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Abstract The world is now faced with the COVID-19 pandemic, a healthcare disaster, not limited

to time or location. The COVID-19 pandemic has demonstrated the importance of operations

research and related analytical tools, with the research and practitioner communities channeling

and harnessing their expertise. It has inspired associated investigations and modeling and method-

ological advances in order to support deeper insights and enhanced decision-making as well as the

provision of guidance to policy-makers. In this tutorial, I overview some of the novel advances and

applications, inspired by the COVID-19 pandemic, utilizing game theory. The focus of the tutorial

is on supply chain networks, although the scope is broader. The tutorial first presents an overview

of variational inequality theory, which is the methodology utilized for the formulation, qualitative

analysis, and solution of the described models. The supply chain network models presented are re-

cently introduced ones that capture, respectively: the inclusion of labor into supply chain networks,

enabling the quantitative assessment of disruptions to labor; the fierce competition among entities

for medical supplies in the pandemic from PPEs to, now, vaccines; and, finally, the calculation of

the potential synergy associated with the teaming, that is, the cooperation, among organizations

in the pandemic, under cost and demand uncertainty, to provide needed supplies. Suggestions for

future research are provided.

Keywords: COVID-19 pandemic, game theory, variational inequalities, supply chain networks,

optimization

1. Introduction

On March 11, 2020, The World Health Organization declared the COVID-19 pandemic, due to the

global spread of the novel coronavirus SARS-CoV-2, which causes the disease. The pandemic has

impacted supply chains, commerce, and trade, employment and work, healthcare, transportation,

education, entertainment, and social activities world-wide, affecting six continents. This pandemic

1



is a disaster not limited in time and location - as is the case in many natural disasters - and has

revealed major gaps in disaster preparedness and response. Economies and societies have undergone

significant transformations in this pandemic, with effects that will linger and that we can expect

will be long-studied. Raker, Zacher, and Lowe (2020) have noted that the pandemic is “a disaster

of unprecedented scale and scope.” As of April 6, 2021, the global COVID-19 death toll surpassed

3 million, with the United States having the highest number of deaths in the world, at 555,000,

accounting for about 19% of all deaths due to COVID-19 (cf. Abraham and Maan (2021)). By

May 20, 2021, the World Health Organization statistics had reported around 3.4 million deaths

globally due to COVID-19, with the official death toll very likely “significantly undercounted” (see

Revill and Farge (2021)).

The COVID-19 pandemic has vividly demonstrated the importance of operations research and

related analytical tools, with the research and practitioner communities channeling and harnessing

their expertise. It has inspired associated investigations and modeling and methodological advances

in order to support deeper insights and to enhance decision-making as well as the provision of

guidance to policy-makers. Indeed, the COVID-19 pandemic, now officially over a year old, has

given rise to a relevant scientific literature, which is growing. For example, Currie et al. (2020)

identified many complex challenges due to the COVID-19 pandemic and discussed how simulation

modelling can assist in supporting informed decision-making. Ivanov (2020) highlighted simulation-

based research concentrating on the potential impacts on global supply chains of the COVID-19

pandemic. Queiroz et al. (2020), in turn, described a research agenda through a structured

literature review of COVID-19 related work and supply chain research on earlier epidemics. Ivanov

and Dolgui (2020) argued for the necessity of a new perspective due to the coronavirus COVID-19

outbreak through the use of what they termed: intertwined supply networks. Ivanov and Das (2020)

proposed a global supply chain model with the inclusion of the ripple effect of an epidemic outbreak.

The authors also discussed pandemic supply risk mitigation measures and possible recovery paths,

along with prospective global supply chain (re)-designs. van Hoek (2020) explored empirically

supply chain risks in the context of COVID-19, along with practice-based approaches to enhance

supply chain resilience. Paul and Chowdhury (2020), in turn, presented a mathematical model that

can handle both supply and demand disruptions and that can be solved analytically.

Choi (2021), in his panoramic paper, overviewed the operations research (OR) literature and

practices related to pandemics (including COVID-19), to identify what challenges OR can assist in

tackling under COVID-19. He classified the literature into three sets: “before pandemic,” “during

pandemic,” and “after pandemic.” Choi’s presentation of the literature focused on three main

parties: (1) governments, (2) healthcare and non-profit organizations, and (3) companies (i.e.,

business operations). Kaplan (2020), early on in the pandemic, constructed “scratch models,”
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which are mathematical models created from scratch in real time, due to the pressures from various

stakeholders to assist in both understanding the COVID-19 pandemic and how best to respond, on

a local level, in real-time, given the knowledge at the time. Applications that he considered in his

paper included: recommending event crowd-size restrictions, surge planning for a hospital, timing

decisions with respect to university activities, and scenario analyses to determine the impacts of

alternative interventions, among others.

