a supplier’s component for the supply chain network of an individual

firm is defined as:

Definition 5.4: Importance of a Supplier’s Component for the Supply Chain

Network of an Individual Firm under Competition

The importance of supplier j’s component lj; lj = 1j, . . . , nlj, corresponding to a component

node lj ∈ Gi, Ii(lj), for the supply chain network of a given firm i under competition, is

measured by the relative supply chain network efficiency drop after lj is removed from Gi:

Ii(lj) =
4Ei

Ei

=
Ei(Gi)− Ei(Gi − lj)

Ei(Gi)
, i = 1, . . . , I; j = 1, . . . , nS; lj = 1j, . . . , nlj. (32)

The corresponding robustness measure for the supply chain network of firm i if all sup-

pliers’ component lj, lj = 1j, . . . , nlj, are eliminated is:

Ii(

nS∑
j=1

lj) =
4Ei

Ei

=
Ei(Gi)− Ei(Gi −

∑nS

j=1 lj)

Ei(Gi)
, i = 1, . . . , I; lj = 1j, . . . , nlj. (33)

Note that, in removing a supplier node, we also remove all the links emanating from the

node, and the subsequent component nodes and links. Similarly, in removing a component

node of a supplier, we remove from the supply chain network topology that node and the

links that emanate to and from the node.

4. Algorithm

We employ the Euler method for the computation of the solution for the multitiered

supply chain network game theory model with suppliers. The Euler Method is induced by

the general iterative scheme of Dupuis and Nagurney [10]. Specifically, recall that at iteration

τ of the Euler method (see also [30]), one computes:

Xτ+1 = PK(Xτ − aτF (Xτ )), (34)

where PK is the projection on the feasible set K and F is the function that enters the

variational inequality problem (17).

20



As shown in [10] and [30], for convergence of the general iterative scheme, which induces

the Euler method, the sequence {aτ} must satisfy:
∑∞

τ=0 aτ = ∞, aτ > 0, aτ → 0, as

τ →∞. Specific conditions for convergence of this scheme as well as various applications to

the solutions of other network models can be found in [21, 25, 27].

Explicit Formulae for the Euler Method Applied to the Multitiered Supply Chain

Network Game Theory Model with Suppliers

The Euler method yields, at each iteration, explicit formulae for the computation of the

product shipment, in-house component production, and contracted component production

pattern, the Lagrange multipliers, and the prices charged by the suppliers. In particular, we

have the following closed form expressions:

for the product shipments: for i = 1, . . . , I; k = 1, . . . , nR:

Qτ+1
ik = max{0, Qτ

ik +aτ (−
∂fi(Q

τ )

∂Qik

−
nR∑
h=1

∂tcF
ih(Q

τ )

∂Qik

+

nR∑
h=1

∂ρ̂ih(Q
τ )

∂Qik

Qτ
ih+ ρ̂ik(Q

τ )−
nli∑
l=1

λτ
ilθil)};

(35a)

for the in-house component production pattern: for i = 1, . . . , I; l = 1, . . . , nli :

QF τ+1

il = min{CAP F
il , max{0, QF τ

il + aτ (−
nli∑

m=1

∂fF
im(QF τ

)

∂QF
il

+ λτ
il)}}; (35b)

for the contracted component production pattern: for j = 1, . . . , nS; i = 1, . . . , I; l =

1, . . . , nli :

QSτ+1

jil = min{CAP S
jil, max{0, QSτ

jil + aτ (−πτ
jil −

nS∑
g=1

nli∑
m=1

∂cigm(QSτ
)

∂QS
jil

+ λτ
il)}}; (35c)

and for the Lagrange multipliers: for i = 1, . . . , I; l = 1, . . . , nli :

λτ+1
il = max{0, λτ

il + aτ (−
nS∑
j=1

QSτ

jil −QF τ

il +

nR∑
k=1

Qτ
ikθil)}. (35d)

Also, the following closed form expressions are for the prices charged by the suppliers:

for j = 1, . . . , nS; i = 1, . . . , I; l = 1, . . . , nli :

πτ+1
jil = max{0, πτ

jil + aτ (−
∂ocj(π

τ )

∂πτ
jil

+ QSτ

jil )}. (35e)
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5. Numerical Examples

In this Section, we present numerical supply chain network examples with suppliers, which

we solve via the Euler method, as described in Section 4. We implemented the Euler method

using Matlab on a Lenovo Z580. The convergence tolerance is 10−6, so that the algorithm is

deemed to have converged when the absolute value of the difference between each successive

quantities, prices, and Lagrange multipliers is less than or equal to 10−6. The sequence

{aτ} is set to: {1, 1
2
, 1

2
, 1

3
, 1

3
, 1

3
, . . .}. We initialize the algorithm by setting the product and

component quantities equal to 50 and the prices and the Lagrange multipliers equal to 0.

