
Session W2E

978-1-4244-4714-5/09/$25.00 ©2009 IEEE October 18 - 21, 2009, San Antonio, TX
 39th ASEE/IEEE Frontiers in Education Conference
 W2E-1

Software Defined Radio in the Electrical and
Computer Engineering Curriculum

Ladimer S. Nagurney

Department of Electrical and Computer Engineering
University of Hartford

West Hartford, CT 06117 nagurney@hartford.edu
and

NSF Engineering Research Center for the Collaborative Sensing of the Atmosphere, CASA
Department of Electrical and Computer Engineering

University of Massachusetts
Amherst, MA 01003

Abstract - The development of Software Defined Radio
systems and their extension to Cognitive Radio Systems
and Smart Radio Systems have introduced a plethora of
topics and examples that can be included in the
curriculum. The design of these software defined radio
systems has less in common with traditional radio design
and more in common with the design of Embedded
Systems and Software Engineering. This purpose of this
paper is to overview software defined radio from the
simplest form to its most complicated form and
giveexamples on how software defined radio concepts
can be used as examples and exercises in a variety of
Electrical Engineering and Computer Engineering
courses and labs.

Index Terms – Software Defined Radio, Electrical
Engineering Laboratories, Computer Engineering
Laboratories, Digital Signal Processing Applications

INTRODUCTION

For over ¾ of a century radio transmitters and receivers have
been designed using analog components to implement
frequency generation, modulation, amplification,
demodulation, and any additional circuitry regardless of
whether the information to be transmitted was analog or
digital. Since the development of Small Scale Integrated
Circuits, Large Scale Integrated Circuits, and the
Microprocessor, various digital circuits have been added to
the radio transmitters and receivers. The initial use of digital
circuitry was primarily for frequency generation and control
and for coding and decoding of digital information
transmitted using analog modulation.

The complete implementation of a radio system using
digital processing of sampled analog signals was proposed
about 2 decades ago. However, at that time, it was not
possible to develop such digital radio systems that could
operate in real time, except for a few limited applications
that were unconstrained by cost and size. As technology has
progressed the development of DSP processors and the use
of FPGA's for signal processing allows the implementation
of a radio system.

Many of these Software Defined Radio developments
have been fueled by the need for reconfigurable radio
receivers and transmitters that can be updated remotely. For
example, the radio system at a cell site might need to be
reconfigured to implement new standards or protocols,
bypass failed hardware, or reconfigure the network due to a
change in the traffic pattern. By using Software Defined
Radio, these changes can be performed remotely, thereby
reducing the need for visits to the site and increasing cost
efficiency. Another application of Software Defined Radio is
in the development of multi-standard communications
systems needed for interoperability among users where a
new modulation method, frequency range, coding scheme,
etc could be downloaded. A future example is projected for
Automotive Radios where additional features such as
satellite reception (XM or Sirius) could be remotely added to
the receiver.

Non-communications examples of Software Defined
Radio include radar systems where new pulse schemes can
be easily implemented and the received RF echoes may be
digitally down converted to baseband and digitally
correlated with the transmitted pulses. Another use is in
RFID tag readers where Software Defined Radio techniques
may be used to configure RFID readers for multiple RFID
protocols [1].

The development of these so-called Software Defined
Radio systems have shifted radio development topics from
Communication Engineering and RF Design courses to
courses in FPGA implementation and software engineering.

The purpose of this paper is to describe many of the
topics related to Software Defined Radio and illustrate
where these topics might be included in the Electrical and
Computer Engineering Curriculum. In subsequent sections, I
describe the fundamentals of Software Defined Radio,
outline both complex and simple implementations, and show
how these implementations can be used as examples,
exercises, and projects in various courses.

SOFTWARE DEFINED RADIO FUNDAMENTALS

Software Defined Radio, SDR, is defined as the
hardware/software implementation of radio systems. While

Session W2E

978-1-4244-4714-5/09/$25.00 ©2009 IEEE October 18 - 21, 2009, San Antonio, TX
 39th ASEE/IEEE Frontiers in Education Conference
 W2E-2

it was suggested that SDR system could be built almost 2
decades ago, it was not until the development of fast DSP
processors and easily configurable FPGA hardware that
SDR became practical. The basic architecture of an SDR
Receiver or Transmitter is illustrated in Figure 1. Although
the block entitled processor, might imply the use of a
computer, the actual implementations, to be described later,
include Standard CPU, DSP processor, FPGA, or even
hardwired discrete logic.