Interestingly, and, as noted in Nagurney (2020a), Craighead, Ketchen, and Darby (2020) dis-

cussed a spectrum of theories for addressing the impacts of the COVID-19 pandemic on supply

chains, with an eye towards how different organizations responded, and how supply chains, along

with the associated processes, can be re-tuned if and when another pandemic occurs. Game theory

is among the theories that they highlighted.

1.1 Some Background on Game Theory and Relevant Literature

In this tutorial, I overview some of the novel advances and applications, inspired by the COVID-19

pandemic, utilizing game theory. The focus of the tutorial is on supply chain networks, although

the scope is broader.

Game theory is a powerful formalism since it captures interactions among multiple decision-

makers. As noted in Nagurney (2020a), scholars in disciplines from mathematics to business to even

political science use game theory to understand how people (or even organizations and governments)

are likely to make decisions in response to actions by others. Typically, in the game theory model

setting, one identifies the “players” in the game, their strategies, reflected by variables that they

control, along with their objective functions, usually represented as utility functions, that they

seek to individually optimize, and that depend upon their strategies and the strategies of the

other players. Furthermore, each of the players in the game has his/her strategies subject to

constraints. There are noncooperative games, in which the players compete with one another as

well as cooperative games. In a sense, game theory problems and models build upon classical

optimization models, in which there is a single decision-maker seeking to determine an optimal

solution, given an objective function, variables, and constraints.

Game theory is also a natural paradigm for quantitatively investigating many important is-

sues arising from the COVID-19 pandemic. For example, numerous firms have been affected by

various supply chain disruptions and, consequently, consumers have been as well. Examples of

sectors that have suffered include food (meat packing plants, fresh produce harvesting, etc.) due

to labor shortages, as a consequence of illnesses, deaths, decreases in productivity, as well as new

measures of social distancing (cf. Polansek and Huffstutter (2020), Hardwick (2020), Corkery and
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Yaffe-Bellany (2020), Corbishley (2020), Nagurney (2021b)). Technological product availability has

also been adversely affected, due to, among other reasons, changes in consumer demand as workers

increasingly work from home, with shortages of computer chips disrupting automobile manufactur-

ing (see Whalen, Albergotti, and Lynch (2021)). Even blood supply chains have been disrupted

in the pandemic (Nagurney (2020b)). The fierce competition among healthcare organizations as

well as national governments, in turn, for Personal Protective Equipment (PPE) and other medical

supplies, such as ventilators and testing kits, further illustrates the necessity of capturing the inter-

actions among decision-makers in this new world scenario of the COVID-19 pandemic (cf. Burki

(2020), Ranney, Griffeth, and Jha (2020), Nagurney et al. (2021)). More recently, there has been

intense competition for vaccines among national governments and even on the individual level as

supplies of vaccines remain limited and the demand for them immense (see Falcone (2020) and

Walsh (2021)). Vaccines and mass vaccination are viewed as a gateway out of the pandemic and a

return to lives closer to pre-pandemic “normality.”

Hence, given that the COVID-19 pandemic is a disaster on a global scale and is also a healthcare

disaster, it is important to highlight the relevant literature on game theory and disaster manage-

ment. Historically, the literature on optimization and disaster management, especially with a focus

on humanitarian logistics, has been growing in scope over the past two decades (cf. Balcik and

Beamon (2008), Mete and Zabinsky (2010), Nagurney, Salarpour, and Daniele (2019) and the ref-

erences therein). In such contexts it is essential to identify the appropriate objective functions

and constraints with the former being distinct from, for example, profit maximization used widely

in commercial supply chains (cf. Nagurney (2006) and the references therein). As an illustration,

Tzeng, Cheng, and Huang (2007) constructed a dynamic selection of the volume of relief items to be

transported from depots to demand points such that three objectives are achieved: minimum total

cost, minimum travel time, and maximum demand satisfaction. Haghani and Oh (1996) in their

classical paper considered commodity carry-over, routing, and mode transfer. Ozdamar, Ekinci,

and Kkyazici (2004), Yi and Kumar (2007), and Yi and Ozdamar (2007) incorporated split delivery

and the sum of unmet demands in their models. Vitoriano et al. (2011) proposed a multicriteria

model for humanitarian relief distribution with criteria of time of response, equity, and security.

