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Abstract:

This paper presents a panoramic view of research on economic and financial networks in

the journal Networks, since its inception half a century ago. This paper focuses on both the

breadth and depth of the journal articles, and within the context of earlier contributions, as

well as more recent related ones in other scientific publications. From network optimization

to game theory and a plethora of equilibrium concepts, along with novel dynamical systems

frameworks, the journal has led the way in advancing economic and financial network models,

algorithms, and applications. Moreover, Networks has helped to attract researchers in a

variety of disciplines to the science of networks and the formulation and solution of associated

problems drawn from the real world.

Key words: economic networks; financial networks; spatial price equilibrium; financial

equilibrium; game theory; variational inequalities; projected dynamical systems

1



1. Introduction

Networks, from transportation and logistical ones, to communications and energy, have

provided the foundation and connectivity for the flow of people, and the exchange of goods,

information, and services across space and time. Intimately related to such physical net-

works, in which the identification of nodes, links, and associated flows with physical entities

is well-understood, are economic and financial networks. The importance of all such network

systems to the functioning of our societies and economies, coupled with the need to under-

stand their interrelationships, has spurred numerous advances in methodologies for their

modeling, analysis, and solution, under different behavioral concepts associated with usage

and management.

The origins of network theory can be traced back to the 1700s, to the classical paper

of Euler [64], the earliest paper on graph theory. By a graph in this context is meant,

mathematically, a means of abstractly representing a system by its representation in terms

of vertices (or nodes) and edges (arcs or, equivalently, links) joining pairs of vertices. Euler

sought to determine whether it was possible to walk around Königsberg (later renamed

Kaliningrad) by crossing the seven bridges over the River Pregel exactly once. The problem

was depicted as a graph with the vertices representing land masses and the edges – bridges.

Interestingly, one of the first network models was for a financial system. Specifically, Ques-

nay [188], in his Tableau Economique, conceptualized the circular flow of financial funds in an

economy as a network. His fundamental idea has been utilized in the construction of finan-

cial flow of funds accounts, which provide a statistical description of the flows of money and

credit in an economy (see [37]). This work also inspired the first paper on financial networks

in Networks, by Nagurney and Hughes [144]. The network model, with an accompanying de-

composition algorithm, can be applied to calculate reconciled values of outstanding financial

instruments, tangible assets, and net worth. The reconciled dataset can then be utilized as a

base line for an empirical general equilibrium model and for macromonetary policy analysis.

Cournot [42], in his classical work in economics, was inspired by competition in a spring

water product duopoly. His model, which considered two spatially separated markets in

which the cost associated with transporting the product was included, implicitly assumed

a network. Pigou [184], subsequently, studied a transportation network with two routes
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and observed that the decision-making behavior of the users leads to different flow patterns.

The network consisted of a directed graph, that is, with the links represented by arrows, as

well as the resulting flows on the links. Kohl [101] and, later, Knight [100] also considered

congestion in their transportation network models as had Pigou. Such early contributions

already recognized the relevance of economic activity on infrastructure, concomitant with

the users’ behavior.

Network theory has evolved over many years into a powerful, dynamic formalism for

analyzing and solving numerous complex problems. The science of networks continues to

impact a plethora of disciplines, from operations research and the management sciences

(OR/MS) to economics and finance, with new applications regularly being discovered. It is

also bringing different scientific disciplines closer together such as, for example, physics and

computer science closer to OR/MS.

This paper is focused on the journal Networks, as a significant publication outlet for

contributions to networks in economics and finance, since its inception half a century ago.

Here, we also discuss related publications, which further place into context contributions

in Networks and more deeply accentuate their impact. The journey of Networks has been

scientifically exciting and very rich intellectually. Congratulations to the journal, its editors,

and authors on this landmark half century anniversary!

2. More on the Origins

Before presenting a detailed analysis of Networks’ role in advancing the science of net-

works in economics and finance, it is essential to further expand upon some of the founda-

tions/origins.

Due to the prevalence of transportation networks, along with their scope and scale, it is

not surprising that such networks attracted interest from economists, and, later, by oper-

ations researchers. Indeed, it is important to note that much of the initial work on trans-

portation network modeling was conducted by economists. For example, after the first graph

theory book (cf. König [102]) was published, the economists Kantorovich [94], Hitchcock

[90], and Koopmans [103] considered the network flow problem associated with this classi-

cal minimum cost transportation problem. They provided insights into the special network
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structure of such problems, which enabled network-based algorithms. Both Kantorovich and

Koopmans were recipients of the Nobel Prize in Economic Sciences. Interestingly, as noted

in Nagurney [134], the study of network flows precedes that of optimization techniques, in

general, with seminal work done by Dantzig [55] in linear programming with the simplex

method, and later adapted for the classical transportation problem [56].

2.1 Networks in Economics

The need to formulate and compute solutions to network-based equilibrium problems, in

which there are multiple interacting entities, in both spatial economics and in transportation,

gave rise to the development of appropriate rigorous methodologies. Enke [63], writing in

the journal Econometrica, proposed an analogue computer consisting of electronic circuits

as a means of solving spatial price economic equilibrium problems. Such problems, unlike

oligopolies, which are examples of imperfect competition, represent perfect competition, in

which goods are produced, consumed, and traded, in the presence of transportation costs.

The Nobel laureate in Economic Sciences Paul Samuelson [195] revisited the spatial price

equilibrium problem and derived a rigorous mathematical formulation of it as an optimiza-

tion problem. He recognized and utilized the network structure, which was bipartite (the

same structure as in the classical transportation problems), that is, consisting of two sets

of nodes (cf. Figure 1). Enke’s use of analog computational machines was soon superseded

by digital computers, with accompanying algorithms, based on mathematical programming,

with quadratic programming being utilized, under linearity (and separability) assumptions

on the underlying economic functions.

In spatial price economic equilibrium problems, unlike classical transportation problems,

the supplies and the demands are variables, rather than fixed quantities. The seminal works

of Samuelson [195] and Takayama and Judge [206, 207] were, later, extended by many re-

searchers, motivated, in part, by the wide-range of applications, including commodity mar-

kets in agriculture [92] and energy [106] to even finance [121]. Authors, including Asmuth,

Eaves, and Peterson [10], Pang and Lee [181], Florian and Los [70], Harker [86, 87], Dafermos

and Nagurney [52], Nagurney and Kim [148], Nagurney [128], and the references therein, ad-

vanced spatial price economic equilibrium modeling to incorporate, among other features,

multiple commodities, and asymmetric supply price and demand functions, as well as other
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Figure 1: A Bipartite Network with Directed Links

extensions, such as the consideration of general underlying transportation networks (see also

[50]). Such general, realistic spatial price network models were made possible by advances in

complementarity theory (cf. [1] and the references therein), as well as variational inequality

theory (cf. [47, 88, 97, 126]). Variational inequality theory allowed for the formulation and

solution of equilibrium problems for which no optimization reformulation of the governing

equilibrium conditions was available.

Interestingly, almost parallel to the initial work in spatial economics, with the goal of re-

formulating the underlying equilibrium conditions of the spatial price economic equilibrium

problem as an associated optimization problem (under appropriate assumptions), was the

research on the network modeling of congested urban transportation systems. Unlike the

original spatial price equilibrium models, however, congested urban transportation networks

may assume many different topologies. Wardrop [216] proposed two fundamental princi-

ples of travel behavior, later termed user-optimization and system-optimization by Dafermos

and Sparrow [53]. The pioneering book Studies in the Economics of Transportation by the

economists Beckmann, McGuire, and Winsten [18] detailed, for the first time, a rigorous

mathematical formulation of the conditions described by Wardrop’s first principle that al-

lowed for the ultimate solution of the traffic network equilibrium problem in the context of

certain link cost functions that are increasing functions of the flows on the links. The authors

established that the optimality conditions in the form of Kuhn-Tucker [105] conditions of

an appropriately constructed optimization problem coincided with Wardrop’s first principle.

According to the first principle, no traveler on the transportation network, acting unilaterally,
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will have any incentive to alter his route (assuming rational cost (time)-minimizing behavior)

since his travel cost (travel time) is minimal. Independently, Charnes and Cooper [29, 30]

in articles on traffic network equilibrium with fixed origin-destination demands, noted the

relation to Nash [173] equilibrium, also emphasized by Dafermos and Sparrow [53]. Under

system-optimization, in contrast, there is a central controller that routes the traffic from ori-

gins to destination nodes so that the total cost in the network is minimized. Earlier, Prager

[185] had sketched out a formulation related to Wardrop’s principles, recognizing that the

travel cost/time on a link may depend upon the flows on other links [22].
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Figure 2: The Braess Network Topologies Before and After the Addition of a New Link e

Dafermos and Sparrow [53] proposed algorithms for the determination of the resulting

flows on both user-optimized and system-optimized networks that were based on path flows.

Fascinatingly, the renowned Braess [24] paradox paper, which “rediscovered” Wardrop’s [216]

two principles of travel behavior, which he, at that time, was unaware of (see [25, 139]),

illustrated that the addition of a link may result in travel time increasing, under “user-

optimizing” behavior for all travelers! Please refer to Figure 2 for the Braess networks

before and after the addition of link e, which results in a new path for travelers between the

origin node 1 and the destination node 4. Note that the Braess paradox can only occur in

user-optimized networks and not in system-optimized ones. Moreover, it is as relevant today

to another decentralized network par excellence - the Internet (see [104] and [153]) as it is

to transportation networks.
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2.2 Networks in Finance

As noted earlier, the first network model in finance was a model of a financial system.

Copeland [41], two centuries later, recognized the conceptualization of the interrelationships

among financial funds as a network and asked the question, “Does money flow like water or

electricity?” In addition, he provided a “wiring diagram for the main money circuit.” Hence,

early on, there was interest in finding commonalities among different network systems.

With advances in optimization and associated mathematical programming, beginning

with linear and nonlinear programming, financial network modeling first focused on finan-

cial optimization. The seminal work of the Nobel laureate Harry Markowitz [115, 116] in

portfolio optimization established a new era in financial economics, with relevance to this

day. Markowitz’s model was based on mean-variance portfolio selection, with the average

and the variability of portfolio returns determined in terms of the mean and covariance of

the corresponding investments. As noted in Nagurney [134], although many financial op-

timization problems, including Markowitz’s, had an underlying network structure, and the

advantages of network programming were becoming increasingly evident [30], it was only

some time later that financial network optimization models were developed. In fact, the

structure of Markowitz’s portfolio optimization problems had the structure of a system-

optimizing network with a single origin/destination pair as in Figure 3, with flows on the

links corresponding to investments and the demand being the size of the financial assets to

be invested. Early models were those of Charnes and Miller [33] and Charnes and Cooper

[31].
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Figure 3: Network Structure of the Classical Portfolio Optimization Problem
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The 1970s saw the greater utility of networks for financial applications, with, among

the first financial network optimization models in the literature being a series of currency

translating models. For example, Rutenberg [193] noted that the translation among different

currencies could be performed through the use of arc multipliers. Rutenberg’s network

model was multiperiod with linear costs on the links (a characteristic common to the earlier

financial networks models). The nodes of such generalized networks represented a particular

currency in a specific period and the flow on the arcs the amount of cash moving from one

period and/or currency to another with Christofides, Hewins, and Salkin [35] and Shapiro

and Rutenberg [197], among others, proposing related financial network models. Golden,

Liberatore, and Lieberman [82] constructed a generalized network flow model that allows for

gains and losses on link flows to account for cash value changes. The authors also conducted

sensitivity analysis on the borrowing interest rate, the bounds on the link flows, and the

forecast horizon. Interestingly, arc multipliers and generalized networks were subsequently

also applied in the context of perishable product spatial price equilibrium problems [138]

and supply chain networks from food [224] to blood [152].

As overviewed in Nagurney [133], where additional references can be found, Barr [15] and

Srinivasan [204] utilized networks to construct cash management problems, with Crum [43]

introducing a generalized linear network model for the cash management of a multinational

firm. A series of related cash management problems were modeled as network problems in

subsequent years by, among others, Crum and Nye [45] and Crum, Klingman, and Tavis

[44] as linear network flow problems in which the cost on an arc was a linear function

of the flow. In many financial network optimization problems, nevertheless, the objective

function must be nonlinear due to the modeling of the risk function and, therefore, often,

such financial problems are more appropriately modeled as nonlinear, rather than linear,

network flow problems. Mulvey [122] not only identified that the Markowitz [115, 116]

mean-variance minimization problem was, in fact, a network optimization problem with a

nonlinear objective function, but he also presented a collection of nonlinear financial network

models that were based on previous cash flow and portfolio models in which the original

authors (see, e.g., [192] and [202]) had not identified and, consequently, had not exploited

the underlying network structure. Additional financial network optimization models and

associated references can be found in the paper by Mulvey [122], in the book by Nagurney
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and Siokos [162], and in the volume edited by Nagurney [129].

In addition to the early literature on financial networks, with a focus on optimization,

there was a growing literature on financial networks for financial equilibrium. As noted in

Nagurney [133], Thore [208] proposed networks for the study of systems of linked portfolios,

with his work recognizing the contributions of Charnes and Cooper [31], who had showed that

systems of linked accounts could be represented as a network. In such a financial network, the

nodes correspond to balance sheets and the links to the credit and debit entries. Thore [208]

considered credit networks, with the goal of constructing a tool for studying money and credit

streams in an economy, based on the behavior of banks and other financial institutions, and

utilized linear programming. Thore [209] then extended the basic financial network model to

incorporate holdings of financial reserves under uncertainty. Fei [65] had earlier proposed a

graph theoretic approach to the credit system. Storoy, Thore, and Boyer [205], subsequently,

constructed a network of the interconnection of capital markets, in which the utility function

of a sector was no longer limited to being a linear function. The authors illustrated how

decomposition theory of mathematical programming could enable the computation of the

equilibrium. Thore [210], in his book, which appears to be the first book on financial

networks, further investigated network models of linked portfolios, financial intermediation,

and decentralization/decomposition theory. However, the computational techniques at that

time were not sufficiently well-developed to handle such problems in practice.

Interestingly, Thore [211], exploiting the ideas of Samuelson [195] and Takayama and

Judge [207] for spatial price equilibrium problems, as discussed above, later proposed an

international financial network for the Euro dollar market, conceptualizing it as a logistical

system. In that paper, as in Thore’s preceding papers on financial networks, the micro-

behavioral unit was an individual bank, savings and loan, or other financial intermediary

with the portfolio options described in some optimizing framework, with the portfolios linked

together into a network with a separate portfolio visualized as a node and assets and liabilities

as directed links. In such financial systems, equilibrium was central, along with the role of

prices in the equilibrating mechanism. The Arrow-Debreu economic model (cf. [9, 57])

greatly influenced the rigorous approaches to both economic and financial equilibrium, along

with the price determination. In addition, the importance of the inclusion of incorporating

dynamics into the modeling of such financial network systems was also being stressed [212].
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Arrow, Debreu, and Kydland were all awarded the Nobel Prize in Economic Sciences.

2.3 Some Additional Methodological Advances

Subsequent notable methodological contributions were made by Smith [201] and Dafer-

mos [47], who identified Smith’s formulation of traffic network equilibrium conditions as a

variational inequality (VI) problem. This fundamental discovery allowed for the modeling

of asymmetric interactions associated with the link travel costs (resulting in no equivalent

optimization reformulation of the equilibrium conditions) and established the methodology

of variational inequalities as a primary tool for both the qualitative analysis and the solution

of such and other related equilibrium problems, many of which had a network structure. For

additional background, see the book by Nagurney [128]. Today, VI theory is as relevant to

the Internet, which is characterized by decentralized decision-making (cf. [22, 191, 194]), as

it is to transportation networks [198], as well as to electric power generation and distribution

networks [223], supply chain networks (see [131] and [149]), and financial networks with and

without intermediation (see [113, 145, 146, 162] and the references therein). For a depiction

of a financial network with intermediation and electronic transactions, see Figure 4.

Indeed, many complex systems in which decision-makers/agents compete for scarce re-

sources on a network, be it a physical one, as in the case of congested urban transportation

systems, or a more abstract one, as in economic and financial problems, can be formulated

and studied as network equilibrium problems. Applications of network equilibrium problems

are common in many disciplines, including economics, finance, and in engineering, operations

research, and management science (cf. [69, 128, 131]). See the classical book on networks by

Ford and Fulkerson [71] and the book by Ahuja, Magnanti, and Orlin [2] for a reference to

network flows with a focus on linear, rather than nonlinear, problems and many interesting

applications.

3. The First Decade of Networks

With the work of Beckmann, McGuire, and Winsten [18] and Dafermos and Sparrow [53]

setting the stage for the rigorous modeling of network problems under different behavioral

principles, the journal Networks provided an excellent outlet for further advances. Rosen-

thal [190], in his remarkable paper in Networks, proposed a discrete flow approach, rather
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Figure 4: The Structure of the Financial Network with Intermediation and Electronic Trans-
actions

than a continuous one, to network equilibrium problems, formulated as an n-person nonco-

operative game with pure strategies. He demonstrated that pure-strategy Nash equilibria

exist and that any solution to an integer-variable analogue of the usual network equilibrium

model is such a Nash equilibrium. Gazis [77] then provided an excellent critical survey of

transportation networks in Networks. Golden [81] constructed a nonlinear multicommodity

network optimization model with quadratic cost functions and applied it to a specific large

scale network in the form of a port planning problem with consideration of foreign ports.

Golden and Magnanti [83] produced a bibliography in Networks for deterministic network

optimization, with an emphasis on algorithms, along with the accompanying theory. Assad

[11], in his comprehensive survey on multicommodity network flows in Networks, empha-

sized that equilibrium problems, including those in transportation, had renewed substantial

interest in applying mathematical programming. He discussed solution techniques and ap-

plications, recognizing that such network modelling arises naturally whenever commodities,
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vehicles, or even messages needed to be shipped/transported.

Already, in the first decade of its existence, it was apparent that Networks was the “go-to”

journal for innovative, substantive articles, including those with an economic bent.

4. Papers of the 1980s and the Impact

With the publication of the paper by Dafermos [47], which unveiled the theory of varia-

tional inequalities as a powerful framework for the formulation and solution of equilibrium

problems, and, in particular, network equilibrium problems, the momentum of important

contributions to the science of networks accelerated and increased.

Dafermos [48], in her Networks paper, proposed a general multimodal transportation

network equilibrium problem with elastic demand. The model dramatically extended the

types of transportation network equilibrium problems that could be rigorously formulated,

analyzed qualitatively, and solved, as well as applied in practice. The theoretical framework

was that of VI theory. The proposed algorithm resolved the asymmetric problem into a

series of single-modal problems, amenable to solution via quadratic programming. This very

general model not only was an advance in transportation but also enabled the establishment

of connections to other models/problems. For example, using an elastic traffic network equi-

librium model and variational inequality theory, Dafermos and Nagurney [51] demonstrated

an isomorphism between spatial price and traffic network equilibrium problems, which was

further elaborated upon by Dafermos [49] in the context of multicommodity / multimodal

networks. Hence, many spatial price equilibrium problems could be transformed into and

solved as transportation network equilibrium problems. It is important to mention that the

model of Dafermos [48] had elastic demands as had the original transportation network equi-

librium model of Beckmann, McGuire, and Winsten (BMW) [18]. Subsequently, Nagurney

and Liu [150], see also [131, 132, 151], were able to answer the fundamental question in the

BMW book regarding unsolved problems, on page 106, “The unsolved problems concern the

application of this model to particular cases. In particular, the problem of generation and

distribution of electric energy in a network comes to mind.” Specifically, using the work of

Dafermos [48] and also an extension of finite-dimensional variational inequalities to evolu-

tionary ones (cf. [54]), they showed that electric power generation and distribution problems
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could be reformulated and solved as transportation network equilibrium problems. Liu and

Nagurney [113] then, addressing the question of Copeland [41], noted earlier, as to how does

money flow, established a transformation of financial network equilibrium problems with in-

termediation to transportation equilibrium problems. Hence, theoretical results had shown

that both electricity and money flows like transportation flows.

Haurie and Marcotte [89], in their Networks paper, utilized variational inequality theory,

contributing to the literature in a significant way. They introduced a noncooperative game

on a congested transportation network and proved that the asymptotic behavior of the Nash-

Cournot equilibrium yields (under suitable assumptions) a flow vector corresponding to a

Wardrop equilibrium. Economists had investigated that Cournot oligopolies with an infinite

number of firms led to perfect competition (cf. [75, 118, 178]) but not on a network. As

mentioned earlier, Dafermos and Sparrow [53] had established a relationship between traffic

network equilibria and Nash equilibria as had Rosenthal [190] in his Networks paper and

Devarajan [59], as well. However, Haurie and Marcotte [89] did not require integrability of

the user link cost functions. Recall that Rosenthal [190] had considered a discrete version of

the traffic network equilibrium problem with specific link cost functions.

Dafermos and Nagurney [52], subsequently, constructed a general oligopoly model with

spatially separated markets on a bipartite network and proved that it generates a general

spatial price equilibrium model as an extreme, limiting case. The analysis made use of the

fact that the governing equilibrium conditions of both the spatial oligopoly and the spatial

price economic equilibrium problem could be formulated as variational inequalities. The

oligopoly was governed by a Nash [172, 173] equilibrium. Gabay and Moulin [74] had shown

that oligopolistic market equilibria under Nash equilibrium, under suitable assumptions could

be formulated as variational inequality problems.

The 1980s also revealed a renewed focus on algorithm development for solving equilibrium

problems, as evidenced by a series of publications in Networks for traffic network equilibrium

problems, including ones that could be reformulated as optimization problems (cf. [58, 68,

99]), as well as spatial price equilibrium problems [182]. Importantly, the introduction of

stochastic elements to traffic assignment models was initiated by Sheffi and Powell [199] in

their paper in Networks.
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New models of spatial price equilibrium problems, along with algorithms, were published

in the regional science literature. Some notable examples include the already noted paper of

Florian and Los [70], and papers by Friesz, Harker, and Tobin [72], Nagurney [124, 125], and

Nagurney and Aronson [138] in Networks. The latter work introduced a general, dynamic

spatial price equilibrium model with gains and losses, of relevance to a multiplicity of per-

ishable products [166]. It allowed for inventorying at the supply markets and at the demand

markets, as well as backordering at the demand markets. For a graphical depiction of the

model, see Figure 5. In addition, the model has inspired research on multitiered, multiperiod

supply chain network equilibrium problems [114].
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Figure 5: Network Structure of the Multiperiod Spatial Price Equilibrium Model with Gains
and Losses

Today, the study of the modeling, analysis, and solution of a variety of game theory

problems on networks, including routing games, has crossed disciplines, and has helped in

building bridges, linking, for example, economics, OR/MS, and computer science (see, e.g.,

[177, 191]).
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5. The 1990s with a Surge in Publications on Economic and Financial Networks

With the development of new network models, algorithms, and more powerful computers

as well as the growing influence of the Internet, the 1990s saw an explosion of research

interest in economic and financial networks. In 1991, Nagurney and Zhao [171], inspired

by the relevance of policies for market equilibrium problems in practice, and, building on

earlier work on spatial price equilibrium, in their paper in Networks, constructed a market

disequilibrium model with price controls in the form of price floors and ceilings. They

identified the problem’s network structure, and proposed a network decomposition scheme

for computation of the product flows and excess supplies and demands. Qiu [187], in turn,

conducted qualitative analysis for an oligopolistic market equilibrium problem defined on

a bipartite network. Wie [220], also writing in Networks, in a paper in 1993, introduced a

differential game model of Nash equilibrium on a congested traffic network over a simple

network. Wie and Tobin [221], subsequently, considered the problem of a dynamic Nash

equilibrium traffic assignment with schedule delays on congested networks and formulated

it as an N -person nonzero-sum differential game in which each player represents an origin-

destination pair.

In 1993, Dupuis and Nagurney [61] (see also the book by Nagurney and Zhang [167])

introduced a new dynamical system termed a projected dynamical system, with accompa-

nying theory, analysis, algorithms, and dynamic models. They established that the sets of

solutions to a projected dynamical system, which has a discontinuous right-hand-side, and,

hence, is nonclassical, coincides with the sets of solutions to an appropriately defined finite-

dimensional variational inequality problem. This contribution provided a natural underlying

dynamics to a multiplicity of equilibrium problems, including network equilibrium problems,

which had previously been studied primarily in the steady-state. The framework also yielded

continuous time and discrete time tatonnement processes, with the latter corresponding to

algorithms. In a 1995 paper in Networks, Nagurney, Takayama, and Zhang [164] proposed a

projected dynamical systems model for spatial price network equilibrium and implemented

the algorithm on a massively parallel architecture.

To-date, the theory of projected dynamical systems has been used to model and analyze,

including from a stability standpoint: dynamic spatial price problems [168], dynamic traffic

15



network problems (cf. [169, 170]), dynamic oligopolies [226], dynamic financial network

problems [60], and even a spectrum of supply chain network problems, in which there are

multiple tiers of decision-makers, each with his own objective function and constraints (cf.

[131] and the references therein).

Projected dynamical systems have also found application and success in population games

and evolutionary dynamics in economics [196] and even fascinatingly, in neuroscience [80].

Their relationships, in the infinite-dimensional context, to evolutionary variational inequal-

ities were established by Cojocaru, Daniele, and Nagurney [38, 39].

