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Abstract: In this paper, we develop a new generalized network model for the optimization

of the complex operations of medical nuclear supply chains in the case of the radioisotope

molybdenum, with a focus on minimizing the total operational cost, the total waste cost,

and the risk associated with this highly time-sensitive and perishable, but critical, product

used in healthcare diagnostics. Our model allows for the evaluation of transitioning the

production and processing of the radioisotope from highly enriched uranium targets to low

enriched uranium targets. A case study for North America demonstrates how our model and

computational framework can be applied in practice.
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1. Introduction

Each day, 41,000 nuclear medical procedures are performed in the United States using

Technetium-99m, a radioisotope obtained from the decay of Molybdenum-99. The Molybde-

num is produced by primarily irradiating Highly Enriched Uranium (HEU) targets in research

reactors. For over two decades, no irradiation and subsequent Molybdenum processing has

occurred in the United States. All of the Molybdenum necessary for US-based nuclear med-

ical diagnostic procedures, which include diagnostics for two of the greatest killers, cancer

and cardiac problems, comes from foreign sources. Since Molybdenum-99 has a half-life of

only 66.7 hours, continuous production is needed to provide the supply for the medical pro-

cedures. Thus, the US is critically vulnerable to Molybdenum supply chain disruptions that

could significantly affect our healthcare security.

Currently, approximately 60% of the supply of Molybdenum-99 (99Mo) needed for med-

ical procedures in the United States comes from a Canadian reactor, with the remainder

coming from Western Europe, with its production taking place in Western Europe, the for-

mer Eastern-Bloc States, and South Africa. Worldwide, there are only 9 reactors used for

the target irradiation and 6 major processing plants. The shutdown of any of the reactors

or processing plants, due to routine maintenance, upgrades, or, as occurred during 2009 and

2010, for emergency repairs, could significantly disrupt the Molybdenum supply and impact

medical facilities’ abilities to perform the necessary imaging for cardiac and cancer diagnoses

(see Ponsard (2010)). Moreover, the number of processors that supply the global market is

only four, and they are located in Canada, Belgium, The Netherlands, and South Africa.

Additional challenges to the 99Mo supply chain lie in the reality that limitations in pro-

cessing capabilities restrict the ability to produce the medical radioisotopes from regional

reactors since long-distance transportation of the product during staged in the supply chain

raises safety and security risks, and also results in greater decay of the product. The number

of generator manufacturers, which place the radioisotopes into containers known as genera-

tors, which are directly used by hospitals and imaging facilities, with substantial processing

capabilities, is under a dozen (OECD Nuclear Energy Agency (2010b)). In addition, since

the majority of the reactors are between 40 and 50 years old, several of the reactors currently

used, including the Canadian one, are due to be retired by the end of this decade(Seeverens
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(2010) and OECD Nuclear Energy Agency (2010a)).

We now briefly provide some additional background on medical nuclear technology for the

convenience of the reader. A radioactive isotope is bound to a pharmaceutical that is injected

into the patient and travels to the site or organ of interest in order to construct an image for

medical diagnostic purposes. The gamma rays emitted by the radioactive decay of the isotope

are then used to construct an image of that site or organ (Berger, Goldsmith, and Lewis

(2004)). Technetium, 99mTc, which is a decay product of Molybdenum-99, 99Mo, is the most

commonly used medical radioisotope, used in more than 80% of the radioisotope injections,

with more than 30 million procedures worldwide each year. Over 100,000 hospitals in the

world use radioisotopes (World Nuclear Association (2011)). In 2008, 18.5 million doses of
99mTc were injected in the US with 2/3 of them used for cardiac exams, with the other uses

including bone scans (Lantheur Medical Imaging, Inc (2009)). By using medical radioisotope

techniques, health professionals can enable the earlier and more accurate detection of cardiac

problems as well as cancer, the two most common causes of death (see Kochanek et al.

(2011)). According to Kahn (2008), the global market for medical isotopes is 3.7 billion US$

per year.

However, the technology and policy landscape is now changing for medical nuclear supply

chains. Although most of the current production of 99Mo uses HEU targets, all producing

countries, where economically and technologically feasible, have agreed, in principle, to con-

vert to low enriched uranium (LEU) according to the latest OECD Nuclear Energy Agency

(2011) report. However, as noted therein, although the use of LEU targets for 99Mo produc-

tion has advantages over HEU, with proliferation resistance (and, hence, enhanced global

security) being a primary one, along with easier availability of the target material and also

easier compliance for its transportation and processing, the negatives, nonetheless, include:

a lower production yield than HEU and a greater number of targets needed to be irradiated

with associated increased volumes of waste. Indeed, according to Kramer (2011), the South

African Nuclear Energy Corp (Necsa) believes that the LEU production process will approx-

imately double the amount of waste generated in extracting the radioisotope, whereas other

producers are likely to see a factor of four increase in their wastes. Hence, both production

and processing pressures are raised as well as waste management issues.
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Since 99Mo decays with a 66.7 hour half-life, approximately 99.9% of the atoms decay

in 27.5 days, making its production, transportation, and processing all extremely time-

sensitive. In fact, the production of 99Mo is quantified in Six-day curies end of processing

denoting the activity of the sample 6 days after it was irradiated to highlight this (see OECD

Nuclear Energy Agency (2010a)). In addition to the time-sensitivity, the irradiated targets

are highly radioactive, significantly constraining HEU target transportation options between

the reactor and the processing facilities to only trucks that can transport the heavily shielded

transportation containers. While the extracted bulk 99Mo continues to be constrained by its

decay, its shielding requirements are reduced, allowing for transportation by multiple modes,

including by air (cf. de Lange (2010)). LEU targets, however, can be transported by plane

opening up an alternative transportation option to that of trucks, with implications for the

medical nuclear supply chain.

A proper model of this critical medical nuclear supply chain, which allows for appropri-

ate economic cost quantification, heavily emphasized by policy-makers (see OECD Nuclear

Energy Agency (2011)), must include the physics-based principles of the underlying radioac-

tivity, and must incorporate multicriteria decision-making and optimization to capture the

operational and waste management costs as well as risk management, subject to constraints

of demand satisfaction at the hospitals and medical facilities. Moreover, the model must

be sufficiently flexible and robust in order to provide rigorous solutions as the technological

landscape changes.

With the creation of such a sustainable medical nuclear supply chain network economic

optimization model, decision-makers, policy-makers, as well as, healthcare providers, would

have the ability to analyze the medical nuclear supply chain vulnerabilities and synergies

(cf. Nagurney and Qiang (2009)), as well as to explore the relevant costs and risks. In

addition, the effects on costs and risks of changes in demand, which is expected to increase

given the aging population, could be assessed. Moreover, the various stakeholders including

the government, the medical firms, and the hospital and imaging facilities, through such a

supply chain network economic optimization model, could determine the true costs of oper-

ating the reactors, and the same holds for the processing facilities, as well as the generator

manufacturing facilities. Such a transparent framework would enhance healthcare security,

would allow for more accurate pricing and cost recovery, and would enable the evaluation of
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disruptions to the medical nuclear supply chain.

