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Abstract: In this paper, we propose a transportation network efficiency measure that can

be used to assess the performance of a transportation network and which differs from other

proposed measures, including complex network measures, in that it captures flows, costs,

and travel behavior information, along with the topology. The new transportation network

efficiency measure allows one to determine the criticality of various nodes (as well as links) as

we demonstrate through a network component importance definition, which is well-defined

even if the network becomes disconnected. Several illustrative transportation network ex-

amples are provided in which the efficiencies and importance of network components are

explicitly computed, and their rankings tabulated.

This framework can be utilized to assess the vulnerability of network components in terms

of their criticality to network efficiency/performance and to, ultimately, enhance security.
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1. Introduction

Networks and, in particular, complex networks, have been the subject of intense research

activity in recent years although the topic, which is based on graph theory, is centuries

old. Indeed, the subject of networks, with its rich applications has been tackled by oper-

ations researchers/management scientists, applied mathematicians, economists, engineers,

physicists, biologists, and sociologists; see, for some examples: Beckmann, McGuire, and

Winsten (1956), Sheffi (1985), Ahuja, Magnanti, and Orlin (1993), Nagurney (1993), Pa-

triksson (1994), Ran and Boyce (1996), Watts and Strogatz (1998), Barabási and Albert

(1999), Latora and Marchiori (2001), Newman (2003), Roughgarden (2005), and the refer-

ences therein. Three types of networks, in particular, have received recent intense attention,

especially in regards to the development of network measures, and we note, specifically, the

random network model (Erdös-Rényi, 1960), the small-world model (Watts and Strogatz,

1998), and scale-free networks (Barabási and Albert, 1999).

The importance of studying and identifying the vulnerable components of a network,

in turn, has been linked to events such as 9/11 and to Hurricane Katrina, as well as to

the biggest blackout in North America that occurred on August 14, 2003 (cf. Sheffi, 2005;

Nagurney, 2006). In order to hedge against terrorism and natural disasters, a majority of

the associated complex network (sometimes also referred to as network science) literature

(cf. the survey by Newman, 2003) focuses on the graph characteristics (e.g. connectivity

between nodes) of the associated application in order to evaluate the network reliability and

vulnerability; see also, for example, Chassin and Posse (2005) and Holme et al. (2002).

However, in order to be able to evaluate the vulnerability and the reliability of a network,

a measure that can quantifiably capture the efficiency/performance of a network must be

developed. For example, in a series of papers, beginning in 2001, Latora and Marchiori

discussed the network performance issue by measuring the “global efficiency” in a weighted

network as compared to that of the simple non-weighted small-world network. In a weighted

network, the network is not only characterized by the edges that connect different nodes,

but also by the weights associated with different edges in order to capture the relationships

between different nodes. The network efficiency E of a network G is defined in the paper

of Latora and Marchiori (2001) as E = 1
n(n−1)

∑
i 6=j∈G

1
dij

, where n is the number of nodes

in G and dij is the shortest path length (the geodesic distance) between nodes i and j.

This measure has been applied by the above authors to a variety of networks, including the

(MBTA) Boston subway transportation network and the Internet (cf. Latora and Marchiori

2002, 2004).
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Although the topological structure of a network obviously has an impact on network

performance and the vulnerability of the network, we believe that the flow on a network

is also an important indicator, as are the induced costs, and the behavior of users of the

network(s). Indeed, flows represent the usage of a network and which paths and links have

positive flows and the magnitude of these flows are relevant in the case of network disruptions.

Interestingly, although recently a few papers have appeared in the complex network literature

that emphasize flows on a transportation network, with a focus on airline networks (cf.