Huang, Smilowitz, and Balcik (2012) captured several relevant disaster relief objectives of efficiency,

efficacy, and equity with the consideration of both vehicle routing and resource distribution. For

a variety of related issues and perspectives, we refer the reader to the volumes on Dynamics of

Disasters edited by Kotsireas, Pardalos, and Nagurney (2018) and by Kotsireas et al. (2021).

With respect to game theory and disaster management, Muggy and Heier Stamm (2014) noted,

in their survey on game theory and humanitarian operations, that applications had been limited.

More recently, Seaberg, Devine, and Zhuang (2017) emphasized, in their review of 57 papers over the
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period 2006 to 2016, that the response phase of disaster management, which also includes the phases

of mitigation, preparedness, and recovery, had been addressed most extensively. Subsequently,

Coles, Zhang, and Zhuang (2018) noted the usefulness of noncooperative game theory in aiding

different agencies and organizations, as well as governments, plus NGOs, in enhanced decision-

making, along with the identification of partnerships during response and recovery phases. Earlier,

Coles and Zhuang (2011) had discussed the relevance of cooperative game theory in disaster recovery

operations. Nagurney and Qiang (2020), in turn, identified potential synergies in the teaming of

humanitarian organizations in disaster relief, using a supply chain network paradigm. Mamani,

Chick, and Simchi-Levi (2013) in their game theory paper, also of relevance to the COVID-19

pandemic, demonstrated that lack of coordination can lead to unbalanced distribution and shortages

(or excesses) of influenza vaccines. Cost-sharing contracts could, in turn, enhance global vaccine

allocation, through increased coordination.

Of particular relevance in the COVID-19 pandemic are Generalized Nash Equilibrium (GNE)

models (cf. Debreu (1952), Rosen (1965)), in which not only do the utility functions of the players

in the game depend on each others’ strategies, but their respective feasible sets do, as well. In

Nash Equilibrium problems (see Nash (1950, 1951)) of well-known noncooperative games, only the

utility functions depend on the strategies of the players and the feasible sets do not. Pre-pandemic,

the first GNE model for disaster relief was constructed by Nagurney, Alvarez Flores, and Soylu

(2016), who integrated both logistical and financial aspects of humanitarian organizations (see also

Toyasaki and Wakolbinger (2014)), and, because of the underlying objective functions, were able

to construct an optimization formulation. Subsequently, Nagurney, Salarpour, and Daniele (2019)

used the concept of a Variational Equilibrium (cf. Kulkarni and Shanbhag (2012)) to construct a

variational inequality formulation of an integrated financial and logistical model for disaster relief,

under budget constraints. Additional relevant research on game theory and disaster management

can be found in the papers of Nagurney et al. (2018), Gossler et al. (2019), and Nagurney et

al. (2020), where the first stochastic Generalized Nash Equilibrium model for disaster relief was

constructed, in which each relief organization is faced with a two-stage stochastic optimization

problem (see also Rawls and Turnquist (2010), Salmeron and Apte (2010), Mete and Zabinsky

(2010), Falasca and Zobel (2011), Grass and Fischer (2016)).

1.2 Organization of this Tutorial

In Section 2, we overview some of the fundamentals of variational inequality theory in order to

document the methodological tools in the formulation, analysis, and solution of various game theory

models inspired by the COVID-19 pandemic. In Sections 3, 4, and 5 we present various applications.

Specifically, in Section 3, we focus on the commercial sector and present a game theory model of
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supply chain network competition in which labor is a critical resource. The governing equilibrium

concept therein is that of a Nash equilibrium. In Section 4, we then discuss a Generalized Nash

Equilibrium model focusing on competition for medical supplies under demand uncertainty. Section

5 then turns to the study of cooperation among organizations and highlights a measure to quantify

synergy in the case of multiproduct supply chains, using a mean-variance approach. Additional

relevant literature is highlighted within each of these sections. Section 6 concludes this tutorial and

also highlights directions for future research.

2. Methodology

In this section, some of the fundamental theory is recalled, beginning with variational inequality

theory and segueing to game theory and its relationship to the former. The various proofs can be

found in Nagurney (1999) and in the classical book by Kinderlehrer and Stampacchia (1980), with

additional references noted, as appropriate.

2.1 Variational Inequality Theory

In this subsection, a brief overview of the theory of variational inequalities is given, including

qualitative results, notably, regarding the existence and uniqueness of solutions. All definitions and

theorems are taken from Nagurney (1999). All vectors are assumed to be column vectors.