Example 1

The supply chain network topology of Example 1 is given in Figure 2. There are two firms

serving demand markets 1 and 2. The firms procure the components of their products from

supplier 1. They also have the option of producing the components needed by themselves.

The product of firm 1 requires two components, which are 11 and 21. 2 units of component

11 and 3 units of component 21 are needed for producing one unit of firm 1’s product. The

product of firm 2 requires two components, 12 and 22. To produce one unit of firm 2’s

product, 2 units of component 12 and 2 units of component 22 are needed. Therefore,

θ11 = 2, θ12 = 3, θ21 = 2, θ22 = 2.

Components 11 and 12 are the same component, which corresponds to node 1 in the second

tier in Figure 2 below. Components 21 and 22 correspond to nodes 2 and 3, respectively.

The data are as follows.

The capacities of the suppliers are:

CAP S
111 = 80, CAP S

112 = 90, CAP S
121 = 80, CAP S

122 = 50,

Thus, supplier 1 is capable of producing components 11, 21, 12, and 22 for the firms.

The firms are not capable of producing components 11 or 12, so their capacities are:

CAP F
11 = 0, CAP F

12 = 20, CAP F
21 = 0, CAP F

22 = 30.

The supplier’s production costs are:

fS
11(Q

S
111, Q

S
121) = 2(QS

111 + QS
121), fS

12(Q
S
112) = 3QS

112, fS
13(Q

S
122) = QS

122.
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The supplier’s transportation costs are:

tcS
111(Q

S
111, Q

S
112) = 0.75QS

111 + 0.1QS
112, tcS

112(Q
S
112, Q

S
111) = 0.1QS

112 + 0.05QS
111,

tcS
121(Q

S
121, Q

S
122) = QS

121 + 0.2QS
122, tcS

122(Q
S
122, Q

S
121) = 0.6QS

122 + 0.25QS
121.

The opportunity cost of the supplier is:

oc1(π111, π112, π121, π122) = 0.5(π111 − 10)2 + (π112 − 5)2 + 0.5(π121 − 10)2 + 0.75(π122 − 7)2.

The firms’ assembly costs are:

f1(Q11, Q12, Q21, Q22) = 2(Q11 + Q12)
2 + 2(Q11 + Q12) + (Q11 + Q12)(Q21 + Q22),

f2(Q11, Q12, Q21, Q22) = 1.5(Q21 + Q22)
2 + 2(Q21 + Q22) + (Q11 + Q12)(Q21 + Q22).

The firms’ production costs for producing their components are:

fF
11(Q

F
11, Q

F
21) = 3QF 2

11 + QF
11 + 0.5QF

11Q
F
21, fF

12(Q
F
12) = 2QF 2

12 + 1.5QF
12,

fF
21(Q

F
11, Q

F
21) = 3QF 2

21 + 2QF
21 + 0.75QF

11Q
F
21, fF

22(Q
F
22) = 1.5QF 2

22 + QF
22.
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The firms’ transportation costs for shipping their products to the demand markets are:

tcF
11(Q11, Q21) = Q2

11 + Q11 + 0.5Q11Q21, tcF
12(Q12, Q22) = 2Q2

12 + Q12 + 0.5Q12Q22,

tcF
21(Q21, Q11) = 1.5Q2

21 + Q21 + 0.25Q11Q21, tcF
22(Q12, Q22) = Q2

22 + 0.5Q22 + 0.25Q12Q22.

The transaction costs of the firms are:

c111(Q
S
111) = 0.5QS2

111 + 0.25QS
111, c112(Q

S
112) = 0.25QS2

112 + 0.3QS
112,

c211(Q
S
121) = 0.3QS2

121 + 0.2QS
121, c212(Q

S
122) = 0.2QS2

122 + 0.1QS
122.