Barrat, Barthélemy, and Vespignani, 2005, and Dall’Asta et al., 2006), the aforementioned

papers only consider the importance of nodes and not that of links and ignore the behavior

of users. It is well-known in the transportation literature that the users’ perception of the

travel costs will affect the traffic pattern on the network (see, e.g., Beckmann, McGuire,

and Winsten, 1956; Dafermos and Sparrow, 1969; Boyce et al., 1983; Ran and Boyce, 1996,

and Nagurney, 1993). Therefore, a network efficiency measure that captures flows, the

costs associated with “travel,” and user behavior, along with the network topology, is more

appropriate in evaluating networks such as transportation networks, which are the classical

critical infrastructure. Indeed, in the case of disruptions, which can affect either nodes,

or links, or both, we can expect travelers to readjust their behavior and the usage of the

network accordingly. Furthermore, as noted by Jenelius, Petersen, and Mattsson (2006), the

criticality of a network component, consisting of a node, link, or combination of nodes and

links, is related to the vulnerability of the network system in that the more critical (or, as

we consider, the more important) the component, the greater the damage to the network

system when this component is removed, be it through natural disasters, terrorist attacks,

structural failures, etc.

In this paper, we propose a new transportation network performance measure that can

be used to evaluate the efficiency of a transportation network as well as the importance of

its network components. We also relate the new measure to the Latora and Marchiori (2001)

measure used in the “complex” network literature. In addition, we compare the resulting

network component importance definitions derived from our measure to those recently pro-

posed by Jenelius, Petersen, and Mattsson (2006) (see also Taylor and D’Este, 2004) and

also provide illustrative examples. Our measure has the additional notable feature that it

is applicable, as is our proposed importance definition of network components, even in the

case that the network becomes disconnected (after the removal of the component).

The paper is organized as follows. In Section 2, we present some preliminaries. The

new transportation network efficiency measure is introduced in Section 3, along with the

associated definition of the importance of network components. We also prove that the new

3



measure contains, as a special case, an existing measure, due to Latora and Marchiori (2001),

that has been much studied and applied in the complex network literature. Section 4 then

presents three network examples for which the efficiency measures are computed and the node

and link importance rankings determined using the new transportation network efficiency

measure. Comparisons with the Latora and Marchiori (2001) measure are also provided, for

completeness, and with the Jenelius, Petersen, and Mattsson (2006) importance indicators

in the case of the link components. Section 5 then applies the new measure to a larger scale

network to further illustrate the applicability of the proposed measure. Section 6 summarizes

the results in this paper and provides suggestions for future research.
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2. Some Preliminaries

In this Section, we recall the transportation network equilibrium model with fixed de-

mands, due to Dafermos (1980) (see also Smith, 1979). We consider a network G with the

set of links L with nL elements and the set of nodes N with n elements. The set of ori-

gin/destination (O/D) pairs of nodes is denoted by W and consists of nW elements. We

denote the set of paths joining an O/D pair of nodes w by Pw and the set of all paths by P .

Links are denoted by a, b, etc; paths by p, q, etc., and O/D pairs by w1, w2, etc. Links are

assumed to be directed and paths to be acyclic.

We denote the nonnegative flow on path p by xp and the flow on link a by fa. The link

flows are related to the path flows through the following conservation of flow equations:

fa =
∑

p∈P

xpδap, ∀a ∈ L, (1)

where δap = 1, if link a is contained in path p, and δap = 0, otherwise. Hence, the flow on

a link is equal to the sum of the flows on paths that contain that link. We group the link

flows into the vector f ∈ RnL
+ and the path flows into the vector x ∈ RnP

+ .

The demand for O/D pair w is denoted by dw and is assumed to be positive. We assume

that the following conservation of flow equations hold:

∑

p∈Pw

xp = dw, ∀w ∈ W, (2)

that is, the sum of flows on paths connecting each O/D pair w must be equal to the demand

for w.

The cost on a path p is denoted by Cp and the cost on a link a by ca.

The costs on paths are related to costs on links through the following equations:

Cp =
∑

a∈L

caδap, ∀p ∈ P, (3)

that is, the cost on a path is equal to the sum of costs on links that make up the path.