FIGURE 1

BASIC ARCHITECTURE OF A SOFTWARE DEFINED RADIO

In Figure 1 to implement a receiver the Input Filter
should be a bandpass filter centered near the received
frequency and the sample rate of the input Analog-to-Digital
converter will be at least twice the received frequency. The
output Digital-to-Analog converter should be sampled at a
frequency that is at least twice the bandwidth of the
baseband signal. The Output Filter should be a low pass
filter to band limit the baseband signal. To implement at
transmitter, the specifications of the filters and sampling
rates should be reversed. Then, the Input Filter will band
limit the baseband signal and the Output Filter will be a
bandpass filter centered at the transmitted frequency.

In many applications, the baseband signal, itself, is
digital. Then the baseband A/D and D/As and their
associated filters can be eliminated and the digital signals
fed into the processor. In effect, the processor would also
become a modem.

Note that this SDR implementation is independent of
the final modulation type, thus any modulation mode for the
transmitted signal, analog (AM or FM0 or digital (BPSK or
QPSK) may be implemented with the same hardware
architecture. This is a key advantage of using Software
Defined Radio.

While the discussion of this overarching architecture
could continue, it is clear that the processor must be fast
enough to process the information in real-time. This
fundamental requirement has lead to various choices for
implementing the processor. It is these implementations that
illustrate how SDR may be included in the curricula.

It is often clear that the conversion speed required for
the receiver A/D and the transmitter D/A might not be
attainable at reasonable cost. Thus, alternative
implementations have been developed to allow use of slower
converters. In particular, quadrature modulation and
demodulation have become standard in implementing SDR.
The quadrature modulator, illustrated in Figure 2, can be
used to generate the signal s(t) as follows. Following [2]

S(t) = Re[g[m(t)]ejωct] (1)

=Re[g[m(t)]] cos ωct + Im[g[m(t)]] sin ωct (2)

The requirements for the two baseband D/A converters

to generate the in phase and quadrature components of
g[m(t)] only require that the converters operate at the
Nyquist Frequency for the baseband signal. While the

system performance is dependent on the amplitude and
phase balance of the quadrature modulator, the baseband
processor can be adapted to correct these errors as in [3].

FIGURE 2
QUADRATURE MODULATOR

On the receiver side, the sampling rate can be reduced

by using a quadrature demodulator. By mixing the input
signal with both a Local Oscillator Signal and its 90 degree
phase shift, baseband I and Q signals may be generated.
While only the I signal is required to demodulate AM, both
the I and Q signals are required to demodulate other forms of
modulation. Since the baseband signal for audio is often in
the 0-20KHz range, relatively slow and inexpensive A/D
converters may be used in this application. The actual
demodulation will be performed in the processor.

As an alternative to the quadrature demodulator that is
both simple and less sensitive to component variations, a
Tayloe Detector was developed and is described in [4]. As
shown in Figure 3, this Quadrature Sampling Detector
requires a local oscillator operating at 4 times the carrier
frequency. This LO signal is decoded to drive 4 RF
switches. The outputs of the switches are fed into
operational amplifiers that are configured as differential
sample and hold circuits to generate the baseband I and Q
signals. The simplicity of the Tayloe Detector is evident
because it does not require any analog quadrature circuitry
and thus may be easily broad banded. In addition, its upper
carrier frequency limit is constrained by the speed of the
digital circuitry. Another advantage is that by changing the
LO signal frequency the received frequency can be easily
changed and thus a tunable receiver implemented.

It is important to note that the I and Q signals
themselves might have much broader bandwidths than the
baseband signal allowing the processing and detection to
occur in the processor.

Session W2E

978-1-4244-4714-5/09/$25.00 ©2009 IEEE October 18 - 21, 2009, San Antonio, TX
 39th ASEE/IEEE Frontiers in Education Conference
 W2E-3

FIGURE 3

TAYLOE DETECTOR

While this paper does not have space for more SDR
hardware design, more information on SDR and its
implementation can be found in [5].

An extension of Software Defined Radio is Cognitive
Radio. [6] A cognitive radio receiver receives a signal and
from its spectral/temporal characteristics determines the type
of modulation, data rate, data format, etc. Cognitive radio
does not need to know all the parameters of the
communications network. An example of a cognitive radio
might be a television receiver that automatically determines
whether the received signal is NTSC, PAL, SECAM, or
ATSC and automatically processes the received signal.