The demand price functions are:

ρ11(d11, d21) = −1.5d11 − d21 + 500, ρ12(d12, d22) = −2d12 − d22 + 450,

ρ21(d11, d21) = −2d21 − 0.5d11 + 500, ρ22(d12, d22) = −2d22 − d12 + 400.

The Euler method converges in 380 iterations. The equilibrium product shipments are:

Q∗
11 = 13.39, Q∗

12 = 4.51, Q∗
21 = 18.62, Q∗

22 = 5.87.

The equilibrium demands are:

d∗11 = 13.39, d∗12 = 4.51, d∗21 = 18.62, d∗22 = 5.87

with the induced demand prices being

ρ11 = 461.30, ρ12 = 435.11, ρ21 = 456.07, ρ22 = 383.75.

The equilibrium in-house component production pattern is:

QF ∗

11 = 0.00, QF ∗

12 = 11.50, QF ∗

21 = 0.00, QF ∗

22 = 14.35.

The equilibrium contracted component production pattern is:

QS∗

111 = 35.78, QS∗

112 = 42.18, QS∗

121 = 48.99, QS∗

122 = 34.64.

The equilibrium Lagrange multipliers are:

λ∗11 = 81.82, λ∗12 = 47.48, λ∗21 = 88.58 λ∗22 = 44.05.

The equilibrium prices charged by the supplier are:

π∗11 = 45.78, π∗12 = 26.09, π∗21 = 58.99, π∗22 = 30.09.
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The profits of the firms are, respectively, 2,518.77 and 3,485.51. The profit of the supplier is

3,529.19.

We now apply the supply chain network performance measures and the supplier and

component importance indicators presented in Section 3 to this example.

The supply chain network performance measure E(G) for the whole competitive supply

chain network (cf. (24)) for Example 1 is:

E(G) =

d11

ρ11
+ d12

ρ12
+ d21

ρ21
+ d22

ρ22

I × nR

=
13.39
461.30

+ 4.51
435.11

+ 18.62
456.07

+ 5.87
383.75

2× 2

=0.0239.

The supply chain network performance measure for the supply chain network topology

of firm 1 (cf. (25)) is then given by:

E1(G1) =

d11

ρ11
+ d12

ρ12

nR

=
13.39
461.30

+ 4.51
435.11

2
=0.0197,

and that of firm 2 is:

E2(G2) =

d21

ρ21
+ d22

ρ22

nR

=
18.62
456.07

+ 5.87
383.75

2
=0.0281.

Note that, in this example, only supplier 1 is able to produce components 11 and 12,

which is the first component of supplier 1 (i.e., node 1 in the second tier in Figure 2), and

neither of the firms can. Without supplier 1, no products of the firms can be assembled or

delivered to the demand markets. Therefore,

E(G− 1) = 0, E1(G1 − 1) = 0, E2(G2 − 1) = 0.

According to (26) and (28),

I(1) = 1, I1(1) = 1, I2(1) = 1,
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that is, the importance of supplier 1 for the whole competitive supply chain network, for the

supply chain of firm 1, and that for the supply chain of firm 2 is 1. Without supplier 1, the

supply chain network in Figure 2 will collapse.

In addition, the supply chain network performance for the supply chain without supplier

1’s component 1 (i.e., node 1 in the second tier in Figure 2) is:

E(G− 11) = 0, E1(G1 − 11) = 0, E2(G2 − 11) = 0,

and the importance of supplier 1’s component 1 is:

I(11) = 1, I1(11) = 1, I2(11) = 1.

Therefore, supplier 1’s component 1 is the most important component compared to its com-

ponents 2 (i.e., node 2 in the second tier in Figure 2) and 3 (i.e., node 3 in the second tier

in Figure 2).

Now suppose that supplier 1’s component 2 is removed from Figure 2. The Euler method

converges in 992 iterations, and achieves the equilibrium solution shown in Table 2.

Table 2: Equilibrium Solution and Incurred Demand Prices After the Removal of Supplier
1’s Component 2

Q∗ Q∗
11 = 6.49 Q∗

121 = 0.17 Q∗
21 = 19.08 Q∗

22 = 6.46
QF ∗

QF ∗
11 = 0.00 QF ∗

12 = 20.00 QF ∗
21 = 0.00 QF ∗

22 = 14.90
QS∗

QS∗
111 = 13.33 QS∗

121 = 51.08 QS∗
122 = 36.18

λ∗ λ∗11 = 36.92 λ∗12 = 103.29 λ∗21 = 91.93 λ∗22 = 45.70
π∗ π∗111 = 23.33 π∗121 = 61.08 π∗122 = 31.12
d∗ d∗11 = 6.49 d∗12 = 0.17 d∗21 = 19.08 d∗22 = 6.46
ρ ρ11 = 471.18 ρ12 = 443.19 ρ21 = 458.59 ρ22 = 386.91

The profits of the firms are now 1,519.08 and 3,755.89. The profit of the supplier is

2,458.92.

The associated supply chain network performance measure values are now:

E(G− 21) = 0.0181, E1(G1 − 21) = 0.0071, E2(G2 − 21) = 0.0292.

After supplier 1’s component 3 is removed from Figure 2, in 1487 iterations, the Euler

method converges to the equilibrium solution, which is presented in Table 3.

The profits of the firms are 2,724.82 and 3,043.42, and the profit of the supplier is 2,177.26.
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Table 3: Equilibrium Solution and Incurred Demand Prices After the Removal of Supplier
1’s Component 3

Q∗ Q∗
11 = 13.75 Q∗

121 = 4.88 Q∗
21 = 14.25 Q∗

22 = 0.75
QF ∗

QF ∗
11 = 0.00 QF ∗

12 = 11.94 QF ∗
21 = 0.00 QF ∗

22 = 30.00
QS∗

QS∗
111 = 37.26 QS∗

112 = 43.96 QS∗
121 = 30.00

λ∗ λ∗11 = 84.78 λ∗12 = 49.26 λ∗21 = 58.20 λ∗22 = 103.44
π∗ π∗111 = 47.26 π∗112 = 26.98 π∗121 = 40.00
d∗ d∗11 = 13.75 d∗12 = 4.88 d∗21 = 14.25 d∗22 = 0.75
ρ ρ11 = 465.12 ρ12 = 439.50 ρ21 = 464.62 ρ22 = 393.63

The associated supply chain network performance measure values are now:

E(G− 31) = 0.0183, E1(G1 − 31) = 0.0203, E2(G2 − 31) = 0.0163.

We summarize the supply chain network performance measure values in Table 4. The

importance of supplier 1’s components 1, 2, and 3 (cf. (30) and (32)) and their rankings, not

only for the whole supply chain network but also for each firm’s supply chain, are reported

in Table 5.

Table 4: Supply Chain Network Performance Measure values for Example 1

E(G) E(G− 1) E(G− 11) E(G− 21) E(G− 31)
Whole Supply Chain 0.0239 0 0 0.0181 0.0183

Ei(Gi) Ei(Gi − 1) Ei(Gi − 11) Ei(Gi − 21) Ei(Gi − 31)
Firm 1’s Supply Chain 0.0197 0 0 0.0071 0.0203
Firm 2’s Supply Chain 0.0281 0 0 0.0292 0.0163

Because supplier 1’s component 2 is produced exclusively for firm 1, it is more important

for firm 1 than supplier 1’s component 3, but not as important as component 1. After

removing it from the supply chain, firm 1’s profit decreases, but firm 1’s competitor, firm 2’s

profit, increases because of competition. The supply chain performance of firm 2’s supply

chain also increases after the removal. In addition, component 2 is most important for firm

1 than for firm 2 and for the whole supply chain network.

For a similar reason, since supplier 1’s component 3 is made exclusively for firm 2, it

is more important than supplier 1’s component 2 for firm 2. After dropping component 3

from the supply chain, firm 2’s profit decreases, and its competitor, firm 1’s profit, increases.
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Table 5: Importance and Rankings of Supplier 1’s Components 1, 2, and 3 for Example 1

Importance for the Importance for Importance for
Whole Supply Chain Ranking Firm 1’s Supply Chain Ranking Firm 2’s Supply Chain Ranking

Supplier 1 1 1 1
Component 1 1 1 1 1 1 1
Component 2 0.2412 2 0.6401 2 −0.0387 3
Component 3 0.2331 3 −0.0329 3 0.4197 2

Importance for the Importance for Importance for
Whole Supply Chain Firm 1’s Supply Chain Firm 2’s Supply Chain

Supplier 1 1 1 1
Ranking 1 1 1

Component 1 1 1 1
Ranking 1 1 1

Component 2 0.2412 0.6401 −0.0387
Ranking 2 1 3

Component 3 0.2331 −0.0329 0.4197
Ranking 2 3 1

The supply chain performance of firm 1’s supply chain also increases. Component 3 is most

important for firm 2 than for firm 1 and for the whole supply chain.

Example 2

Example 2 is the same as Example 1 except that supplier 1 is no longer the only entity

that can produce components 11 and 12. Both firms recover their capacities for producing

components 11 and 12 and, hence, they are raised from 0 to 20. The capacities of the firms

are now:

CAP F
11 = 20, CAP F

12 = 20, CAP F
21 = 20, CAP F

22 = 30.

The Euler method converges in 408 iterations. The equilibrium solution is presented in

Table 6.

Table 6: Equilibrium Solution and Incurred Demand Prices for Example 2

Q∗ Q∗
11 = 14.43 Q∗

121 = 5.13 Q∗
21 = 19.60 Q∗

22 = 7.02
QF ∗

QF ∗
11 = 10.23 QF ∗

12 = 12.50 QF ∗
21 = 11.28 QF ∗

22 = 15.47
QS∗

QS∗
111 = 28.89 QS∗

112 = 46.19 QS∗
121 = 41.97 QS∗

122 = 37.78
λ∗ λ∗11 = 68.04 λ∗12 = 51.49 λ∗21 = 77.35 λ∗22 = 47.40
π∗ π∗111 = 38.89 π∗112 = 28.10 π∗121 = 51.97 π∗122 = 32.19
d∗ d∗11 = 14.43 d∗12 = 5.13 d∗21 = 19.60 d∗22 = 7.02
ρ ρ11 = 458.75 ρ12 = 432.72 ρ21 = 453.58 ρ22 = 380.83

The profits of the firms are now 2,968.88 and 4,110.89, and the profit of the supplier
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is now 3,078.45. With recovered capacities, the profits of the firms increase, but that of

the supplier decreases, compared to the corresponding values in Example 1. If there are

costs for capacity increment for each firm, and if the costs are less than the associated profit

increment, it is profitable for firms to recover their capacities and produce more components

in-house. If not, purchasing from the supplier would be a wise choice. In Example 2, the

demand prices decrease due to more demand.

The supply chain network performance measure values and the importance of supplier

1’s components 1, 2, and 3 and their rankings are reported as in Tables 7 and 8.

Table 7: Supply Chain Network Performance Measure Values for Example 2

E(G) E(G− 1) E(G− 11) E(G− 21) E(G− 31)
Whole Supply Chain 0.0262 0.0086 0.0105 0.0197 0.0195

Ei(Gi) Ei(Gi − 1) Ei(Gi − 11) Ei(Gi − 21) Ei(Gi − 31)
Firm 1’s Supply Chain 0.0217 0.0067 0.0106 0.0071 0.0226
Firm 2’s Supply Chain 0.0308 0.0105 0.0105 0.0324 0.0163

Table 8: Importance and Rankings of Supplier 1 and its Components 1, 2, and 3 for Example
2

Importance for the Importance for Importance for
Whole Supply Chain Ranking Firm 1’s Supply Chain Ranking Firm 2’s Supply Chain Ranking

Supplier 1 0.6721 0.6897 0.6598
Component 1 0.5984 1 0.5121 2 0.6590 1
Component 2 0.2476 3 0.6721 1 −0.0505 3
Component 3 0.2586 2 −0.0438 3 0.4710 2

Importance for the Importance for Importance for
Whole Supply Chain Firm 1’s Supply Chain Firm 2’s Supply Chain

Supplier 1 0.6721 0.6897 0.6598
Ranking 2 1 3

Component 1 0.5984 0.5121 0.6590
Ranking 2 3 1

Component 2 0.2476 0.6721 −0.0505
Ranking 2 1 3

Component 3 0.2586 −0.0438 0.4710
Ranking 2 3 1

With firms’ recovered capacities for producing components 11 and 12, supplier 1’s com-

ponent 1 is still the most important component for the whole supply chain network and for

firm 2, compared to the other components. However, for firm 1’s supply chain, component

2 is now the most important component.
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In addition, supplier 1 is now most important for firm 1. Therefore, in the case of a

disruption on the supplier’s side, firm 1’s supply chain will be affected the most. Moreover,

components 1 and 3 are most important for firm 2, and component 2 is most important for

firm 1.

Example 3

Example 3 is the same as Example 2, except that two more suppliers are now available to

the firms in addition to supplier 1. The supply chain network topology of Example 3 is given

in Figure 3.
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Figure 3: Example 3

The data associated with suppliers 2 and 3 are following.

The capacities of suppliers 2 and 3 are:

CAP S
211 = 60, CAP S

212 = 70, CAP S
221 = 50, CAP S

222 = 60,

CAP S
311 = 50, CAP S

312 = 80, CAP S
321 = 80, CAP S

322 = 60.

Hence, suppliers 2 and 3 are capable of providing components 11, 21, 12, and 22 for the firms.

The production costs of the suppliers are:

fS
21(Q

S
211, Q

S
221) = QS

211 + QS
221, fS

22(Q
S
212) = 3QS

212, fS
23(Q

S
222) = 2QS

222,
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fS
31(Q

S
311, Q

S
321) = 10(QS

311 + QS
321), fS

32(Q
S
312) = QS

312, fS
33(Q

S
322) = 2.5QS

322.

The transportation costs are:

tcS
211(Q

S
211, Q

S
212) = 0.5QS

211 + 0.2QS
212, tcS

212(Q
S
212, Q

S
211) = 0.3QS

212 + 0.1QS
211,

tcS
221(Q

S
221, Q

S
222) = 0.8QS

221 + 0.2QS
222, tcS

222(Q
S
222, Q

S
221) = 0.75QS

222 + 0.1QS
221,

tcS
311(Q

S
311, Q

S
312) = 0.4QS

311 + 0.05QS
312, tcS

312(Q
S
312, Q

S
311) = 0.4QS

312 + 0.2QS
311,

tcS
321(Q

S
321, Q

S
322) = 0.7QS

321 + 0.1QS
322, tcS

322(Q
S
322, Q

S
321) = 0.6QS

322 + 0.1QS
321.

The opportunity costs are:

oc2(π211, π212, π221, π222) = (π211 − 6)2 + 0.75(π212 − 5)2 + 0.3(π221 − 8)2 + 0.5(π222 − 4)2,

oc3(π311, π312, π321, π322) = 0.5(π311 − 5)2 + 1.5(π312 − 5)2 + 0.5(π321 − 3)2 + 0.5(π322 − 4)2.

The transaction costs of the firms now become:

c121(Q
S
211) = 0.5QS2

211 + QS
211, c122(Q

S
212) = 0.25QS2

212 + 0.3QS
212,

c221(Q
S
221) = QS2

221 + 0.1QS
221, c222(Q

S
222) = QS2

222 + 0.5QS
222,

c131(Q
S
311) = 0.2QS2

311 + 0.3QS
311, c132(Q

S
312) = 0.5QS2

312 + 0.2QS
312,

c231(Q
S
321) = 0.1QS2

321 + 0.1QS
321, c232(Q

S
322) = 0.5QS2

322 + 0.1QS
322.

The rest of the data for firms 1 and 2 and the demand price functions are the same as in

Example 2.

The Euler method converges in 563 iterations and achieves the equilibrium solution shown

in Table 9.

The profits of the firms are now 4,968.67 and 5,758.13, and the profits of the suppliers are

1,375.22, 725.17, and 837.44, respectively. With more competition on the supplier’s side, the

prices of supplier 1 decrease, and its profit also decreases, compared to the values in Example

2. However, the profits of the firms increase. In addition, with more products made, the

prices at the demand markets decrease.

The supply chain network performance measure values and the importance of the suppliers

are reported in Tables 10 and 11.
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Table 9: Equilibrium Solution and Incurred Demand Prices for Example 3

Q∗ Q∗
11 = 21.82 Q∗

12 = 9.61 Q∗
21 = 24.23 Q∗

22 = 12.41
QF ∗

QF ∗
11 = 5.57 QF ∗

12 = 9.11 QF ∗
21 = 6.48 QF ∗

22 = 12.94
QS∗

QS∗
111 = 13.71 QS∗

112 = 32.64 QS∗
121 = 21.77 QS∗

122 = 30.68
QS∗

211 = 20.45 QS∗
212 = 27.98 QS∗

221 = 10.07 QS∗
222 = 11.78

QS∗
311 = 23.13 QS∗

312 = 24.56 QS∗
321 = 34.94 QS∗

322 = 17.86
λ∗ λ∗11 = 37.68 λ∗12 = 37.94 λ∗21 = 45.03 λ∗22 = 39.83
π∗ π∗111 = 23.71 π∗112 = 21.32 π∗121 = 31.77 π∗122 = 27.45