Furthermore, we allow the cost on a link to depend, in general, upon the flows on the

network links, so that

ca = ca(f), ∀a ∈ L, (4)

and we assume that the link cost functions are continuous and strictly monotonically in-

creasing (cf. Nagurney, 1993) so that the equilibrium link flows, defined below, will be

unique.

5



Definition 1: Transportation Network Equilibrium

A path flow pattern x∗ ∈ K1, where K1 ≡ {x|x ∈ RnP
+ and (2) holds with dw known and fixed

for each w ∈ W}, is said to be a network equilibrium, if the following condition holds for

each O/D pair w ∈ W and each path p ∈ Pw:

Cp(x
∗)

{
= λw, if x∗

p > 0,
≥ λw, if x∗

p = 0,
(5)

where λw denotes the equilibrium cost associated with O/D pair w.

The interpretation of conditions (5) is that all used paths connecting an O/D pair w have

equal and minimal costs, which corresponds to Wardrop’s well-known first principle (see

Wardrop, 1952; Beckmann, McGuire, and Winsten, 1956; Dafermos and Sparrow, 1969). As

proved in Smith (1979) and Dafermos (1980), the network equilibrium conditions (5) (in the

case of user link cost functions of the form (4)) correspond to the solution of the following

variational inequality problem(s) in path flows and link flows, respectively.

Theorem 1

A path flow pattern x∗ ∈ K1 is a transportation network equilibrium according to Definition 1

if and only if it satisfies the variational inequality problem in path flows: determine x∗ ∈ K1

such that
∑

w∈W

∑

p∈Pw

Cp(x
∗) × (xp − x∗

p) ≥ 0, ∀x ∈ K1, (6a)

or, equivalently, a link flow pattern f ∗ ∈ K2 is a network equilibrium if and only if it satisfies

the variational inequality problem in link flows: determine f ∗ ∈ K2 such that

∑

a∈L

ca(f
∗) × (fa − f ∗

a ) ≥ 0, ∀f ∈ K2, (6b)

where K2 ≡ {f |there exists an x ∈ RnP
+ satisfying (1) and (2)}.

Existence of solutions to variational inequalities (6a) and (6b) is guaranteed from the

standard theory of variational inequalities (cf. Nagurney, 1993) since the link cost (and,

hence, also the path cost) functions are assumed to be continuous and the feasible sets K1

and K2 are compact.

Finally, in the case where the link cost functions (4) are separable, that is, ca = ca(fa),

for all links a ∈ L, then the equilibrium solution can be obtained by solving (cf. Beckmann,

McGuire, and Winsten (1956) and Dafermos and Sparrow (1969)) the following nonlinear

6



optimization problem:

Minimizef∈K2

∑

q∈L

∫ fa

0
ca(y)dy. (6c)

The importance of the reformulation of the transportation network equilibrium problem

as an optimization problem, under the appropriate assumptions, and due to Beckmann,

McGuire, and Winsten (1956) and the impacts of this classical work on theory and practice,

are overviewed in Boyce, Mahmassani, and Nagurney (2005). Problem (6c) is now solved

daily in practice using a variety of algorithms. For recent approaches for the effective solution

of such, often-times, very large-case problems, see Bar-Gera (2002).

Algorithms for the solutions of variational inequalities (6a) and (6b) can be found in

Nagurney (1993), Nagurney and Zhang (1996), and the references therein. It is important

to emphasize that many variational inequality algorithms are based on the sequential solu-

tion of optimization problems and, hence, efficient algorithms for (6c) can be embedded in

algorithms to solve (6a) and (6b).
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3. A Transportation Network Efficiency Measure and the Importance of a Net-

work Component

We now present the new transportation network efficiency measure with additional results.

First, recall that the network efficiency measure of Latora and Marchiori (the L-M mea-

sure) (2001), which was proposed to measure the efficiency of networks in which the links

may have associated weights or costs, is defined as follows:

Definition 2: The L-M Measure

The L-M network performance/efficiency measure, E(G), according to Latora and Marchiori

(2001) for a given network topology G, is defined as:

E(G) =
1

n(n − 1)

∑

i 6=j∈G

1

dij
, (7a)

where n is the number of nodes in the network and dij is the shortest path length between

node i and node j.

Our transportation network efficiency measure is given in the following definition.

Definition 3: A Transportation Network Efficiency Measure

The network transportation efficiency measure, E(G, d), for a given network topology G and

vector of O/D demands, d, is defined as follows:

E = E(G, d) =

∑
w∈W

dw

λw

nW

, (7b)

where λw denotes the cost on the minimum cost (shortest) used path(s), that is, ones with

positive flow, connecting O/D pair w.

Remark

The transportation network efficiency measure given in (7b) has a meaningful economic

interpretation which is that the efficiency of a transportation network is equal to the average,

in terms of O/D pairs, traffic to price ratio with the traffic per O/D pair being given by

dw and the equilibrium price of travel between O/D pair w by λw. The higher the traffic

that can be handled at a given price (which also reflects the cost and, from an engineering

perspective, the travel time), the higher the efficiency or performance of the transportation

network.
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Interestingly, we will show in the following theorem that, under appropriate assumptions,

our measure and the L-M measure are equivalent. However, the latter measure considers

neither flows nor demands and does not incorporate any underlying users’ behavior.

Theorem 2

If positive demands exist for all pairs of nodes in the network G, and each of these demands

is equal to 1 and if dij is set equal to λw, where w = (i, j), for all w ∈ W then the proposed

network efficiency measure (7b) and the L-M measure (7a) are one and the same.

Proof: Let n be the number of nodes in G. Hence, the total number of O/D pairs, nW ,

is equal to n(n − 1) given the assumption that there exist positive demands for all pairs of

nodes in G. Furthermore, by assumption, we have that dw = 1, ∀w ∈ W , w = (i, j), and

dij = λw, where i 6= j, ∀i, j ∈ G. Then our network efficiency measure (7b) becomes as

follows:

E(G) =
1

n(n − 1)

∑

i 6=j∈G

1

dij
=

∑
i 6=j∈G

1
dij

nW
=

∑
w∈W

dw

λw

nW
= E(G, d), (8)

and the conclusion follows. 2

Note that, from the definition, λw is the value of the cost of the minimum or “shortest”

used paths for O/D pair w and dij, according to Latora and Marchiori (2001), is the shortest

path length (the geodesic distance) between nodes i and j. Therefore, the assumption of dij

being equal to λw is not unreasonable. Our measure, however, is a more general measure

which also captures flows and behavior on the network, according to Definition 1.

With our transportation network efficiency measure, we can investigate the importance

of network components by studying their impact on the transportation network efficiency

through their removal. We define the importance of a node or a link (or a subset of nodes

and links) as follows:

Definition 4: Importance of a Network Component

The importance, I(g) of a network component g ∈ G, is measured by the relative network

efficiency drop after g is removed from the network:

I(g) =
4E
E

=
E(G, d)− E(G − g, d)

E(G, d)
, (9)

where G − g is the resulting network after component g is removed from network G.

The upper bound of the importance of a network component is 1.
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The elimination of a link is treated in our measure by removing that link while the removal

of a node is managed by removing the links entering or exiting that node. In the case that

the removal results in no path connecting an O/D pair, we simply assign the demand for that

O/D pair to an abstract path with a cost of infinity. Hence, our measure is well-defined even

in the case of disconnected networks. Notably, Latora and Marchiori (2001) also mention this

important characteristic which gives their measure an attractive property over the measure

used for the small-world network model (cf. Watts and Strogatz, 1998).