Definition 2.1: Finite-Dimensional Variational Inequality Problem

The finite-dimensional variational inequality problem, VI(F,K), is to determine a vector X∗ ∈ K ⊂
RN , such that

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (2.1a)

where F is a given continuous function from K to RN , K is a given closed convex set, and 〈·, ·〉 de-

notes the inner product in N -dimensional Euclidean space. In (2.1a), F (X)≡(F1(X), F2(X), . . . , FN (X))T ,

and X ≡ (X1, X2, . . . , XN )T . Recall that for two vectors u, v ∈ RN , the inner product 〈u, v〉 =

‖u‖‖v‖cosθ, where θ is the angle between the vectors u and v, and (2.1a) is equivalent to

N∑
i=1

Fi(X∗) · (Xi −X∗
i ) ≥ 0, ∀X ∈ K. (2.1b)

The variational inequality problem is a general problem construct that encompasses a wide

spectrum of mathematical programming problems, including: optimization problems, complemen-

tarity problems, and is also related to fixed point problems (see Nagurney (1999)). It has been
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shown that optimization problems, both constrained and unconstrained, can be reformulated as

variational inequality problems. The relationship between variational inequalities and optimization

problems is now reviewed.

Proposition 2.1: Formulation of a Constrained Optimization Problem as a Variational

Inequality

Let X∗ be a solution to the optimization problem:

Minimize f(X) (2.2)

subject to:

X ∈ K,

where f is continuously differentiable and K is closed and convex. Then X∗ is a solution of the

variational inequality problem:

〈∇f(X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (2.3)

where ∇f(X) is the gradient vector of f with respect to X; that is, ∇f(X)≡(∂f(X)
∂X1

, . . . , ∂f(X)
∂XN

)T .

Proposition 2.2: Formulation of an Unconstrained Optimization Problem as a Varia-

tional Inequality

If f(X) is a convex function and X∗ is a solution to VI(∇f,K), then X∗ is a solution to the

optimization problem (2.2). In the case that the feasible set K = RN , then the unconstrained

optimization problem is also a variational inequality problem.

The variational inequality problem can be reformulated as an optimization problem under cer-

tain symmetry conditions. Several definitions are now recalled, followed by a theorem presenting

the above relationship.

Definition 2.2: Positive Semi-Definiteness and Definiteness

An N ×N matrix M(X), whose elements mij(X); i, j = 1, ..., N , are functions defined on the set

T ⊂ RN , is said to be positive-semidefinite on T if

vT M(X)v ≥ 0, ∀v ∈ RN , X ∈ T . (2.4)

It is said to be positive-definite on T if

vT M(X)v > 0, ∀v 6= 0, v ∈ RN , X ∈ T . (2.5)
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Finally, it is said to be strongly positive-definite on T if

vT M(X)v ≥ α‖v‖2, for some α > 0, ∀v ∈ RN , X ∈ T . (2.6)

Theorem 2.1: Reformulation of a Variational Inequality Problem as an Optimization

Problem Under Symmetry Assumption

Assume that F (X) is continuously differentiable on K and that the Jacobian matrix

∇F (X) =


∂F1
∂X1

. . . ∂F1
∂XN

... . . .
...

∂FN
∂X1

. . . ∂FN
∂XN

 (2.7)

is symmetric and positive-semidefinite. Then there is a real-valued convex function f : K 7−→ R1

satisfying

∇f(X) = F (X) (2.8)

with X∗ the solution of VI(F,K) also being the solution of the mathematical programming problem:

Minimize f(X)

subject to:

X ∈ K,

where f(X) =
∫

F (X)T dx, and
∫

is a line integral.

Hence, the variational inequality is a more general problem formulation than an optimization

problem formulation, since it can also handle a function F (X) with an asymmetric Jacobian (see

Nagurney (1999)). This enriches the breadth of applications that can be rigorously handled in

different disciplines. Next, certain qualitative properties associated with variational inequality

problems are presented.

Existence of a solution to a variational inequality problem follows from continuity of the function

F (X) that enters the variational inequality, provided that the feasible set K is compact as stated

in Theorem 2.2.

Theorem 2.2: Existence of a Solution

If K is a compact convex set and F (X) is continuous on K, then the variational inequality problem

admits at least one solution X∗.
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Theorem 2.3: Existence of a Solution Using a Coercivity Condition

Suppose that F (X) satisfies the coercivity condition

〈F (X)− F (X0), X −X0〉
‖X −X0‖

→ ∞ (2.9)

as ