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Abstract. - In the well-known Braess paradox [D. Braess, Unternehmenforschung 12, 258 (1968)],
the addition of a new route in a specific congested transportation network made all the travelers
worse off in terms of their individual travel cost (time). In this paper, we consider the hypothesis
that, in congested networks, the Braess Paradox may “disappear” under higher demands, and
we prove this hypothesis by deriving a formula that provides the increase in demand that will
guarantee that the addition of that new route will no longer increase travel cost since the new
path will no longer be used. This result is established for any network in which the Braess Paradox
originally occurs. This suggests that, in the case of congested, noncooperative networks, of which
transportation networks are a prime example, a higher demand will negate the counterintuitive
phenomenon known as the Braess Paradox. At the same time, this result demonstrates that
extreme caution should be taken in the design of network infrastructure, including transportation
networks, since at higher demands, new routes/pathways may not even be used!

Introduction. – Congestion is a fundamental prob-
lem in a variety of network systems, ranging from urban
transportation networks to electric power generation and
distribution networks and the Internet [1]-[16]. Conges-
tion leads to increases in travel time, wear and tear on our
infrastructure, higher emissions due to vehicular idling, as
well as to losses in productivity.

Congested networks are flow-dependent with induced
flows being the result of the behavior of the users of the
particular network. Historically, there have been two prin-
ciples of travel behavior, dating to Wardrop [8]-[10], cor-
responding to user-optimizing (U-O) behavior, in which
travelers select their optimal routes of travel individually
and unilaterally, leading to an equilibrium, and system-
optimizing (S-O) behavior, in which a central controller
routes or assigns the flows to particular paths in the net-
work so that the total cost is minimized.

The Braess Paradox (cf. [1] and [11] for the translation
of the article from German to English) in which the cost
on used paths increases for all after the addition of a new
route occurs only under user-optimizing or selfish behav-
ior. Such behavior, however, is characteristic of commut-
ing behavior, decentralized routing on the Internet, as well

as the behavior of a spectrum of network systems, includ-
ing electric power generation and distribution networks,
in which decision-makers act independently and noncoop-
eratively [2]-[5]. The recognition of the existence of the
Braess paradox has led, in practice, to major policy deci-
sions such as road closures in Seoul, Korea; in Stuttgart,
Germany, as well as in New York City [6].

Interestingly, it was established that, for the specific
Braess network [1], the paradox no longer occurred as the
demand for travel increased [5]-[7]. This leads us to the
hypothesis that, under a higher demand, the Braess Para-
dox is negated in that the new route, which resulted in in-
creased travel time at a particular demand, will no longer
be used. We establish this result through the derivation
of a formula that is applicable to any network of general
topology in which the Braess paradox originally occurs.
For definiteness, we consider transportation networks in
which the travel cost on each link is an increasing linear
function of the flows (volume of traffic on the links) and
we do not limit the analysis to separable functions as was
the case in the original Braess Paradox network(s).

We first briefly review the U-O transportation model,
referred to, henceforth, as the traffic network equilibrium
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model, which has been widely studied and applied in prac-
tice to congested urban transportation networks globally
and the Internet, and which is also closely related to elec-
tric power generation and distribution networks [17, 18].
We then derive the formula and establish our result. Sub-
sequently, we revisit the Braess Paradox example.

Traffic Network Equilibrium and the Braess
Paradox. – Following [16], let G denote a traffic net-
work with the set of directed links L with nL elements
and the set of origin/destination (O/D) pairs of nodes W
with nW elements. We denote the set of acyclic paths
joining O/D pair w by Pw. The set of (acyclic) paths for
all O/D pairs is denoted by P and there are nP such paths
in the network. Links are denoted by a, b, etc; paths by
p, q, etc., and O/D pairs by w1, w2, etc.

We assume that the demand dw is known for all w ∈ W
and group the demands into the vector d ∈ RnW

+ . We
denote the nonnegative flow on path p by xp, the flow on
link a by fa, and group the path flows into the vector
x ∈ RnP

+ and the link flows into the vector f ∈ RnL
+ .

The following conservation of flow equations must hold:∑
p∈Pw

xp = dw, ∀w ∈ W, (1)

which means that the sum of path flows on paths connect-
ing each O/D pair must be equal to the demand for that
O/D pair, or, in matrix form,

Bx = d, (2)

where B is the nW × nP matrix whose (w, p) entry is 1 if
path p connects w and 0, otherwise.

The link flows are related to the path flows, in turn,
through the following conservation of flow equations:

fa =
∑
p∈P

xpδap, ∀a ∈ L, (3)

where δap = 1, if link a is contained in path p, and δap = 0,
otherwise. Hence, the flow on a link is equal to the sum of
the flows on paths that contain that link. In matrix form,
we may write

f = Ax, (4)

where A is the nL × nP link-path incidence matrix whose
(a, p) entry is 1 if link a is contained in path p and 0,
otherwise.

The user (travel) cost on a path p is denoted by Cp and
the user (travel) cost on a link a by ca. The user costs
on paths are related to user costs on links through the
following expression:

Cp =
∑
a∈L

caδap, ∀p ∈ P, (5)

that is, the user cost on a path is equal to the sum of
user costs on links that make up the path. In engineering

practice [15], the travel time on a link is used as a proxy
for the travel cost.

Since we are concerned with congested networks, we al-
low the user link cost function on each link to depend on
the flow and, in general, upon the vector of link flows, so
that

ca = ca(f), ∀a ∈ L. (6)

We assume that the link cost functions are continuous and
monotonically increasing.

In the case where the user link cost functions are affine,
we let

ca =
∑
b∈L

gabfb + ha, ∀a ∈ L, (7)

and denote the Jacobian of the user link cost functions by
the nL × nL-dimensional matrix G where

G = [gab], (8)

which is assumed to be positive definite. This condition is
reasonable in congested networks and will also guarantee
uniqueness of the equilibrium link flow pattern.

In view of (1), (3), and (5), we may write

Cp = Cp(x), ∀p ∈ P. (9)

According to Wardrop’s first principle of travel behav-
ior: a U-O or equilibrium flow pattern is defined as fol-
lows. A path flow pattern x∗ ∈ K, where K ≡ {x|x ∈
RnP

+ and (2) holds}, is said to be in equilibrium, if the fol-
lowing conditions hold for each O/D pair w ∈ W and each
path p ∈ Pw:

Cp(x∗)
{

= λw, if x∗p > 0,
≥ λw, if x∗p = 0. (10)

The interpretation of conditions (10) is that all used
paths connecting an O/D pair w have equal and minimal
costs (with these minimal path costs equal to the equilib-
rium travel disutility, denoted by λw). These conditions
are also referred to as the user-optimized conditions ([10,
12]) since no traveler has any incentive to switch his travel
path. As established in [14], the equilibrium pattern ac-
cording to above definition is also the solution of a varia-
tional inequality problem.

In the classical traffic network equilibrium problem, in
which the cost on each link depends solely on the flow
on that link, the traffic network equilibrium conditions
(10) can be reformulated as the solution to an appropri-
ately constructed optimization problem [9]. For additional
background on this model, along with its impacts, see [12].

Consider now the linear system (2) and (4) expressed
as: (

A
B

)
x =

(
f
d

)
, x ≥ 0, (11)

and assume that it admits only one solution, that is, rank(
A
B

)
= nP . A necessary condition for this is that nL +

nW ≥ nP (cf. [16]).
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A change in the travel demand, ∆d, will induce uniquely
determined changes ∆f , ∆x, ∆c, ∆C, and ∆λ, in the U-
O link flow and path flow patterns, and the incurred U-O
link cost, path cost, and O/D pair travel disutilities.

By virtue of (2), (4), (5), and (7):

∆d = B∆x, ∆f = A∆x, ∆c = G∆f, ∆C = AT ∆c. (12)

We assume that the flow on every path is positive before
and after the change ∆d. It follows then from (10) that:

∆Cp = ∆λw, ∀p ∈ Pw,∀w. (13)

Hence,
∆C = BT ∆λ. (14)

Combining now (12) and (14), we get

BT ∆λ = ∆C = AT ∆c = AT G∆f = AT GA∆x. (15)

Hence,(
AT GA BT

B 0

) (
∆x
−∆λ

)
=

(
0

∆d

)
. (16)

The linear system (16) can be used to determine the
changes in the path flows ∆x (and the travel disutilities
∆λ) induced by a change ∆d in the demand.

We now focus on networks in which the Braess Paradox
occurs. We are interested in using the system (16) to
analyze and determine whether there exists an increase in
demand that will result in the added path that resulted
in the Braess Paradox (at a given demand) will no longer
be used and, thus, will have zero flow. In this case, at the
new demand, which is higher than the original one, the
Braess Paradox will not occur.

We denote the path that, when it was added to the
original network, it resulted in the occurrence of the Braess
Paradox, by r. Hence, the travel cost increased, after the
addition of r, for all travelers between the O/D pair that
the new path r joined.

For transparency, and clarity, we now consider (as was
the case in the original Braess Paradox network) that there
is a single O/D pair w1 in the network. Also, we are
interested in the ∆xr = −xr, which would mean that,
at the increased level of demand, the new flow on path r
would (just) drop to zero.

We now adapt expression (16) to a single O/D pair w1

and assume that the path r is the last path. Before ap-
plying Cramer’s Rule to (16) we need some preliminaries.

Note that, in the case of the addition of a new path r,
we may write:

G =
(

Ĝ 0
0 gnew

)
, (17)

where Ĝ was the Jacobian of the link cost functions in the
original network (before the addition of the path r) and

gnew is the Jacobian of the user link cost functions on the
new links. We assume that the original link cost functions
do not depend on the flows on the new links.

Also, we have that:

A =
(

Â Ar

0 1

)
, (18)

where Â is the arc-path incidence matrix for the original
network (before the addition of the path r), Ar is the arc-
path incidence matrix for path r relative to the original
links, and 1 is the vector with as many components, all
equal to 1, as there are new links in the new path r.

With G as in (17) and A as in (18), AT GA (cf. [16])
with its last column replaced by the column vector with
all zeros is

AT GA =
(

ÂT ĜÂ 0
AT

r ĜÂ 0

)
. (19)

We, thus, obtain, after an application of Cramer’s Rule
to (16), with the above specifications, and straightforward
manipulations, the following formula, which relates the
decrease in flow on path r to the change in demand for
the O/D pair ∆dw1 :

−xr =

det

 ÂT ĜÂ 0 BT
1

AT
r ĜÂ 0 1
B1 1 0


det

(
AT GA BT

B 0

) ∆dw1 , (20)

where det denotes the determinant and B1 is the B vector
with one element removed (note that all the elements of
B since we are considering a single O/D pair, are equal to
1).

Recall that for E, J , H, and K matrices of dimensions:
n× n, n×m, m× n, and m×m, respectively, and for K
invertible:

det

(
E J
H K

)
= det(K)det(E − JK−1H). (21)

We know that det

(
AT GA BT

B 0

)
6= 0, by as-

sumption that rank
(

A
B

)
= nP . Moreover, as

proven in [16], det

(
AT GA BT

−B 0

)
≥ 0 and, hence,

det

(
AT GA BT

B 0

)
≤ 0. Applying now formula (21)

to evaluate the numerator determinant in (20), gives us,
after simplification:

−det
(
ÂT ĜÂ−BT

1 AT
r ĜÂ

)
. (22)

But since it has been assumed that we are dealing with a
network in which the Braess Paradox occurs at the specific
dw1 , it follows from Theorem 4.1 in [16] that the sign of
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Fig. 1: The Braess Network

det
(
ÂT ĜÂ−BT

1 AT
r ĜÂ

)
is negative. Returning to equa-

tion (20) we have established that the determinant in the
numerator has a positive value, the determinant in the de-
nominator has a negative value and, consequently, there
exists a positive ∆dw1 that will yield a solution to (20) for
−xr, where recall that xr is the path flow on the added
path r, which resulted in the Braess Paradox occurring.