Furthermore, we note that Jenelius, Petersen, and Mattsson (2006) proposed several

link importance indicators and applied them to the road network in northern Sweden. In

particular, they proposed distinct link importance indicators depending upon whether the

removal of the link would cause the network to become disconnected or not. The definitions

of their link importance indicators are briefly recalled in the following (with the notation

adapted to ours, for clarity):

Definition 5: Link Importance Indicators According to Jenelius, Petersen, and

Mattsson (2006)

In a network G, the global importance, I1, the demand-weighted importance, I2, and the

relative unsatisfied demand, I3, of link k ∈ G are defined, respectively, as follows:

I1(k) =
1

nW

∑

w∈W

(λw(G − k) − λw(G)), (10)

I2(k) =

∑
w∈W dw(λw(G − k) − λw(G))

∑
w∈W dw

, (11)

I3(k) =

∑
w∈W uw(G − k)

∑
w∈W dw

, (12)

where λw(G) is the original equilibrium cost of O/D pair w while λw(G−k) is the equilibrium

cost of O/D pair w after link k is removed; uw(G − k) is the unsatisfied demand for O/D

pair w after link k is removed.

According to the above definitions, I1 and I2 are defined for a link whose removal will not

cause any O/D pairs to be disconnected while I3 is defined for the opposite situation. It is

worth pointing out that the above measures also take cost and flow into consideration when

evaluating a link’s importance. However, our transportation network efficiency measure has

three major advantages in gauging the importance of a network component:

(1). it is simple and can be applied to any network component, be it a node, or a link, or a

set of nodes and links;
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(2). the induced network component importance definition (cf. (9)) does not depend on

whether or not the removal of the component will yield a disconnected network, which

provided a uniform and unified indication of the importance of the network components,

and

(3). our network component importance definition is based on a well-defined network effi-

ciency measure, given by (7b).

The advantages of our network efficiency measure will be further illustrated in the next

section through concrete examples.

4. Transportation Network Examples

In this Section, three network examples are presented. The importance values of individ-

ual nodes and links are calculated and also ranked, respectively, according to our measure

and the measure proposed by Latora and Marchiori (2001). Furthermore, the link impor-

tance indicators proposed by Jenelius, Petersen, and Mattsson (2006) are also reported. In

all the examples below, in computing the Latora and Marchiori measure; henceforth, referred

to as the L-M measure, and the associated importance rankings, we assume that for each

O/D pair w, where w = (i, j), that dij = λw (cf. Latora and Marchiori, 2001, 2004).

Example 1

Consider the network in Figure 1 in which there are two O/D pairs: w1 = (1, 2) and w2 =

(1, 3) with demands given, respectively, by dw1 = 100 and dw2 = 20. We have that path

p1 = a and path p2 = b. Assume that the link cost functions are given by: ca(fa) = .01fa+19

and cb(fb) = .05fb + 19. Clearly, we must have that x∗
p1

= 100 and x∗
p2

= 20 so that

λw1 = λw2 = 20. The network efficiency measure E = 3.0000 whereas the L-M measure

E = .0167.

��������
2 3
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J
J
Ĵ

����
1

a b

Figure 1: Example 1

In regards to the importance indices proposed by Jenelius, Petersen, and Mattsson (2006),

since the removal of link a or b will cause the O/D pairs to become disconnected, only their

I3 measure can be applied to this example. Recall also that their importance measure is for
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links only and not for nodes. The importance values and the rankings of the links and the

nodes for Example 1 are given, respectively, in Tables 1 and 2, using the relevant importance

measures.

Table 1: Importance Values and Ranking of Links in Example 1

Link Importance Value Importance Ranking Importance Value Importance Ranking Importance Value from Importance Ranking

from Our Measure from Our Measure from the L-M Measure from the L-M Measure I3 from I3

a 0.8333 1 0.5000 1 0.8333 1
b 0.1667 2 0.5000 1 0.1667 2

Table 2: Importance Values and Ranking of Nodes in Example 1

Node Importance Value Importance Ranking Importance Value Importance Ranking

from Our Measure from Our Measure from the L-M Measure from the L-M Measure

1 1.0000 1 1.0000 1
2 0.8333 2 0.5000 2
3 0.1667 3 0.5000 2

Clearly, our measure, which captures flow information is the most general, reasonable,

and precise since, in the case of a disruption, the destruction of link a, with which was

associated a flow 5 times the flow of link b, would result in a greater loss of efficiency! The

same qualitative analysis holds for the destruction of node 2 versus node 3.