In Section 2, we develop the multitiered supply chain network economic optimization

model for Molybdenum, 99Mo, and describe the various tiers of the supply chain network,

consisting of the nuclear reactors, the processors, the generator manufacturing facilities, and,

finally, the hospitals and medical facilities, where the medical radioisotopes are injected in

the patients. We model the supply chain network optimization problem as a multicriteria

system-optimization problem on a generalized network. We identify the specific losses on the

links/arcs through the use of the time decay of the radioisotope and we capture distinctions

between LEU versus HEU target irradiation and processing. We consider total cost mini-

mization associated with the operational costs, along with the waste management costs, since

we are dealing with nuclear products, and the associated risk of the various supply chain

network activities which is especially relevant here since these are hazardous products and

by-products. Medical nuclear waste management issues have not received much attention in

recent reports (cf. OECD Nuclear Energy Agency (2010a,b)). The model’s solution provides

the optimal levels of production, transportation, and processing of the medical radioisotope,

given the demands at the various hospitals and medical imaging facilities.

It is important to emphasize that emerging global and domestic concerns for human

health, safety, and the environment are driving organizations to consider not only profits

but also their environmental and social responsibilities (Gillett (1993), Cruz (2009), Cruz

and Matsypura (2009), Nagurney and Nagurney (2010), and Nagurney and Woolley (2010)).

Such issues are also paramount in the case of supply chains that involve the production,

transportation, and disposal of hazardous materials, whether as primary products or as

by-products, as is the case of medical nuclear supply chains.

Recent work that is relevant to supply chain optimization of other hazardous materials

can be categorized as follows: capacity planning, facility location, or routing and scheduling

(see Erkut, Tjandra, and Verter (2007)). Most of the studies apply integer programming

(see also, e.g., Kara and Verter (2004), Carotenuto, Giordani, and Ricciardeli (2005), and

Erkut and Alp (2006), Caramia, Giordani and Iovanella (2010)), stochastic programming

(see, e.g., Erkut and Ingolfsson (2005)) or simulation (see, e.g., van der Vorst et al. (2000))

as the methodology of choice. In addition, although risk minimization has been taken into
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account in the hazmat transportation literature in addition to cost minimization (see, e.g.,

Batta and Chiu (1988), List and Mirchandani (1991), Revelle, Cohon, and Shobrys (1991),

Marianov and ReVelle (1998), Iakovou et al. (1999), Huang and Cheu (2004), and Erkut and

Gzara (2008)), to the authors’ knowledge, this important issue has not yet been considered

in models of medical nuclear supply chain optimization.

In this paper, in contrast to those referenced above, we develop a system-optimization

model for medical nuclear supply chain networks, the objective function of which is the

minimization of the total cost and the weighted total risk. Cost and risk are associated with

the various processes in the medical nuclear supply chain. Following Alp (1995), we define

risk as a measure of the probability and the severity of harm to exposed receptors due to

the release and disposal of the associated materials. In the processes of manufacturing and

of distribution/storage, the risk functions are concentrated on the quantity of the medical

nuclear product, which is captured by the link flow; in transportation/shipment, the risk

functions depend on the travel time and the accident probabilities, which are also realized

by the link flows and are coupled with the transportation modes. The evidence is as follows.

In the processes of manufacturing and distribution/storage, risks are associated with

the production and the disposal of hazmat. Although no risk assessment functions are well-

established and widely applied in the literature of medical nuclear transportation, various risk

functions have been presented to estimate the risk in the literature of hazmat transportation.

The risk here refers to the total risk. Traditional risk functions estimate the risk as the

product of the probability or the conditional probability of an accident happening and its

consequences (see, e.g., Abkowitz, Eiger, and Srinivasan (1984), Abkowitz and Cheng (1988),

Erkut and Verter (1998), Sherali et al. (1997), Jonkmana et al. (2003), Erkut and Ingolfsson

(2005), Carotenuto, Giordani, and Ricciardeli (2005), Erkut, Tjandra, and Verter (2007),

and Caramia, Giordani and Iovanella (2010)), in which the total probability of an accident

happening on a road segment is the product of the unit probability, road length and travel

time (in the case of land-based transportation); the consequence of an accident is estimated

by the number of shipments, the population exposure, and the area of the impact zone.

Based on this traditional function, there is also a literature using risk preference to measure

the impact consequences (see, e.g., Abkowitz et al. (1992)). It is widely accepted that

the accident probabilities and the incident rates of using different transportation modes are
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distinguishing features (Kloeber et al. (1979) and PHSA (Pipeline and Hazardous Materials

Safety Administration (2011)). Thus, it is reasonable to assume that, in the case of hazmat

transportation, the risk functions depend on the mode of transportation and on the link

flows. Of course, it is also true that human factors and subjects play roles in the safety of

the total system (Kloeber et al. (1979) and Andersson (1994)), an aspect that should not

be ignored.

We use a variational inequality formulation since such a formulation results in an elegant

computational procedure. Moreover, the theory of variational inequalities has been applied to

a plethora of supply chain modeling, analysis, and design problems (see Nagurney, Dong, and

Zhang (2002), Zhang (2006), Nagurney (2006, 2010), Nagurney, Liu, and Woolley (2007),

Qiang, Nagurney, and Dong (2009), Nagurney and Nagurney (2010), Liu and Nagurney

(2011), and Cruz and Liu (2011)). In addition, variational inequalities have been used

to model generalized network applications ranging from spatial price equilibrium problems

(see Nagurney and Aronson (1989)) to blood supply chains (cf. Nagurney, Masoumi, and

Yu (2012)) and oligopolistic pharmaceutical supply chains (Masoumi, Yu, and Nagurney

(2012)). Furthermore, a variational inequality framework provides a rigorous mathematical

and computational setting to enable the exploration of alternative economic behaviors among

the medical nuclear supply chain stakeholders, including competition (see Nagurney (2006)).

Such a modeling approach is in concert with recent studies that have focused on the

security and reliability of medical nuclear supply chains that also emphasize that governments

ultimately have the responsibility for establishing an environment conducive to investment in

such supply chains (cf. OECD Nuclear Energy Agency (2010a) and Nagurney and Nagurney

(2011)). However, to the best of our knowledge, our model is the first general quantitative

one to include the engineering, economic, and physics aspects of medical nuclear products

with a focus on sustainable operations, cost recovery, and risk management. Indeed, the

model captures the economic aspects of the medical nuclear supply chain network, which is

an important issue since it has been recognized that usually governments run the reactors,

which are research reactors, and the prices associated with the radioisotope may fail to

capture the associated costs and, as a consequence, the pricing may be below marginal

costs resulting in market failure (see OECD Nuclear Energy Agency (2010a) and Seeverens

(2010)).
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In related work, we focused on the design and redesign of medical nuclear supply chains

(see Nagurney and Nagurney (2011)). In that study, the emphasis was on the long term since

construction of the associated facilities, whether research reactors, generator production

facilities, or processing facilities, may take some time and may be quite costly. Here, in

contrast, our goal is to determine the true economic costs associated with this critical medical

nuclear supply chain so as to optimize existing processes. We also focus on HEU versus LEU

trade-offs in terms of waste and risk.