LINKING SDR TO DSP

To implement a real-time communications system, the
processor must operate in real time, thus the performance
from a DSP processor is often required to implement an
SDR. The implementation of an SDR receiver/transmitter on
a DSP processor evaluation board is an excellent example of
to illustrate DSP processor implementation..

Figure 4 illustrates a typical DSP processor evaluation
board, such as those from Texas Instruments or Analog
Devices. It is straightforward to implement a transmitter
using the input A/D Converter to sample the baseband
(audio) signal and the stereo D/A converters to output the I
and Q waveforms to the quadrature modulator. For
simplicity, in Figure 4 the analog band limiting filters have
not been included.

FIGURE 4

SAMPLE DSP PROCESSOR BOARD ARCHITECTURE

As a concrete example of a typical student project,
consider the implementation of a single-sideband suppressed
carrier transmitter. Following [2] the I and Q signals that
must be generated are:

 I(t) = Ac m(t) (3)

 Q(t) = Ac m*(t) (4)

Where m*(t) is the Hilbert Transform of m(t).
While the Hilbert Transformer of a signal is difficult to

implement using analog components, it is straightforward to
implement an FIR filter to create the Hilbert Transformer
m*(t). Once the coefficients for this FIR filter are calculated,
the DSP processor can be programmed to implement the
filter. Most floating point DSP processors operate at a high
enough rate to implement this system. If the ultimate D/A
speed is high enough, the Hilbert Transformer can be
combined with an interpolation filter to increase the
sampling rate to one where only a single D/A is needed to
output s(t).

This simple example may be implemented using either
DSP machine language or C. However, the programs for
DSP boards may be created using a Block Diagram
Language such as Simulink or Labview. The block diagram
is converted to C-code which is then compiled, linked, and
loaded to the DSP processor. Thus, no actual C
programming is necessary. An advantage of this method is
that the block diagrams can be simulated to ensure proper
system performance before being loaded to the DSP Board.

Because the communications system must operate in
real-time, it is important that in implementing equations (3)
and (4), care must be taken so that the data from each arrives
simultaneously at the D/A. Thus, a delay element with the
same time delay as the Hilbert Transform FIR filter must be
inserted in the branch of the program representing equation
(3) as illustrated in Figure 5. Note that the overall gain, Ac,
may be included in the Hilbert Transformer/Delay
Specification. This is often a student’s first opportunity to
realize that timing of the data does matter.

One constraint on most DSP evaluation boards is that
they have no more than 2 channels of A/D and D/A
converters, thus not allowing simultaneous transmission and
reception. This problem may be overcome by having the
student design and construct a daughter board containing an
A/D and D/A. or by being very clever and designing a half-
duplex switching circuit to switch the DSP Processor
between transmit and receive.

FIGURE 5
SSB-SC IMPLEMENTATION

The development of an SDR system in this way is no
more complicated that any assignment in an Undergraduate

Session W2E

978-1-4244-4714-5/09/$25.00 ©2009 IEEE October 18 - 21, 2009, San Antonio, TX
 39th ASEE/IEEE Frontiers in Education Conference
 W2E-4

DSP course and can serve as a course project or capstone
design project.

FPGA IMPLEMENTATION OF SDR

With the development of Intellectual Property (IP) based
FPGA design, SDR design using FPGAs has become more
popular. The SDR algorithms are implemented as blocks
within an FPGA. This gives the student familiarity with how
multiple data streams may be processed simultaneously in an
FPGA. Indeed, most high end transceiver boards have an
architecture similar to Figure 6. An overview of high end
FPGA based transceiver boards can be found in [7] and [8].

FIGURE 6

BLOCK DIAGRAM OF A TYPICAL FPGA BASED SDR BOARD

 Since most Electrical and Computer Engineering
students have been introduced to FPGA design in digital
logic courses, it is possible to ask the students to apply these
techniques to SDR. Implementing an SDR using an FPGA is
a good example of a discrete time system derived from an
analog signal may be implemented using an FPGA and
illustrates that FPGA's may be used for more than just
processors or inherently digital systems.
 To illustrate this use of FPGAs, consider an AM
transmitter implementation. The transmitted signal s(t) will
be:

s(t) = Ac (1+m(t)) cos wct (5)

or following the analysis in (1) and (2)

 g[m(t)] = Ac (1+m(t)). (6)

It is straightforward to implement on an FPGA board such as
a Digilent BASYS using a Xilinx Spartan 3E FPGA[9].
While some FPGA boards include the A/D and D/A
converters, others must have them added as daughter boards.
The block diagram of the implementation is illustrated in

Figure 7.