Example 2

Consider now the network in Figure 2 in which there are six O/D pairs: w1 = (1, 2), w2 =

(2, 3), w3 = (3, 1), w4 = (2, 1), w5 = (3, 2), and w6 = (1, 3). The demands are given,

respectively, by dw1 = 1, dw2 = 5, dw3 = 10, dw4 = 1, dw5 = 1, and dw6 = 1. The paths for

the O/D pairs are: for w1: p1 = a; for w2: p2 = b; for w3: p3 = c; for w4: p4 = (b, c); for w5:

p5 = (c, a), and for w6: p6 = (a, b).

Assume that the link cost functions are given by: ca(fa) = fa, cb(fb) = 2fb, and cc(fc) =

0.5fc. Obviously, we must have that x∗
p1

= 1, x∗
p2

= 5, x∗
p3

= 10, x∗
p4

= 1, x∗
p5

= 1, and

x∗
p6

= 1. We also must have that λw1 = 3, λw2 = 14, λw3 = 6, λw4 = 20, λw5 = 9, and

λw6 = 17. Our network efficiency measure is then E = 0.4295 whereas the L-M measure

E = 0.1319.
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Figure 2: Example 2

Again, since the removal of any link in the network in Example 2 will cause an O/D

pair to be disconnected, only I3 from Jenelius, Petersen, and Mattsson (2006) is applicable.

The importance values and the rankings of the links and the nodes in Example 2 are given,

respectively, in Tables 3 and 4, using the relevant and applicable importance measures.

Table 3: Importance Values and Ranking of Links in Example 2

Link Importance Value Importance Ranking Importance Value Importance Ranking Importance Value from Importance Ranking

from Our Measure from Our Measure from the L-M Measure from the L-M Measure I3 from I3

a 0.1106 2 0.5927 1 0.1579 3
b 0.0487 3 -0.0301 3 0.3684 2
c 0.6166 1 0.1726 2 0.6316 1

Table 4: Importance Values and Ranking of Nodes in Example 2

Node Importance Value Importance Ranking Importance Value Importance Ranking

from Our Measure from Our Measure from the L-M Measure from the L-M Measure

1 0.8060 1 0.8736 1
2 0.2239 3 0.7473 2
3 0.6120 2 -0.2636 3

Our measure gives the highest ranking to link c which has the highest volume of flow and

a relatively low link cost. On the other hand, node 2 is the least important node according

to our measure while it is quite important according to the L-M measure (in second place).

This is due to the fact that the removal of node 2 is equivalent to the elimination of links a

and b and links a and b are not important in our measure (ranked, respectively, second and

third) but very important according to the L-M measure.
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Example 3

We now consider the network in Figure 3. There are five O/D pairs: w1 = (1, 2), w2 = (1, 3),

w3 = (1, 4), w4 = (3, 2), and w5 = (3, 4). The demands are given, respectively, by dw1 = 5,

dw2 = 1, dw3 = 8, dw4 = 1, and dw5 = 1. The paths for each O/D pair are as follows: for w1:

p1 = a, p2 = (e, d); for w2: p3 = e; for w3: p4 = b, p5 = (e, c); for w4: p6 = d, and for w5:

p7 = c.

����
2 ����

3

����
1 ����

4

6

-
?