In Section 3, we propose a computational approach, which resolves the medical nuclear

supply chain network optimization problem into subproblems that can be solved explicitly

and exactly at each iteration. In Section 4, we apply the methodology to compute solutions

to a realistic medical nuclear supply chain case study, based on North America. In Section

5, we summarize our findings, present our conclusions, and provide suggestions for future

research.
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2. The Economic Cost Recovery Sustainable Medical Nuclear Supply Chain

Network Optimization Model

In this Section, we develop the economic cost recovery sustainable medical nuclear supply

chain network optimization model, with a focus on 99Mo, referred to, henceforth, as Mo. We

note that the construction is also relevant, with minor modifications, to other radioisotopes,

including Iodine-131.

Figure 1 depicts the network topology of the medical nuclear supply chain. The network

topology reflects the medical nuclear supply chain at the state of evaluation. This topology

differs from the medical nuclear supply chain network topology considered in Nagurney and

Nagurney (2011) since that study focused on design/redesign and not on the economic cost

recovery of an existing medical nuclear supply chain.

In the network, the top level (origin) node 0 represents the organization and the bottom

level nodes represent the destination nodes. Every other node in the network denotes a

component/facility in the medical nuclear system. A path connecting the origin node to a

destination node, corresponding to a demand point, consists of a sequence of directed links

which correspond to the supply chain network activities that guarantee that the nuclear

product is produced, processed, and, ultimately, distributed to the hospitals and medical

imaging facilities, where it is administered to the patients. It is assumed that there exists at

least one path joining node 0 with each destination node: H2
1 , . . . , H

2
nH

.

The solution of the model yields the optimal flows of the medical nuclear product, at

minimum total cost and risk.

In the network in Figure 1, there are nR reactor sites, which produce the radioisotope.

These are usually government research reactors and are represented by the second tier of

nodes of the network: R1, R2, . . . , RnR
. The first set of links, connecting the origin node

to the second tier, corresponds to the process of radioisotope production. As noted in the

Introduction, different reactors irradiate different targets, that is, either HEU or LEU and,

hence, the reactors are irradiation target-specific.

The next set of nodes, located in the third tier, consists of the radioisotope processing

centers. There exist nC of these facilities, denoted, respectively, by C1
1 , C

1
2 , . . . , C

1
nC

, to
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which the Mo is shipped after being produced at the reactor sites. Thus, the next set of

links connecting tiers two and three of the network topology represents the transportation

of the radioisotope. Transportation at this stage of the radioisotope, which is a hazardous

material, in the case of HEU irradiated targets (as opposed to LEU ones) is done solely by

a single mode of transportation, that is, by truck using specialized containers. This single

mode of transportation is represented by single links joining the pairs of nodes. Hence, the

HEU processing facilities must be located fairly near to the reactors and the transportation

is done by land. However, cf. Figure 1, in the case of LEU targets, either truck or air

transport (or both) may be feasible.

At the processing centers, the Mo is extracted and purified. Note that, as depicted by the

supply chain network topology, not every processing facility can process both LEU and HEU

irradiated targets, but some may be able to and we consider such a case study in Section

4. Consequently, in the network in Figure 1, the first processor only processes the type of

target produced by the first reactor, and so on. This processing is represented by the links

emanating from the nodes: C1
1 , C

1
2 , . . . , C

1
nC

and ending in the nodes: C2
1 , C

2
2 , . . . , C

2
nC

, with

the latter set of nodes being the fourth tier nodes. The last processor in the Figure is an

LEU processor and, hence, there are multiple transportation options, depicted accordingly

by multiple links.

Figure 1 can be adapted/modified as the technology landscape in terms of transitioning

from HEU to LEU processing occurs.

The fifth tier of the network is associated with the generator manufacturing facilities,

and these nodes are joined with the fourth tier nodes by links which represent the multiple

modes of transportation that are available for transporting the purified Mo to the generator

manufacturing facilities. The number of generator manufacturing facilities is given by nG.

These facilities are denoted by G1
1, . . . , G

1
nG

, respectively, and need not be located near the

processing facilities.
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At the generator manufacturing facilities the radioisotope is processed and packaged to

be used at the medical facilities. The links that emanate from the generator manufacturing

facility nodes terminate in the sixth tier set of nodes, respectively, denoted by G2
1, . . . , G

2
nG

in Figure 1, which represent the completion of this stage of processing.

From the latter generator nodes, there emanate transportation links and these links, as

the preceding transportation links, correspond to multiple modes of transportation, as appro-

priate, including not only trucking but also, for example, common carrier air transportation.

These links terminate in the seventh tier of nodes, H1
1 , . . . , H

1
nH

, which represent the hospi-

tals and the medical facilities that dispense the radioisotope to the patients. There is still

one more stage of processing, producing the final injectible radioisotope that is represented

by the final set of links in Figure 1 and terminating in nodes: H2
1 , . . . , H

2
nH

, which represent

the final patient demand points.

The medical nuclear supply chain network topology, as depicted in Figure 1, is denoted

by G = [N, L], where N and L denote the sets of nodes and links, respectively.

The formalism that we use is that of multicriteria system-optimization, since the orga-

nization wishes to determine at what level the reactors should operate; the same for the

processing centers, and the generator manufacturers. Furthermore, the organization seeks

to minimize the total risk, because the product of concern is a hazardous one, as well as the

total costs associated with the production, processing, and transportation activities, as well

as the total cost of discarding the nuclear waste product associated with each of the links.

We assume that the demands must be satisfied since we are dealing with a healthcare

product and the medical procedures must be scheduled in advance.

With each link of the network, we associate a unit operational cost function that reflects

the cost of operating that particular medical nuclear supply chain activity. The links are

denoted by a, b, etc. The unit operational cost on link a is denoted by ca and is a function of

flow on that link, fa. The total operational cost on link a is denoted by ĉa, and is constructed

as:

ĉa(fa) = fa × ca(fa), ∀a ∈ L. (1)
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The link total cost functions are assumed to be convex and continuously differentiable.

The origin/destination (O/D) nodes are the pairs of nodes: (0, H2
k); k = 1, . . . , nH . Let

Pk denote the set of paths, which represent the alternative associated possible supply chain

network processes, joining (0, H2
k). P denotes the set of all paths joining node 0 to the

destination nodes, and nP denotes the number of paths.

Also, dk denotes the demand for the radioisotope at the demand point H2
k ; k = 1, . . . , nH .

We associate with every link a in the network a multiplier αa, which corresponds to the

percentage of decay and additional loss over that link. This multiplier lies in the range (0,1],

for the network activities, where αa = 1 means that 100% of the initial flow on link a reaches

the successor node of that link, reflecting that there is no decay/waste/loss on link a. The

multiplier αa can be modeled as the product of two terms, a radioactive decay multiplier αda

and a processing loss multiplier αla.

The Underlying Physics and the Link and Path Multipliers

For completeness and easy reference, we now outline the underlying physics of radioactive

decay in this application, along with how we handle it through arc and path multipliers. The

activity of a radioisotope (in disintegrations per unit time) is proportional to the quantity

of that isotope, i.e.,
dN

dt
∝ N, (2)

where N = N(t) = the quantity of a radioisotope. The quantity of a radioisotope in a time

interval t is then given by

N(t) = N0e
−λt, (3)

where N0 is the quantity present at the beginning of the interval and λ is the decay constant

of the radioisotope (see Berger, Goldsmith, and Lewis (2004)).

We can represent the radioactive decay multiplier αda for link a as

αda = e−λta , (4)

where ta is the time spent on link a. The decay constant, λ, in turn, can be conveniently
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represented by an experimentally measured value, called the half-life t1/2, where

t1/2 =
ln 2

λ
. (5)

The values of the half-lives of radioisotopes are tabulated in the American Institute of Physics

(1972). Hence, we can write αda as

αda = e−λta = e
− ln 2 ta

t1/2 = 2
− ta

t1/2 . (6)

The value of t1/2 for Mo, as noted in the Introduction, is 66.7 hours.

The processing loss multiplier αla for link a is a factor in the range (0,1] that quantifies

for the losses that occur during processing. Different processing links may have different

values for this parameter. For transportation links, however, there is no loss beyond that

due to radioactive decay; therefore, αla = 1 for such links. For the top-most manufacturing

links αa = 1.

As mentioned earlier, fa denotes the (initial) flow on link a. Let f ′a denote the final flow

on that link; i.e., the flow that reaches the successor node of the link. Therefore,

f ′a = αafa, ∀a ∈ L. (7)

The organization is also responsible for disposing the hazardous waste.

Since αa is constant, and known apriori, a total discarding cost function, ẑa, can be

defined accordingly, which is a function of the flow, fa, and is assumed to be convex and

continuously differentiable and given by:

ẑa = ẑa(fa), ∀a ∈ L. (8)

Note that, in processing/producing an amount of radioisotope fa, one knows from the physics

the amount of hazardous waste and, hence, a discarding function of the form (8) is appro-

priate. As noted in the Introduction, LEU target processing can generate several times the

amount of waste that HEU target processing does (Kramer (2011)).

Let xp represent the (initial) flow of Mo on path p joining the origin node with a desti-

nation node. The path flows must be nonnegative, that is,

xp ≥ 0, ∀p ∈ P , (9)
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since the nuclear product will be produced, processed, transported, etc., in nonnegative

quantities.

Let µp denote the multiplier corresponding to the loss on path p, which is defined as the

product of all link multipliers on links comprising that path, that is,

µp ≡
∏
a∈p

αa, ∀p ∈ P . (10)

The demand at demand point Rk, dk, is the sum of all the final flows on paths joining

(0, H2
k):

dk ≡
∑

p∈Pk

µpxp, k = 1, . . . , nH . (11)

Indeed, although the amount of radioisotope that originates on a path p is xp, the amount

(due to radioactive decay, etc.) that actually arrives at the destination (terminal node) of

this path is xpµp. The ultimate demand is the amount of 99mTc that is needed for patient

procedures at patient demand points H1
2 . . . H2

nH
which is usually expressed in number of

Curies used per week as further elaborated upon in the numerical case study in Section 4.

The multiplier αap is the product of the multipliers of the links on path p that precede

link a in that path. This multiplier can be expressed as:

αap ≡


δap

∏
a′<a

αa′ , if {a′ < a} 6= Ø,

δap, if {a′ < a} = Ø,

(12)

where {a′ < a} denotes the set of the links preceding link a in path p, and δap is defined as

equal to one if link a is contained in path p; otherwise, it is equal to zero, and Ø denotes

the null set. In other words, αap is equal to the product of all link multipliers preceding link

a in path p. If link a is not contained in path p, then αap is set to zero. The relationship

between the link flow, fa, and the path flows is as follows:

fa =
∑
p∈P

xp αap, ∀a ∈ L. (13)
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The total cost minimization objective faced by the organization includes the total cost of

operating the various links and the total discarding cost of waste/loss over the links. This

optimization problem can be expressed as:

Minimize
∑
a∈L

ĉa(fa) +
∑
a∈L

ẑa(fa) (14)

subject to: constraints (9), (11), and (13), and

fa ≤ ūa, ∀a ∈ L. (15)

Constraint (15) guarantees that the flow on a link cannot exceed the capacity on that

link.

As mentioned earlier, the minimization of total costs is not the only objective. A major

challenge for a medical nuclear organization is to capture the risk associated with different

activities in the nuclear supply chain network. Unlike the demand, which can be projected

according to the scheduling of medical procedures, albeit with some uncertainty involved,

there is risk associated with the production, processing, and transportation of nuclear medical

radioisotopes.

Let r̂a denote the total risk on link a ∈ L. Based on our review of the literature discussed

in the Introduction, we assume that the total risk on a link is denoted by a risk function

that is a function of the flow on the link, that is,

r̂a = r̂a(fa), ∀a ∈ L. (16)

We assume that the total risk functions are convex and continuously differentiable.

For example, for a transportation link a, the total risk function would measure the impact

of the travel time, the population density that the transportation route goes through, the

unit probability of an accident using the particular mode represented by the link, the area

of the impact zone, the length of the link, etc., and, ideally, also include impact of human

factors. In the case of a non-transportation processing link, the function would capture

analogous aspects but with a focus on the specific processing activity.
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The organization attempts to minimize the total risk over all links.

Thus, the risk minimization objective function for the organization can be expressed as:

Minimize
∑
a∈L

r̂a(fa). (17)

Specific functional forms of the total cost functions (1) and (8) and the total risk functions

(16) for a numerical case study are described in detail in Section 4.

The Multicriteria Decision-Making Problems in Link Flows and in Path Flows

The supply chain network optimization problem for a medical nuclear product can be

expressed as a multicriteria decision-making problem. The organization seeks to determine

the optimal levels of radioisotope processed on each supply chain network link subject to the

minimization of the total cost (operational and discarding) as well as the minimization of the

total risk. The weight associated with the total cost objective (14) serves as the numeraire,

and is set equal to 1. On the other hand, a weight of ω is assigned by the decision-maker to

the total risk objective (17) and it can be interpreted as the factor of risk aversion. ω can

also be interpreted as a risk to cost conversion factor.

Thus, the multicriteria optimization problem is:

Minimize
∑
a∈L

ĉa(fa) +
∑
a∈L

ẑa(fa) + ω
∑
a∈L

r̂a(fa) (18)

subject to: constraints: (9), (11), (13), and (15).

The above optimization problem is in terms of link flows. It can also be expressed in

terms of path flows:

Minimize
∑
p∈P

(Ĉp(x) + Ẑp(x)) + ω
∑
p∈P

R̂p(x) (19)

subject to: constraints (9), (11), and (15), where the path total operational cost function,

Ĉp(x), the path total discarding cost function, Ẑp(x), and the path total risk function, R̂p(x)

are, respectively, derived from Cp(x), Zp(x), and Rp(x) as follows:

Ĉp(x) = xp × Cp(x), Ẑp(x) = xp × Zp(x), R̂p(x) = xp ×Rp(x), ∀p ∈ P , (20)
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with the unit cost functions on path p, i.e., Cp(x), Zp(x), and Rp(x), in turn, defined as

below:

Cp(x) ≡
∑
a∈L

ca(fa)αap, Zp(x) ≡
∑
a∈L

za(fa)αap, Rp(x) ≡
∑
a∈L

ra(fa)αap, ∀p ∈ P . (21)

We associate the Lagrange multiplier γa with constraint (15) for each link a, and we

denote the optimal Lagrange multiplier by γ∗a,∀a ∈ L. The Lagrange multipliers may be

interpreted as shadow prices. We group these Lagrange multipliers into the vector γ.

Let K denote the feasible set such that:

K ≡ {(x, γ)|x ∈ R
np

+ , (11) and (15) hold, γ ∈ RnL
+ }. (22)

We assume that the feasible set is nonempty.

Before stating the variational inequality formulation of the problem, we recall a lemma,

due to Nagurney, Masoumi, and Yu (2012). This lemma was derived for another time-

sensitive product supply chain in healthcare – that of human blood. However, in that

application the arc and path multipliers have an entirely different meaning than that in the

case of medical nuclear products.

Lemma

The partial derivatives of the total operational cost, the total discarding cost, and the total

risk (cf. (19)) with respect to a path flow are, respectively, given by:

∂(
∑

q∈P Ĉq(x))

∂xp

≡
∑
a∈L

∂ĉa(fa)

∂fa

αap, ∀p ∈ P ,

∂(
∑

q∈P Ẑq(x))

∂xp

≡
∑
a∈L

∂ẑa(fa)

∂fa

αap, ∀p ∈ P ,

∂(
∑

q∈P R̂q(x))

∂xp

≡
∑
a∈L

∂r̂a(fa)

∂fa

αap, ∀p ∈ P . (23)

Proof: See Nagurney, Masoumi, and Yu (2012).
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We now derive the variational inequality formulations of the problem in terms of path

flows and link flows.

Theorem: Variational Inequality Formulations

The optimization problem (19), subject to its constraints, is equivalent to the variational

inequality problem: determine the vector of optimal path flows and the vector of optimal

Lagrange multipliers (x∗, γ∗) ∈ K, such that:

nR∑
k=1

∑
p∈Pk

∂(
∑

q∈P Ĉq(x
∗))

∂xp

+
∂(

∑
q∈P Ẑq(x

∗))

∂xp

+
∑
a∈L

γ∗aδap + ω
∂(

∑
q∈P R̂q(x

∗))

∂xp

 × [xp − x∗p]

+
∑
a∈L

ūa −
∑
p∈P

x∗pαap

 × [γa − γ∗a] ≥ 0, ∀(x, γ) ∈ K. (24)

Variational inequality (24), in turn, can be rewritten in terms of link flows as: determine

the vector of optimal link flows and the vector of optimal Lagrange multipliers (f ∗, γ∗) ∈ K1,

such that: ∑
a∈L

[
∂ĉa(f

∗
a )

∂fa

+
∂ẑa(f

∗
a )

∂fa

+ γ∗a + ω
∂r̂a(f

∗
a )

∂fa

]
× [fa − f ∗a ]

+
∑
a∈L

[ūa − f ∗a ]× [γa − γ∗a] ≥ 0, ∀(f, γ) ∈ K1, (25)

where K1 denotes the feasible set:

K1 ≡ {(f, γ)|∃x ≥ 0, (9), (11), (13), and(15) hold, and γ ≥ 0}. (26)

Proof: First, we prove the result for path flows (cf. (24)).

The convexity of Ĉp, Ẑp, and R̂p for all paths p holds since ĉa, ẑa, and r̂a were assumed

to be convex for all links a.

Since the objective function (19) is convex and the feasible set K is closed and convex,

the variational inequality (24) follows from the standard theory of variational inequalities

(see Nagurney (1999)).
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As for the proof of the variational inequality (25), now that (24) is established, we can

apply the equivalence between partial derivatives of total costs on paths and partial deriva-

tives of total costs on links from Lemma 1. Also, using (13) and (15), we can rewrite the

formulation in terms of link flows rather than path flows. Thus, the second part of Theorem

1, that is, the variational inequality in link flows (25), also holds.

Variational inequality (24) can be put into standard form VI (F,K) (see Nagurney (1999))

as follows: determine X∗ ∈ K such that:

〈F (X∗)T , X −X∗〉 ≥ 0, ∀X ∈ K, (27)

where 〈·, ·〉 denotes the inner product in n-dimensional Euclidean space, if we define the

feasible set K ≡ K, and the column vector X ≡ (x, γ), and F (X) ≡ (F1(X), F2(X)), where:

F1(X) =

∂(
∑

q∈P Ĉq(x))

∂xp

+
∂(

∑
q∈P Ẑq(x))

∂xp

+
∑
a∈L

γaδap + ω
∂(

∑
q∈P R̂q(x))

∂xp

; p ∈ P

 ,

F2(X) =

ūa −
∑
p∈P

xpαap; a ∈ L

 . (28)

In addition, there exists at least one solution to both variational inequality (24) and to

(25), since, under the above assumptions, the corresponding F (X) are continuous, and the

respective feasible sets, K and K1, are compact (see, e.g., Nagurney (1999)).

20



3. The Computational Approach

In this Section, we provide the computational approach for the solution of medical nuclear

supply chain network design problems in practice.

Specifically, we propose the modified projection method (Korpelevich (1977)), but in path

flows, rather than in link flows (see, e.g., Nagurney and Qiang (2009) Liu and Nagurney

(2011), and references therein). This algorithm, in the context of our new model, yields

subproblems that can be solved exactly, and in closed form, for the path flows, using a

variant of the exact equilibration algorithm, adapted to incorporate arc/path multipliers,

along with explicit formulae for the Lagrange multipliers.

The modified projection is guaranteed to converge if the function F that enters the

variational inequality satisfies monotonicity and Lipschitz continuity (see Nagurney (1999))

and that a solution exists, which is the case for our model, as noted in Section 2.

We now recall the modified projection method, where T denotes an iteration counter.

Step 0: Initialization

Set X0 ∈ K. Let T = 1 and let η be a scalar such that 0 < η ≤ 1

L , where L is the Lipschitz

continuity constant.

Step 1: Computation

Compute X̃T by solving the VI subproblem:

〈X̃T + ηF (XT −1)−XT −1, X − X̃T 〉 ≥ 0, ∀X ∈ K. (29)

Step 2: Adaptation

Compute XT by solving the VI subproblem:

〈XT + ηF (X̃T )−XT −1, X −XT 〉 ≥ 0, ∀X ∈ K. (30)
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Step 3: Convergence Verification

If max |XT
l − XT −1

l | ≤ ε, for all l, with ε > 0, a prespecified tolerance, then stop; else, set

T =: T + 1, and go to Step 1.

The VI subproblems in (29) and (30) are quadratic programming problems with special

structure that result in straightforward computations. Explicit formulae for (29) for the

medical nuclear supply chain network problem are now given for the Lagrange multipliers.

Analogous formulae for (30) can then be easily obtained. Subsequently, we follow up with

how the path flow values in (29) can be determined (a similar approach can then be used to

determine the path flows for (30)).

Explicit Formulae for the Lagrange Multipliers at Step 1 (cf. (29))

γ̃Ta = max{0, γT −1
a + η(

∑
p∈P

xT −1
p δap − ūa)}, ∀a ∈ L. (31)

Recall that the feasible set K, in terms of the path flows, requires that the path flows be

nonnegative and that the demand constraint (11) holds for each demand point. The induced

path flow subproblems in (29) and (30), hence, have a special network structure of the form

given in Figure 2.

Specifically, the path flow subproblems that one must solve in Step 1 (see (29)) (we have

suppressed the iteration superscripts below) have the following form for each demand point

k; k = 1, . . . , nH :

Minimize
1

2

∑
p∈Pk

x2
p +

∑
p∈Pk

hpxp (32)

subject to:

dk ≡
∑

p∈Pk

µpxp, (33)

xp ≥ 0, ∀p ∈ Pk, (34)

where hp ≡xT −1
p −η

[
∂(

∑
q∈P Ĉq(xT −1))

∂xp
+

∂(
∑

q∈P Ẑq(xT −1))

∂xp
+

∑
a∈L γT −1

a δap + ω
∂(

∑
q∈P R̂q(xT −1))

∂xp

]
.
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Figure 2: Special Network Structure of an Induced Path Flow Subproblem for Each Demand
Point k

We now present an exact equilibration algorithm, adapted to handle the multipliers, which

can be applied to compute the solution to problem (32) for each demand point, subject to

constraints (33) and (34). An analogous set of subproblems in path flows can be set up and

solved accordingly for Step 2 (cf. (30)). For further background on such algorithms, see

Dafermos and Sparrow (1969) and Nagurney and Qiang (2009).

An Exact Equilibration Algorithm for a Generalized Specially Structured Net-

work

Step 0: Sort

Sort the fixed terms hp

µp
; p ∈ Pk in nondescending order and relabel the paths/links accord-

ingly. Assume, from this point on, that they are relabeled. Set r = 1.

Step 1: Computation

Compute

λr
wk

=

∑r
i=1 µpi

hpi
+ dk∑r

i=1 µ2
pi

. (35)
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Step 2: Evaluation

If hpr

µpr
< λr

k ≤ hpr+1

µpr+1
, then stop; set s = r and go to Step 3; otherwise, let r = r + 1 and

return to Step 1. If r = nk, where nk denotes the number of paths connecting destination

node H2
k with origin node ), then set s = nk and go to Step 3.

Step 3: Path Flow Determination

Set

xpi
= µpλ

s
k − hpi

, i = 1, . . . , s.

xpi
= 0, i = s + 1, . . . , nk. (36)

In summary, the proposed computational procedure, at Steps 1 and 2 (see (29) and (30))

induces subproblems of special structure, each of which can be solved explicitly and in closed

form. For the induced subproblems in Lagrange multipliers, we have provided the formulae

(31), whereas for the induced subproblems in the path flows, we have provided a variant of

the exact equilibration algorithm to handle the multipliers.

The modified projection method is guaranteed to converge to a solution of the medical

nuclear supply chain network problem provided that the function F (cf. (28)) is mono-

tone and Lipschitz continuous. Monotonicity follows under our imposed assumptions and

Lipschitz continuity will also hold provided that the marginal total cost and marginal risk

functions have bounded second order partial derivatives.
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4. The Case Study

In this section, we describe a case study. We consider the medical nuclear supply chain

network depicted in Figure 3. In particular, we consider the Molybdenum-99 supply chain

in North America including the existing Canadian reactor, NRU, the Canadian processing

facility located in Ottawa, AECL-MDS Nordion, and the two US generator manufacturing

facilities. This reactor and processing facility are likely to be decommissioned around 2016.

The NRU reactor is located in Chalk River, Ontario and uses HEU targets. Transportation

of the irradiated targets from NRU to AECL - MDS Nordion takes place by truck. There are

two generator manufacturers in the United States (and none in Canada) located in Billerica,

Massachusetts and outside of St. Louis, Missouri.

In addition, in our case study, we have included another potential source of irradiated

targets, as discussed in Kramer (2011), Canada’s TRIUMF linear accelerator located in

Vancouver, British Columbia. Molybdenum irradiated from LEU targets at TRIUMF is

expected in 2012. Hence, we are interested in optimizing the operations of this medical

nuclear supply chain scenario. During the transition from HEU targets to LEU the Nordion

processing facility will be able to process both HEU and LEU targets, as depicted in Figure

3. Hence, each of these target processing stages has its own processing link (cf. links 3 and

24 in Figure 3). There are also expected to be available two modes of transportation from

TRIUMF to Nordion, truck and air transport, as depicted by two associated alternative

transportation links (22, 23) in Figure 3.

Links 4, 6, 9, 11, 13, 14, 16, 17, and 23 correspond to transportation by air, whereas

links 2, 5, 10, 12, 15, and 22 correspond to transportation by truck. The capacities on the

links were obtained from OECD (2010b, 2011) and Kramer (2011). The transportation links

are assumed not to be capacity limited (that is, we assume very large capacities), which we

denote by large in Table 1. In the computations, we set the value to 5,000,000 for all such

links. We implemented the modified projection method, along with the generalized exact

equilibration algorithm, as described in Section 3, for the solution of our medical nuclear

supply chain network case study. The ε in the convergence criterion was 10−6. The algorithm

was implemented in FORTRAN and a Unix-based system at the University of Massachusetts

was used for the computations.
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We calculated the values of the arc multipliers αda, for all links a = 1, . . . , 24, using

data in the OECD (2010a) report and in the National Research Council (2009) report,

which included the approximate times associated with the various links in the supply chain

network in Figure 3. According to OECD (2010a), we may assume that there is no loss ala

on each link a for a = 1, . . . , 24, except for processing links 3 and 24; hence, αla = 1 for

all the former links; therefore, αa = αda for all those links, as reported in Table 1. In the

case of links 3 and 24, αla = .8 and αda = .883; therefore, α3 = α24 = .706. All flows (and

capacities) are reported in Curies.

Operating cost data were taken from OECD (2010b) and converted to per Curie processed

or generated. As noted by the National Research Council (2009), the US generator prices are

proprietary, but could be estimated from a functional form derived from publicly available

prices for Australian generators coupled with several spot prices for US made generators.

As discussed in OECD (2010b, 2011), it is nearly impossible to exactly determine the

functional form for the discarding cost, ẑa(fa), since these costs are not separately reported

by the processors and, due to security issues involving HEU waste, discarding costs at the

processor are often paid for by the government. In general, however, the functional form of

ẑa(fa) should be consistent with ĉa(fa). Moreover, the discarding cost of LEU processing

(link 24) should be about twice the discarding costs for the HEU processing (link 3), the

costs of discarding during elucitation are higher in the US (link 18) as compared to other

countries (links 19 and 20), and the discarding costs for all generator manufacturers are the

same.

The risk functions for transportation links were estimated based upon the overall accident

rate per kilometer for aircraft and trucks carrying nuclear material as reported in Resnikoff

(1992). These were converted to a per Curie basis using an average distance traveled and the

approximate number of Curies transported per week. The functions for risk for shipment of

bulk 99Mo and irradiated targets were increased by 1 and 2 orders of magnitude, respectively,

to account for the increased severity of an accident during this stage. The risk during

generator elucitation was assumed to be similar to air transport of a generator (≈ 2×10−6fx).

Risks during generator production, bulk 99Mo extraction, and irradiation were assumed to

be 1, 2, and 3 orders of magnitude greater, respectively.
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We assumed three demand points corresponding, respectively, to the collective demands

in the US, in Canada, and in other countries (such as Mexico and the Caribbean Islands).

We are using 3 demand points, as approximations, in order to be able to report the input

and output data for transparency purposes. The demands were as follows: d1 = 3, 600,

d2 = 1, 800, and d3 = 1, 000 and these denote the demands, in Curies, per week. These

values were obtained by using the daily number of procedures in the US and extrapolating

for the others. The units for the link flows are also Curies.