This decade, filled with many novel, creative contributions to the science of networks,

also benefited from the recognition that advances in both economics and finance could be

made through computational methods. For example, the first book in the series: Advances

in Computational Economics, was the book, Network Economics: A Variational Inequality

Approach, by Nagurney, and published in 1993 [126], with the second edition, in 1999 [128].

The Society of Computational Economics was founded in 1995.

The paper, noted earlier, by Nagurney and Hughes [144] was the first paper in Networks

on financial networks. The authors emphasized the need for the development of empirical

general equilibrium models that would capture the economic behavior of sectors in deter-

mining financial and capital flows. Underlying such models was a balanced set of financial

accounts with the origins of flow of funds accounting dating to Copeland [41]. The network

approach of Nagurney and Hughes [144] could be applied to create such a balanced set of

accounts. The classical, renowned in economics, Walrasian price equilibrium problem [214],

a general economic equilibrium problem, was identified by Zhao and Nagurney [228] to be

isomorphic to a network equilibrium problem, which they then exploited for computational

purposes. The special network structure was identical to that of the portfolio optimization

problem as depicted in Figure 3.

Nagurney and Dong [140], writing in Networks, proposed a financial equilibrium network

model with transaction costs for an economy with multiple sectors, each of which seeks

to determine the optimal composition of its portfolio in terms of assets and liabilities. The

variational inequality formulation of the equilibrium conditions was derived and an algorithm

that exploited the network structure was applied to determine the equilibrium asset, liability,
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and price pattern in a series of numerical examples. Nagurney [127] had earlier developed

a financial equilibrium model with general utility functions, generalizing the quadratic ones

of Nagurney, Dong, and Hughes [142], who were the first to propose variational inequality

theory for general financial equilibrium problems.

Nagurney and Siokos [163], in their paper in Networks, introduced a dynamic multi-sector,

multi-instrument financial network model with futures, utilizing the theory of projected

dynamical systems for its formulation, analysis, and solution. They also demonstrated that

their model could be reformulated as an optimization problem.

6. The New Millennium, Networks Cross More Disciplines, and the Financial

Collapse - The 2000-2009 Decade

With the advent of the new millennium, it was appropriate and reflective, to have the

30th anniversary paper by the journal’s first Editor-in-Chief Frisch [73] on the early days of

Networks published in the journal. On page 6 of the article, he wrote: “When we started

Networks, we did not anticipate the explosion of the field of networks.” This statement

resonates and is as true today as it was at the beginnings of the journal.

Nagurney [130] reported in Networks on recent developments in Network Economics based

on papers presented at the 2002 Computing in Economics and Finance Conference, which

took place in Aix en Provence, France. At the conference, speakers presented their re-

search on computational economics and finance topics with two sessions specifically devoted

to Network Economics. As emphasized in the article, the role of networks in economics

and finance was gaining prominence for several reasons: (1) the emergence of industries

that are network-based, from transportation and logistics companies, to telecommunication,

energy, and power companies; (2) the recognition of the interdependence between/among

many network systems, such as telecommunications with finance, telecommunications with

transportation in the form of electronic commerce, for example, and telecommunications

with a variety of energy transmission mechanisms; (3) the recognition that new relationships

between economic agents in terms of competition and cooperation are giving rise to new

supply chains as well as new financial networks; (4) the relevance of networks in terms of

infrastructure and the pricing of their usage as well as the management of risk and uncer-
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tainty surrounding networks; and (5) interest in the dynamics surrounding networks and

their evolution over space and time. At the conference there were several papers on supply

chains and electronic commerce as well as on electronic financial transactions.

Geunes and Pardalos [78], also writing in Networks, presented an elegant annotated bib-

liography on network optimization in supply chain management and financial engineering,

emphasizing their real-world relevance, including in the context of large-scale problems.

They also identified them as still emerging fields. In terms of finance, their emphasis was

on contributions that assume a single decision maker (e.g., an individual or organization),

who seeks to maximize future wealth by allocating resources to investments and/or assets.

However, they noted that, in addition to such “microlevel” or “single-investor” problems, a

substantial body of literature addresses equilibrium in financial networks with multiple sec-

tors and financial intermediaries. They highlighted as representative of such research being

that of Nagurney [127], Nagurney and Siokos [163], and Nagurney and Dong [140], which

characterizes equilibrium funds flows among and between various financial sources, financial

intermediaries, and demand markets, using dynamical systems analysis and variational in-

equalities. Clearly, networks were becoming more prominent, more visible, and even more

useful in applications essential to modern economies and societies.

With the growth of the Internet (cf. Clark [36] for an excellent volume on its history and

possible future directions) and innovations both in supply chains, with precursors in spatial

price equilibrium problems [136], and in financial networks, along with growing interactions

among network systems (see [146] and the book [131]), it was clear that there was a new

momentum with exciting opportunities. The volume on innovations in financial and economic

networks edited by Nagurney [130] contains refereed contributions by scholars from around

the globe including work by Boginski, Butenko, and Pardalos [20] for the (massive) stock

market graph, focusing on the United States. The authors establish, for the first time in

the field of finance, the power law model, a construct from the network science literature,

introduced by physicists, which we return to later. Several papers (see [84] and [123]) focus

on stochastic network approaches for financial optimization problems. Also, with the interest

in modeling the behavior of various decision-makers in supply chains, the concept of supply

chain network equilibrium was introduced by Nagurney, Dong, and Zhang [143] (cf. Figure

6 for a topological depiction) and, subsequently, its transformation into a transportation
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network equilibrium problem also identified [132].
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Figure 6: The Network Structure of the Supply Chain at Equilibrium

In addition, given the growing interconnections between/among different network systems

because of the Internet, there were models being constructed that integrated social and

financial networks [165], as well as social networks and supply chains [46]. Many of the

models took a “supernetwork” perspective as promulgated by Nagurney and Dong [140].