�

�����������*

d

b

a c
e

Figure 3: Example 3

Assume that the link cost functions are given by: ca(fa) = fa, cb(fb) = fb, cc(fc) =

0.1fc + 2, cd(fd) = 0.1fd + 2, and ce(fe) = 0.1fe. According to the discussion in Section 3,

we must have x∗
p1

= 3.0559, x∗
p2

= 1.9441, x∗
p3

= 1, x∗
p4

= 3.3287, x∗
p5

= 4.6713, x∗
p6

= 1 and

x∗
p7

= 1. We also must have that λw1 = 3.0559, λw2 = 0.7615, λw3 = 3.3287, λw4 = 2.2944,

and λw5 = 2.5671. Our network efficiency measure is then E = 1.2356 whereas the L-M

measure E = 0.2305.

In the Example 3 network, only the removal of a or b will not cause any O/D pair to be

disconnected. Therefore, links a and b can be measured by I1 and I2, whereas the rest of

the links can only be measured by I3 (cf. (10) – (12)).

Table 5: Importance Values and Ranking of Links from I1 and I2 in Example 3

Link Importance Value Importance Ranking Importance Value Importance Ranking
from I1 from I1 from I2 from I2

a 0.2802 2 1.1052 2
b 0.3052 1 1.4203 1

The importance values and the ranking by I1 and I2 of the links in Example 3 are given

in Table 5 while in Table 6, the importance and ranking of the links by I3 are reported in

Table 6. The importance values and the ranking of the links and the nodes in Example 3

according to our measure and the L-M measure are given in Tables 7 and 8.
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Table 6: Importance and Ranking of Links from I3 in Example 3

Link Importance Value Importance Ranking

from I3 from I3

c 0.0625 1
d 0.0625 1
e 0.0625 1

Table 7: Importance Values and Ranking of Links in Example 3

Link Importance Value Importance Ranking Importance Value Importance Ranking

from Our Measure from Our Measure from the L-M Measure from the L-M Measure

a 0.1351 3 0.0706 3
b 0.1518 2 0.1774 2
c -0.0235 5 -1.2487 5
d 0.0891 4 -0.0603 4
e 0.5221 1 0.5382 1

Note that node 1 is the most important node according to our measure. This is due

to the fact that node 1 is the origin node with the two largest demands, namely, dw1 and

dw3. Therefore, the removal of this node should bring the largest negative impact to the

network efficiency. However, the L-M measure only places node 1 in second place, which is

not reasonable.

Moreover, from the above examples, we can see that our measure generates similar ranking

results to those obtained, where applicable, via I1, I2, and I3. However, in the cases where

the O/D pairs become disconnected (which is very much a possibility with a spectrum of

transportation network disruptions), our measure gives more reasonable and unified results.

More importantly, due to the fact that the removal of a node will usually cause some O/D

pairs to be disconnected, the ability to gauge the importance of a node is essential.
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Table 8: Importance Values and Ranking of Nodes in Example 3

Node Importance Value Importance Rank Importance Value Importance Rank

from Our Measure from Our Measure from the L-M Measure from the L-M Measure

1 0.8458 1 0.6557 2
2 0.8371 3 0.1267 3
3 0.6763 2 0.8825 1
4 0.2552 4 -0.1375 4
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Figure 4: Network for Example 4

5. A Larger Transportation Network Example

The fourth example consisted of 20 nodes, 28 links, and 8 O/D pairs, and is depicted in

Figure 4.

A similar transportation network had been used previously in Nagurney (1984) where

it is referred to as Network 20; see also Dhanda, Nagurney, and Ramanujam (1999). For

simplicity, and easy reproducibility, we considered separable user link cost functions, which

were adapted from Network 20 in Nagurney (1984) with the cross-terms removed.

The O/D pairs were: w1 = (1, 20) and w2 = (1, 19) and the travel demands: dw1 = 100,

and dw2 = 100. The link cost functions are given in Table 9.

We utilized the projection method (cf. Dafermos, 1980 and Nagurney, 1993) with the

embedded Dafermos and Sparrow (1969) equilibration algorithm (see also, e.g., Nagurney,

1984) to compute the equilibrium solutions and to determine the network efficiency according

to (7b) as well as the Importance Values and the Importance Rankings of the links according

to (9).