FIGURE 7
BLOCK DIAGRAM OF AN IMPLEMENTATION OF AN AM

TRANSMITTER

While the blocks are an summer and a multiplier are needed,
judicious choice of values, the gain block might be
eliminated and the adder block may be simplified. When
faced with theses choices the students will often begin to
understand why the concepts taught in logic and computer
architecture are related to the system world. Additionally,
the students are exposed to how number representation
affects system design and implementation.
 Because the ultimate speed of the FPGA is faster than
typical sequential processors, one may use a output Digital-
to-Analog converter that can sample at a rate twice the
carrier frequency. Therefore, one can implement a
transmitter that operates at true RF frequencies using this
technology.
 While the simplest FPGA implementations usually use a
USB interface to copy the program from the host, many
FPGAs have sufficient room to implement a small processor
so that code updates may be uploaded via a network
connection.

SIMPLE SDR RECEIVERS

The radio amateur and hobbiest communities have
developed a series of hardware designs for SDR receivers
that are straightforward to construct and can be easily used
to add SDR into the curriculum. The design, as illustrated in
Figure 8 is often referred to as the SOFTROCK design [10],
[11] uses a crystal oscillator, divide-by-4 counter and a
Tayloe Detector. A bandpass filter conditions the input
signal.

FIGURE 8

BLOCK DIAGRAM OF THE SOFTROCK RECEIVER

The outputs of the Tayloe Detector, which are I and Q
signals, can then be fed into the sound card input of a PC. By
using a soundcard with a sampling rate of 48 or 96 kHz, the
I and Q signals can be tuned and with a fixed LO, a range of
signal frequencies can be tuned and detected. There are
several public domain programs, including ROCKY [12],
Flex-Radio PowerSDR [13] WINRAD [14], and SDRADIO
[14], which have been developed to convert the I and Q
signals to baseband. While each of these packages is
complete in itself, each provides slightly different
functionality.
 A weakness of the Softrock design for the classroom is
that most of the IC's are surface mount limiting how the
students may investigate the circuit. Recently, Coyle [15]
has published a simple SDR design using only DIP
components that can be easily fabricated on protoboards.
This allows the straightforward construction, as well as,

Session W2E

978-1-4244-4714-5/09/$25.00 ©2009 IEEE October 18 - 21, 2009, San Antonio, TX
 39th ASEE/IEEE Frontiers in Education Conference
 W2E-5

testing of a SDR receiver. Cole [15] also explains the used
of a low-cost commercially available Digital Digital
Synthesis frequency synthesizer module to expand the
frequency range of the receiver.
 A search of the web will find many other projects that
can easily be adapted to course or capstone projects.

SOFTWARE DEVELOPMENT

The SDR software, described in previous sections of this
paper, is straightforward to implement and could be used as
a project in several courses. The basic algorithms necessary
to generate the transmitted I(t) and Q(t) from m(t) and to
recover m(t) from the received I(t) and Q(t) can be found in
[16]. The software development project can be divided into
several pieces, since it is more than just the sequential
processing of I and Q.
 A big piece of the development is understanding how to
interface with a sound card and the variabilities of sound
card software design as described in [17]. The key issue is to
insure that the sound card is programmed so that the
sampling rate is programmed to be 48 kHz or, preferably, 96
kHz, in the stereo mode. While the examples in [17] are
coded in Visual Basic under Windows, C may also be used.

The development of the detection algorithms are
described in sequential form in [16] with a more detailed
description of the background in [18]. However, by using
FFT's there are more efficient algorithms that can be
implement not only to decode I(t) and Q(t) , but use the
spectrum of I(t) and Q(t) to tune around the carrier
frequency using software. While these techniques are often
mentioned in Digital Signal Processing Courses,
implementing an SDR gives examples of their use. An
overview of these techniques is given in [19].

OTHER PROJECTS

While this paper presents a brief overview of the types of
assignments and projects related to software defined radio
that can be performed in the Undergraduate Electrical and
Computer Engineering Curriculum, it is important to note
that SDR technology is not used in just communications but
radar, magnetic resonance and any other system that requires
a pulse to be transmitted and it reflection received [19].

Here are some ideas (not exhaustive) for additional
projects involving SDR and its techniques.
• Simulation Using Labview – Labview may be used to

simulate an SDR receiver or transmitter. For non-
realtime prototyping of SDR, Labview might be
software of choice.

• Signal generator development using SDR techniques –
It would be straightforward to develop a signal
generator or an arbitrary waveform generator using
SDR techniques. In fact, using SDR one can implement
a high quality signal generator.