For a supernetwork representation of the Cruz, Nagurney, and Wakolbinger [46] model, see

Figure 7.

At the cusp of the new millennium, “network science” was becoming a term that was

receiving growing attention with a (2006) report by the National Research Council (NRC)

[174] noting that this “new” research field was focusing on an interdisciplinary perspective

for complex network systems. As emphasized in the overview by Alderson [4], operations

research and its fundamental and wide ranging contributions to networks were essentially

ignored except for an introductory chapter in the anthology by Newman, Barabási, and Watts

[176] that cited Ahuja, Magnanti, and Orlin [2] and Nagurney [126] as “exemplars.” Some of

the research questions of interest to physicists, sociologists, etc., that helped in promoting

network science as a discipline, included: the identification of whether there was any network

structure in various complex systems; were there any underlying universal laws, with power

laws, based on physics (and the use of statistical mechanics), gaining specific prominence

(see [3]), and how to quantify vulnerabilities and fragilities in complex networks (see [4]).

Early survey papers further disseminated research results with such foci [3, 13, 14, 175, 217].
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Issues of scale-free properties [13] as well as small world networks [218] were intensively

studied in different systems. In addition, much of the existing work emphasized descriptive

approaches to network dynamics, specifically, the dynamics related to network formation and

growth, and also the dynamical behavior taking place on these networks (but not including

optimizing behavior of individual decision-makers that was prominent in the OR literature

with many highlights noted above).

In the new millennium, as mentioned above, there was growing interest in assessing net-

work vulnerabilities and fragilities. This was, due, in part, to prominent disasters, from

natural ones, such as hurricanes, earthquakes, and floods, to technological ones, including

electric power failures, Internet disruptions, due to cyberattacks, etc. (cf. [160] and the

references therein). There was also increasing interest in assessing default by firms. For ex-

ample, Eisenberg and Noe [62] considered default by firms that are part of a single clearing

mechanism and recognized that one of the most characteristic aspects of the present financial

environment is the network of interconnections among firms. They provided conditions for
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the existence and uniqueness of a clearing vector for a complex financial system. Moreover,

the collapse of the financial system in the United States in 2008 and 2009 had global ram-

ifications, further generating interest in conceptualizing financial systems as networks, for

purposes of identifying not only connectivity but also the propagation of potential failures

and the determination of the importance of nodes and links (and their ranking). For ex-

ample, the more recent theories of scale-free and small world networks in complex network

research were helping in the understanding of the vulnerability of some real-world networks

(see [7, 34, 91]). However, much of that literature was concerned with the topological char-

acteristics of networks [27] even though Barabási [12] was emphasizing the need to move

beyond structure and topology to include dynamics on the links.

In a series of papers, including several published in the physics literature, since it was im-

perative to share contributions with researchers in this discipline, given their intense interest

in networks, Nagurney and Qiang [154, 155, 156, 186] proposed a network performance mea-

sure, inspired by transportation network equilibrium models, both fixed and elastic demand

ones, as a basis for evaluating critical network infrastructure. The performance measure was

well-defined, even in the case of disconnected networks, captured the behavior of users in

decentralized networks, and also could be applied to dynamic networks [158]. As demon-

strated in Qiang and Nagurney [186], the new network performance measure provided more

reasonable results in terms of node and link importance identification and ranking than the

measure of Latora and Marchiori [107, 108, 109, 110]; notably, in the case of the Braess para-

dox network it was shown that the addition of a new link results in a decrease in network

performance.

In 2008 and 2009, the world reeled from the effects of the financial credit crisis, with

major banks and lending institutions closing, including Lehman Brothers; others merging,

and the financial services landscape forever altered [160]. Given the importance of financial

networks to the global economy, researchers, especially physicists, were attracted to their

study (see [26, 96, 179]), with notice that operations researchers Boginski, Butenko, and

Pardalos [20] also utilized complex network constructs and analysis for the stock market

graph. Complex network measures such as node degree centrality and node importance

were garnering importance in the broader economics and financial literature [5, 6, 21, 93].

Although there was a literature starting on financial contagion (see, e.g., [117]) there was
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only a minimal literature that considered financial network vulnerability. Nagurney and

Qiang [159] proposed a financial network performance measure with critical node and link

identification utilizing the financial model with electronic transactions developed by Liu and

Nagurney [113], which was an extension of the earlier financial network equilibrium models

of Nagurney and Ke [145, 146] published in financial journals. That work demonstrated the

flexibility of the original Nagurney and Qiang [154, 157] performance measure, which had

been inspired, in part, by the work in general transportation network equilibrium modeling

of Dafermos [48] in Networks.