The computed efficiency measure for this network was: E = .002518. The computed

importance values of the links and their ranking for this transportation network are reported

in Table 9.
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Table 9: Example 4 - Links, Link Cost Functions, Importance Values, and Importance
Rankings

Link a Link Cost Function ca(fa) Importance Value Importance Ranking
1 .00005f 4

1 + 5f1 + 500 0.9086 3
2 .00003f 4

2 + 4f2 + 200 0.8984 4
3 .00005f 4

3 + 3f3 + 350 0.8791 6
4 .00003f 4

4 + 6f4 + 400 0.8672 7
5 .00006f 4

5 + 6f5 + 600 0.8430 9
6 7f6 + 500 0.8226 11
7 .00008f 4

7 + 8f7 + 400 0.7750 12
8 .00004f 4

8 + 5f8 + 650 0.5483 15
9 .00001f 4

9 + 6f9 + 700 0.0362 17
10 4f10 + 800 0.6641 14
11 .00007f 4

11 + 7f11 + 650 0.0000 22
12 8f12 + 700 0.0006 20
13 .00001f 4

13 + 7f13 + 600 0.0000 22
14 8f14 + 500 0.0000 22
15 .00003f 4

15 + 9f15 + 200 0.0000 22
16 8f16 + 300 0.0001 21
17 .00003f 4

17 + 7f17 + 450 0.0000 22
18 5f18 + 300 0.0175 18
19 8f19 + 600 0.0362 17
20 .00003f 4

20 + 6f20 + 300 0.6641 14
21 .00004f 4

21 + 4f21 + 400 0.7537 13
22 .00002f 4

22 + 6f22 + 500 0.8333 10
23 .00003f 4

23 + 9f23 + 350 0.8598 8
24 .00002f 4

24 + 8f24 + 400 0.8939 5
25 .00003f 4

25 + 9f25 + 450 0.4162 16
26 .00006f 4

26 + 7f26 + 300 0.9203 2
27 .00003f 4

27 + 8f27 + 500 0.9213 1
28 .00003f 4

28 + 7f28 + 650 0.0155 19
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In Figure 5, we display graphically the Importance Values and Importance Rankings of

the links for Example 4.

From the above results, it is clear that transportation planners and security officials should

pay most attention to links: 1, 2, and 26, 27, since these are the top four links in terms of

Importance Rankings. On the other hand, the elimination of links: 11, 13, 14, 15, and 17

should have no impact on the network performance/efficiency.

Figure 5: Example 4 Link Importance Rankings
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6. Summary and Conclusions

In this paper, we have proposed a transportation network efficiency measure, the Nagurney-

Qiang measure, that has several notable features:

(1). it captures flows, costs, and behavior of travelers, in addition to network topology;

(2). the resulting importance definition of network components is applicable and well-defined

even in the case of disconnected networks;

(3). it contains an existing efficiency measure that has been widely used and applied in the

complex network literature, as a special case;

(4). it can be used to identify the importance (and ranking) of either nodes, or links, or

both, and

(5). it is readily computable as are the network component importance values and their

rankings, given the state-of-the-art of transportation network modeling and computing tech-

nology.

We note that the proposed transportation network measure is also relevant to assess the

efficiency/performance of other critical infrastructure networks, since it has been established

(see Nagurney, 2006a, and the references therein) that supply chain networks (Nagurney,

2006b), electric power generation and distribution networks (Wu et al., 2006), as well as

financial networks with intermediation (see Liu and Nagurney, 2006) can all be reformulated

and solved as transportation network equilibrium problems. Further application of the new

transportation network measure to these applications domains will be the subject of future

research.

In addition, our measure is applicable not only to fixed (or inelastic) demand trans-

portation networks but also to elastic demand networks. This will be the topic of a future

publication.
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