• Generation of sample I(t) and Q(t) signals – using a
variety of techniques, sample I(t) and Q(t) signals can
be generated and stored as a file. Most SDR software

allows the recording and playing back of the I(t) and
Q(t) signals. This is also an efficient way to verify
performance of the software. This would introduce
students to the notion of using sample data to test a
program.

• Hardware simulation using SPICE or other appropriate
software – the simulation of a the hardware part of the
system is an important part of designing the system.
This way trade offs and effects of the Op Amp
parameters in a Tayloe Detector may be investigated.

me format.

SUMMARY

This paper has outline a variety of exercises and projects that
may be used to include Software Defined Radio in the
Electrical and Computer Engineering Curriculum. Each of
these can be performed as a course assignment, course
project, or capstone project. The use of SDR will include the
latest technology in the courses. This work is intended to
outline various possibilities and provide a framework for
further investigation.

ACKNOWLEDGMENT

The portion of this work performed while the author was on
sabbatical at the Engineering Research Center for the
Collaborative Adaptive Sensing of the Atmosphere was
supported in part by the Engineering Research Centers
Program of the National Science Foundation under NSF
Cooperative Agreement No. EEC-0313747. Any Opinions,
findings and conclusions or recommendations expressed in
this material are those of the author(s) and do not necessarily
reflect those of the National Science Foundation.

REFERENCES

[1] Wasserman, M., “SDR-Based Readers Keep Pace With Changing

RFID Technology,” RTC Magazine, January 2007, pp 42-45.

[2] Couch, L.E, Digital and Analog Communications Systems, 4th
edition, Macmillian, NY, 1993, p 252 (Also in later editions)

[3] Simoneau, J.S., and L.W. Pearson, “Digital Augmentation of RF
Component Performance in Software Defined Radio,” IEEE
Transactions on Microwave Theory and Techniques, Vol. 57, No 3.,
March 2009, pp 573-581.

[4] Youngblood, G, “A Software Defined Radio for the Masses, Part 1”,
QEX, July/August 2002, pp 1-9

[5] Frerking, M. E., Digital Signal Processing in Communications
Systems, Van Nostrand, Reinhold, NY, NY, 1994

[6] Mitola, III, J., “Cognitive Radio Architecture,” in Cognitive Radio,
Software Defined Radio and Adaptive Wireless Systems, Hüseyin
Arslan, editor, Springer, Dordrecht, Netherlands, 2007, pp 43-105

[7] Hosking, R. H., Putting FPGAs to Work in Software Radio Systems,
3rd edition, Pentek, Upper Saddle River, NJ, 2006, available from
http://www.pentek.com

[8] Hosking, R. H., Digital Receiver Handbook: Basics of Software
Radio, 6th edition, Pentek, Upper Saddle River, NJ, 2006, available
from http://www.pentek.com

Session W2E

978-1-4244-4714-5/09/$25.00 ©2009 IEEE October 18 - 21, 2009, San Antonio, TX
 39th ASEE/IEEE Frontiers in Education Conference
 W2E-6

[9] http://www.digilent.com

[10] http://www.softrock.org

[11] http://www.amqrp.org/kits/softrock40/

[12] http://www.dxatlas.com/Rocky/

[13] http://ewjt.com/kd5tfd/sdr1k-notebook/sr40/sw.html

[14] Both WINRAD and SDRADIO can be downloaded from
http://www.weaksignals.com

[15] Coyle, L, "A Modular Receiver for Exploring the LF/VLF Bands –
Part 2", QST, Vol 92, No12., December 2008, pp 33-37.

[16] Johnson Jr., C. R. and W.A. Sehares, “Telecommunication
Breakdown” Concepts of Communication Transmitted via Software-
Defined Radio,” Pearson-Prentice Hall, Upper Saddle River, NJ,.

[17] Youngblood, G., “A Software Defined Radio for the Masses: Part 2,”
QEX, September/October 2002, pp 10-18.

[18] Agilent, Digital Modulation in Communications Systems — An
Introduction Application Note, 2001,
http://cp.literature.agilent.com/litweb/pdf/5965-7160E.pdf

[19] Youngblood, G., “A Software Defined Radio for the Masses: Part 3,”
QEX, November/December 2002, pp 1-10.

[20] D. McLaughlin,D., et al “ Short-Wavelength Technology and the
Potential for Distributed Networks of Small Radar Systems,”
Submitted to the Bulletin of the American Meteorological Society
(BAMS) 2008.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