The arc multipliers, the total operational cost functions, the total discarding cost func-

tions, the total risk functions, and the optimal link flow and Lagrange multiplier solutions

are reported in Table 1.

The weight ω was set equal to 1 in Example 1. Note that this weight can also represent

a conversion factor of risk to cost.

As can be seen from the results in Table 1, none of the links were operated at full capacity

and, hence, all the Lagrange multipliers were equal to 0.00. Note also that the transportation

links: 10, 12, 15, 16, and 22 have zero flow. Hence, not only does cost efficiency play a role

but also the perishability of the product. Transport by truck may be cheaper, but it takes

longer, and, hence, there may be less product available once the shipment is delivered. Note

that the LEU processing link 24 had positive flow and air transport (given the distance) was

used (see flow on link 23) to deliver the LEU targets to the processing facility. This makes

sense, given the time-sensitivity and perishability of molybdenum, and the distance between

the Vancouver accelerator and the processing facility in Ottawa. Also, it is interesting to

observe, as speculated by Kramer (2011), that the new LEU production facility (cf. link 21)

is expected to produce about 30% of the needs, and this was also the result obtained in our

computation. The HEU reactor in Chalk River (cf. link 1) produced 9720.70 Curies whereas

the Vancouver one produced 5867.24 Curies (cf. link 21).

The value of the objective function (cf. (18) was: 2,096,149,888.00 whereas the total risk

(cf. (17)) was: 4,060.81.

It is also important to emphasize that the demand was met at the demand points but,
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Table 1: Link Multipliers, Link Total Operational Cost, Total Discarding Cost, Total Risk
Functions, Link Capacity, and Optimal Link Flow and Lagrange Multiplier Solution for the
Case Study Example 1

Link a αa ĉa(fa) ẑa(fa) r̂a(fa) ūa f ∗a λ∗a
1 1.00 2f 2

1 + 25.6f1 0.00 2.00× 10−2f1 33,353 9720.20 0.00
2 .969 f 2

2 + 5f2 0.00 3.18× 10−1f2 large 9720.20 0.00
3 .706 5f 2

3 + 192f3 5f 2
3 + 80f3 2.00× 10−3f3 32,154 9419.35 0.00

4 .920 2f 2
4 + 4f4 0.00 1.59× 10−1f4 large 3045.90 0.00

5 .901 f 2
5 + f5 0.00 2.16× 10−3f5 large 2327.34 0.00

6 .915 f 2
6 + 2f6 0.00 6.9× 10−3f6 large 4934.45 0.00

7 .804 f 2
7 + 166f7 2f 2

7 + 7f7 2.00× 10−4f7 19, 981 4899.16 0.00
8 .804 f 2

8 + 166f8 2f 2
7 + 7f7 2.00× 10−4f8 19, 981 4515.02 0.00

9 .883 2f 2
9 + 4f9 0.00 2.00× 10−4f9 large 1623.06 0.00

10 .779 f 2
10 + 1f10 0.00 1.47× 10−2f10 large 0.00 0.00

11 .883 2f 2
11 + 4f11 0.00 2.00× 10−4f11 large 2038.51 0.00

12 .688 f 2
12 + 2f12 0.00 1.47× 10−2f12 large 0.00 0.00

13 .688 2.5f 2
13 + 2f13 0.00 1.98× 10−4f13 large 277.36 0.00

14 .883 2f 2
14 + 2f14 0.00 7.33× 10−3f14 large 2453.95 0.00

15 .779 f 2
15 + 7f15 0.00 1.00× 10−4f15 large 0.00 0.00

16 .688 2f 2
16 + 4f16 0.00 1.00× 10−4f16 large 0.00 0.00

17 .688 2f 2
17 + 6f17 0.00 1.98× 10−5f17 large 1176.13 0.00

18 1.00 2f 2
18 + 800f18 4f 2

18 + 80f18 2.00× 10−5f18 5, 000 3600.00 0.00
19 1.00 f 2

19 + 600f19 1f 2
19 + 60f19 2.00× 10−5f19 3, 000 1800.00 0.00

20 1.00 f 2
20 + 300f20 1f 2

20 + 30f20 2.00× 10−5f20 2, 000 1000.00 0.00
21 1.00 4f 2

21 + 50f21 0.00 2.00× 10−2f21 10, 006 5867.24 0.00
22 .436 6f 2

22 + 6f22 0.00 1.04× 101f22 large 0.00 0.00
23 .883 3f 2

23 + 21f23 0.00 1.44× 10−2f23 large 5867.24 0.00
24 .706 5f 2

24 + 192f24 10f 2
24 + 160f24 2.00× 10−3f24 10, 006 5180.77 0.00
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given the perishability of the radioisotope, many more Curies had to be produced (as well

as processed).

We then proceeded to construct Example 2 (see the data in Table 2) and we raised the

evaluation of the weight ω from 1 to 1000. The remainder of the input data were as in Table

1. The computed optimal solution for Example 2 is also reported in Table 2.

As can be seen from Table 2, the same links as in Example 1 had zero flows. The value

of the objective function was now: 2,100,204,416.00 and the total risk was now: 4,055.70.

The risk was reduced, as expected, since ω was increased. Note, for example, that the link

flows shifted from links with higher total risk to those with lower total risk, such as the shift

from link 1 to link 21. However, the total value of the objective function increased due to

the higher value of ω.

We then constructed Example 3. The data were as for Example 2 but now we considered

a medical nuclear supply chain disruption in the form of a capacity reduction at the NRU

reactor with its capacity being reduced to 9000. The complete input and output data are

reported in Table 3. Note that since the capacity at link 1 was reached, there was a positive

associated Lagrange multiplier on that link.

The value of the objective function was now: 2,117,958,400.00 and the total risk was:

3865.07. Interestingly, this was the lowest value obtained in the three examples. For this

example, the total risk decreased even more significantly than that observed in Example 2

relative to Example 1.

As the capacity associated with link 1 decreased, in order to satisfy the demands and

minimize the costs (and losses), the link flows shifted to links with higher capacities and

larger arc multipliers, such as the shift from link 1 to 21, and the shift from link 5 to link 4,

although link 4 was the one with higher total cost.
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Table 2: Link Multipliers, Link Total Operational Cost, Total Discarding Cost, Total Risk
Functions, Link Capacity, and Optimal Link Flow and Lagrange Multiplier Solution for the
Case Study Example 2