Hence, we have established the following:

Theorem
Under the preceding assumptions, there exists a ∆dw1 pos-
itive for which the Braess Paradox is negated in that the
flow on the path r that resulted in the Braess Paradox oc-
curring at a fixed level of demand, will no longer occur at
the new level of demand since that path will not be used
and, hence, it cannot result in an increase in travel cost.

Interpretation . – This result has fascinating impli-
cations. It demonstrates that, as demand increases, the
Braess Paradox “works itself out.” One would expect that
at a higher level of demand the network gets even more
congested and that more of the paths/routes would then
be used. However, the Theorem establishes that, in fact,
the route that resulted in the Braess Paradox at a particu-
lar level of demand will no longer be used at a higher level
of demand. This suggests that there may be an underlying
“wisdom of crowds phenomenon” taking place.

It is worth noting that the qualitative results in the
above Theorem also hold for nonlinear, strongly monotone
cost functions (cf. [16]).

We now show how the Theorem can be applied.
Consider the Braess Paradox ([1], [11], [17]) example

after the addition of a new link e and as depicted in Figure
1. There are four nodes: 1, 2, 3, 4; five links: a, b, c, d, e;
and a single O/D pair w1 = (1, 4). There are, hence, three
paths connecting the single O/D pair, which are denoted,
respectively, by: p1 = (a, c), p2 = (b, d) and p3 = (a, e, d)
and, thus, r = p3.

The link cost functions are:

ca(fa) = 10fa, cb(fb) = fb + 50,

cc(fc) = fc + 50, cd(fd) = 10fd, ce(fe) = fe + 10.

We can also write down the path cost functions explic-
itly as follows:

Cp1(x) = 11xp1 + 10xp3 + 50,

Cp2(x) = 11xp2 + 10xp3 + 50,

Cp3(x) = 10xp1 + 21xp3 + 10xp2 + 10.

The Braess Paradox demonstrates that, for a fixed de-
mand of dw1 = 6, the addition of link e, which provides
the users with the new path p3, as in the network in Figure
1, actually makes all users worse off since without the link
e, the travel disutility and path costs are 83, whereas with
the new link/path, the travel disutility and path costs go
up for all users to 92! Hence, everyone in the network is
worse off by the addition of the new route r = p3 which
results when the new link e is added, with associated equi-
librium path flow pattern: x∗p1

= x∗p2
= x∗p3

= 2.
We now demonstrate how formula (20) can be used.

Specifically, we have, for this example, that x∗r = x∗p3
= 2.

Consequently, it follows from (20) that:

−2 =

det


11 0 0 1
0 11 0 1
10 10 0 1
1 1 1 0



det


11 0 10 1
0 11 10 1
10 10 21 1
1 1 1 0


∆dw1 , (23)

The determinant in the numerator in (23) is equal to
99 (and is positive as our theory predicts) whereas the
denominator in (23) is equal to -143 and is negative (as our
theory also predicts). The value of ∆dw1 in (23) is, thus,
2 8

9 . This means that at a new demand of 6 + 2 8
9 = 8 8

9 the
new path r will not be used and its flow will be identically
0. This is, indeed, the case. For the new demand of 8 8

9 ,
following the equilibrium conditions (10) and using the
above explicit path cost expressions, we obtain that the
new U-O path flow pattern is now: x∗p1

= x∗p2
= 4 4

9 , and
x∗r = 0, with Cp1 = Cp2 = 98 8

9 at the higher level of
demand for the network without path r and, hence, the
Braess Paradox, after the addition of the new path, at the
higher demand, no longer occurs since the new path r is
not even used! As established in [7] and, using another
formulation in [5], for this particular network, the Braess
Paradox occurs over a range of demand. Our formula,
however, provides at what increase in demand the Braess
Paradox is negated, and, more importantly, it yields a
powerful qualitative result for any such network.
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