π∗211 = 16.23 π∗212 = 23.65 π∗221 = 24.79 π∗222 = 15.78
π∗311 = 28.13 π∗312 = 13.19 π∗321 = 37.94 π∗322 = 21.86

d∗ d∗11 = 21.82 d∗12 = 9.61 d∗21 = 24.23 d∗22 = 12.41
ρ ρ11 = 443.04 ρ12 = 418.38 ρ21 = 440.64 ρ22 = 365.58

Table 10: Supply Chain Network Performance Measure Values for Example 3

E(G) E(G− 1) E(G− 2) E(G− 3) E(G−
∑nS

j=1 j)

Whole Supply Chain 0.0403 0.0334 0.0361 0.0332 0.0086

Ei(Gi) Ei(Gi − 1) Ei(Gi − 2) Ei(Gi − 3) Ei(Gi −
∑nS

j=1 j)

Firm 1’s Supply Chain 0.0361 0.0309 0.0303 0.0309 0.0067
Firm 2’s Supply Chain 0.0445 0.0358 0.0419 0.0355 0.0105

Table 11: Importance and Rankings of Suppliers for Example 3

Importance for the Importance for Importance for
Whole Supply Chain Ranking Firm 1’s Supply Chain Ranking Firm 2’s Supply Chain Ranking

Supplier 1 0.1717 2 0.1443 2 0.1939 2
Supplier 2 0.1035 3 0.1612 1 0.0566 3
Supplier 3 0.1760 1 0.1438 3 0.2021 1

All Suppliers 0.7864 0.8139 0.7641

Importance for the Importance for Importance for
Whole Supply Chain Firm 1’s Supply Chain Firm 2’s Supply Chain

Supplier 1 0.1717 0.1443 0.1939
Ranking 2 3 1

Supplier 2 0.1035 0.1612 0.0566
Ranking 2 1 3

Supplier 3 0.1760 0.1438 0.2021
Ranking 2 3 1

All Suppliers 0.7864 0.8139 0.7641
Ranking 2 1 3

As shown in Table 11, supplier 2 is the most important supplier for firm 1’s supply chain,

and supplier 3 is the most important supplier for firm 2 and the whole supply chain network,
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compared to the other suppliers. In addition, suppliers 1 and 3 are most important for firm

2. Supplier 2 is most important for firm 1’s supply chain.

The group of suppliers, including suppliers 1, 2, and 3, is most important for firm 1. If a

major disaster occurs and all the suppliers are unavailable to the firms, firm 1’s supply chain

will be affected the most.

6. Summary and Conclusions

Supply chains provide the critical infrastructure for the production and distribution of

products around the globe. In the case of many products from simple ones to high tech

ones, components that comprise the product are produced by suppliers and then assembled

by firms. Hence, the behavior of both suppliers and firms needs to be captured in order to

be able to assess both supply chain network performance as well as vulnerabilities.

In this paper, we propose a new multitiered model consisting of competing firms, who can

procure components for their products, which are represented by brands, from suppliers or

can make them, as appropriate, in-house. The firms compete in terms of quantities whereas

the suppliers in terms of prices charged for the components. The optimizing behavior of the

decision-makers is captured and a unified variational inequality constructed, whose solution

yields the equilibrium quantities of the components, produced in-house and/or contracted

for, the prices charged by the suppliers, as well as the Lagrange multipliers associated with

the capacities. Qualitative properties of the solution are also discussed.

The model is then used as the setting for the introduction of supply chain network per-

formance measures for the entire supply chain network economy consisting of all the firms

as well as for that of an individual firm. Importance indicators are then constructed that

allow for the ranking of suppliers for the whole supply chain or that of an individual firm,

as well as for the supplier components. This rigorous methodology can be used for plan-

ning purposes as well as for investment purposes. Moreover, it can be utilized as a tool for

regulators since information about both individual firms as well as the entire supply chain

network is revealed.

The model as well as the performance measures are then illustrated through a series

of examples, the solutions of which, are computed using a proposed algorithm, with nice

features for implementation.
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