Link a αa ĉa(fa) ẑa(fa) r̂a(fa) ūa f ∗a λ∗a
1 1.00 2f 2

1 + 25.6f1 0.00 2.00× 10−2f1 33,353 9716.86 0.00
2 .969 f 2

2 + 5f2 0.00 3.18× 10−1f2 large 9716.86 0.00
3 .706 5f 2

3 + 192f3 5f 2
3 + 80f3 2.00× 10−3f3 32,154 9415.64 0.00

4 .920 2f 2
4 + 4f4 0.00 1.59× 10−1f4 large 3020.34 0.00

5 .901 f 2
5 + f5 0.00 2.16× 10−3f5 large 2350.27 0.00

6 .915 f 2
6 + 2f6 0.00 6.9× 10−3f6 large 4937.57 0.00

7 .804 f 2
7 + 166f7 2f 2

7 + 7f7 2.00× 10−4f7 19, 981 4896.31 0.00
8 .804 f 2

8 + 166f8 2f 2
7 + 7f7 2.00× 10−4f8 19, 981 4517.88 0.00

9 .883 2f 2
9 + 4f9 0.00 2.00× 10−4f9 large 1622.27 0.00

10 .779 f 2
10 + 1f10 0.00 1.47× 10−2f10 large 0.00 0.00

11 .883 2f 2
11 + 4f11 0.00 2.00× 10−4f11 large 2038.51 0.00

12 .688 f 2
12 + 2f12 0.00 1.47× 10−2f12 large 0.00 0.00

13 .688 2.5f 2
13 + 2f13 0.00 1.98× 10−4f13 large 275.86 0.00

14 .883 2f 2
14 + 2f14 0.00 7.33× 10−3f14 large 2454.74 0.00

15 .779 f 2
15 + 7f15 0.00 1.00× 10−4f15 large 0.00 0.00

16 .688 2f 2
16 + 4f16 0.00 1.00× 10−4f16 large 0.00 0.00

17 .688 2f 2
17 + 6f17 0.00 1.98× 10−5f17 large 1177.63 0.00

18 1.00 2f 2
18 + 800f18 4f 2

18 + 80f18 2.00× 10−5f18 5, 000 3600.00 0.00
19 1.00 f 2

19 + 600f19 1f 2
19 + 60f19 2.00× 10−5f19 3, 000 1800.00 0.00

20 1.00 f 2
20 + 300f20 1f 2

20 + 30f20 2.00× 10−5f20 2, 000 1000.00 0.00
21 1.00 4f 2

21 + 50f21 0.00 2.00× 10−2f21 10, 006 5872.24 0.00
22 .436 6f 2

22 + 6f22 0.00 1.04× 101f22 large 0.00 0.00
23 .883 3f 2

23 + 21f23 0.00 1.44× 10−2f23 large 5872.24 0.00
24 .706 5f 2

24 + 192f24 10f 2
24 + 160f24 2.00× 10−3f24 10, 006 5185.19 0.00
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Table 3: Link Multipliers, Link Total Operational Cost, Total Discarding Cost, Total Risk
Functions, Link Capacity, and Optimal Link Flow and Lagrange Multiplier Solution for the
Case Study Example 3

Link a αa ĉa(fa) ẑa(fa) r̂a(fa) ūa f ∗a λ∗a
1 1.00 2f 2

1 + 25.6f1 0.00 2.00× 10−2f1 9000.00 9000.00 49667.88
2 .969 f 2

2 + 5f2 0.00 3.18× 10−1f2 large 9000.00 0.00
3 .706 5f 2

3 + 192f3 5f 2
3 + 80f3 2.00× 10−3f3 32,154 8722.89 0.00

4 .920 2f 2
4 + 4f4 0.00 1.59× 10−1f4 large 3173.72 0.00

5 .901 f 2
5 + f5 0.00 2.16× 10−3f5 large 2168.41 0.00

6 .915 f 2
6 + 2f6 0.00 6.9× 10−3f6 large 4962.43 0.00

7 .804 f 2
7 + 166f7 2f 2

7 + 7f7 2.00× 10−4f7 19, 981 4873.56 0.00
8 .804 f 2

8 + 166f8 2f 2
7 + 7f7 2.00× 10−4f8 19, 981 4540.62 0.00

9 .883 2f 2
9 + 4f9 0.00 2.00× 10−4f9 large 1612.58 0.00

10 .779 f 2
10 + 1f10 0.00 1.47× 10−2f10 large 0.00 0.00

11 .883 2f 2
11 + 4f11 0.00 2.00× 10−4f11 large 2038.51 0.00

12 .688 f 2
12 + 2f12 0.00 1.47× 10−2f12 large 0.00 0.00

13 .688 2.5f 2
13 + 2f13 0.00 1.98× 10−4f13 large 267.26 0.00

14 .883 2f 2
14 + 2f14 0.00 7.33× 10−3f14 large 2464.43 0.00

15 .779 f 2
15 + 7f15 0.00 1.00× 10−4f15 large 0.00 0.00

16 .688 2f 2
16 + 4f16 0.00 1.00× 10−4f16 large 0.00 0.00

17 .688 2f 2
17 + 6f17 0.00 1.98× 10−5f17 large 1186.23 0.00

18 1.00 2f 2
18 + 800f18 4f 2

18 + 80f18 2.00× 10−5f18 5, 000 3600.00 0.00
19 1.00 f 2

19 + 600f19 1f 2
19 + 60f19 2.00× 10−5f19 3, 000 1800.00 0.00

20 1.00 f 2
20 + 300f20 1f 2

20 + 30f20 2.00× 10−5f20 2, 000 1000.00 0.00
21 1.00 4f 2

21 + 50f21 0.00 2.00× 10−2f21 10, 006 6650.96 0.00
22 .436 6f 2

22 + 6f22 0.00 1.04× 101f22 large 0.00 0.00
23 .883 3f 2

23 + 21f23 0.00 1.44× 10−2f23 large 6650.96 0.00
24 .706 5f 2

24 + 192f24 10f 2
24 + 160f24 2.00× 10−3f24 10, 006 5872.80 0.00
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5. Summary and Suggestions for Future Research

In this paper, we developed a new model of sustainable medical nuclear supply chain

operations management that incorporates the time-dependent and perishable nature of ra-

dioisotopes as well as the hazardous aspects which affect not only the transportation modes

but also waste management and risk management issues.

The model is multitiered and incorporates the realities of the technology in this important

healthcare sector that is transitioning globally from highly enriched uranium targets to low

enriched uranium ones. The model is a generalized network model that includes multicrite-

ria decision-making so that the organization can minimize both total operating and waste

management costs as well as the risk associated with the various medical nuclear supply

chain network activities of processing, generator production, transportation, and ultimate

usage in medical procedures at hospitals and other appropriate medical facilities. Each link

has associated with it an arc multiplier which is constructed based on physics principles of

radioactive decay of the radioisotope, in this case, molybdenum. Hence, our model traces

the amount of the radioisotope that is left as a particular pathway of the supply chain is tra-

versed. Capacities on the links reflect the realities of the production, processing, generation,

and transportation activities.

The formulation of the model and the qualitative analysis exploit the theory of variational

inequalities since it yields a very elegant procedure for computational purposes. Moreover,

it provides us with the foundation to explore other scenarios as the technology landscape

continues to evolve and to bring other participants into medical nuclear production.

A numerical case study based on North America, with the focus of an existing HEU

reactor and an LEU accelerator that is expected to come online soon, reveals the generality

and practicality of our framework.

The focus in this paper was that of system optimization since the emphasis was on eco-

nomic cost recovery and transparency. An interesting question for future research would be

the investigation of various types of possible competition associated with, for example, trans-

portation service providers in the medical nuclear supply chain arena as well as competition

among the generator manufacturing facilities. To develop such models one may utilize some
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of the concepts associated with competitive multitiered supply chain network equilibrium

problems governed by Nash equilibria (see, e.g., Nagurney (2006)). In addition it would be

interesting to construct a bi-objective version of this model and analyze the Pareto set of

solutions. An extensive set of references to bi-objective models, including equilibrium ones,

with a focus on transportation, can be found in Raith (2009).
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