7. The Last Decade - From 2010

With the impact of the financial collapse on the global economy, financial networks, as a

framework for modeling not only optimization problems but, notably, financial systems, were

being adapted by the financial community. Much of the interest was in quantifying systemic

risk. Billio et al. [19] proposed econometric measures of connectedness based on principal-

components analysis and Granger-causality networks, and applied them to the monthly

returns of hedge funds, banks, broker/dealers, and insurance companies. The authors found

that all four sectors had become highly interrelated over the previous decade, affecting the

level of systemic risk in the finance and insurance industries via a complex and time-varying

network of relationships. Gai and Kapadia [76], building on the work of Allen and Gale [6],

developed an analytical model of contagion in financial networks and suggested that financial

systems exhibit a robust-yet-fragile tendency: while the probability of contagion may be low,

the effects can be widespread when problems occur.

The following year, Nagurney [135] edited a special issue of the journal Computational

Management Science devoted to financial networks. In the special issue, a wide range of

papers, both theoretical and empirical, contributed to the fascination and relevance of this

application area of networks. Topics included in the special issue, among others, were:

advances in the empirical market graph for the US [200], a study of the stock market as

a complex network [17]; the use of financial networks for the study of contagion (see [85,

203]), dynamic network formation game theory modeling of borrowers and sellers [67], as

well as a multitiered financial network model [95], and a framework to address impacts of

corporate financial networks on supply chain networks [112]. There was continuing interest
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in identifying appropriate measures to assess the performance and vulnerability of financial

networks, coupled with systemic risk [16]. Rogers and Veraat [189] extended the work of

[62] by introducing costs of default if loans have to be called in by a failing bank, in which

case, they noted that, in general, many different clearing vectors can arise. The authors

then identified cases in which consortia of banks may have the means and incentives to

rescue failing banks. Petrone and Latora [183], in turn, proposed a dynamic model that

combines credit risk techniques with a contagion mechanism on the network of exposures

among banks and illustrated how the model can be applied on the network of the European

Global Systemically Important Banks.

And, in the journal Networks, Boyles and Waller [23] utilized ideas from portfolio opti-

mization to study a minimum cost flow problem in which the arc costs are uncertain, and the

decision maker wishes to minimize both the expected flow cost and the variance of this cost.

They presented two optimality conditions, one based on cycle marginal costs, and the other

– based on concepts of network equilibrium. In addition to providing algorithms, they also

quantified the value of information. Also writing in Networks, Matsypura and Timkovsky

[119] developed a heuristic network flow algorithm for an extension of the problem of margin-

ing option portfolios in practice and demonstrated a high efficiency of the proposed algorithm

in a computational study.

Also, various themes, with economic underpinnings and origins in previous decades, con-

tinued to appear in Networks, notably, the price of anarchy and a variety of network routing

games (cf. [40, 66, 98, 120, 219]), further cementing the great influence of the originators of

the concepts of user-optimization and system-optimization (see also [28, 180]). Vulnerability

issues in networks with financial underpinnings continued to be explored by researchers in

Networks in this decade in a spectrum of critical node detection and related problems (see,

e.g., [8, 79, 213, 215]). In addition, more complex supply chain network models were also

becoming the setting for the assessment of network performance and the identification of

supplier importance as well as that of the components of suppliers to firms as well as full

supply chains [111].

Indeed, it was evident that, in the last decade there was sustained, continuing interest

in many network systems, and their interrelationships, with the dominance of the Internet
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in economic transactions, communications, entertainment, and even education, making it

increasingly exposed and vulnerable to cyberattacks. Nagurney [137], citing the paper of

Nagurney and Aronson [138] in Networks, developed a network economic model for cyber-

crime with a focus on financial services in which the goods (such as hacked/stolen credit

cards) were viewed as being perishable, due to their decrease in value over time. The model

was a spatial price economic equilibrium one and added to the literature on cybercrime and

cybersecurity, with a network economics focus, which also enabled insights for policymakers.

This work further led to the development of game theory models for cybersecurity invest-

ment vs. competition and assessment of network vulnerability (see [161]). In fact, as noted

by Clark [36], the developers of the Internet did not consider issues of cybersecurity nor

any underlying economics, with new visions for an Internet, now being conceptualized to

overcome some of the shortcomings [222].

8. Concluding Comments and Thoughts

This article has provided a panoramic view and discussion of the contributions of many

researchers to the study of economic and financial networks in Networks since its estab-

lishment a half a century ago. The research has been placed in the context of the earliest

relevant publications, some dating back centuries, in order to provide a proper historical

scientific perspective, along with the accentuation of highlights of more recent research in

other outlets. The goal was to demonstrate the broad reach of the power of networks and

the impact in abstracting complex phenomena in the real world. The relevance, generality,

and flexibility of network methodologies, from models to qualitative analysis, algorithms and

computations, as well as applications, continue to build bridges to different scientific disci-

plines. New synergies are being made possible, as well as insights, through the recognition of

research on economic and financial networks in Networks by not only operations researchers

and management scientists, but also by the finance community, by economists (including

regional scientists), and even by physicists, computer scientists, and, of course, engineers.

It is the expectation that the next half century will see further dramatic interest in

economic and financial networks, and the science of networks, with the journal continuing

to be a prominent outlet for highly original, creative research on these as well as many other

related topics.
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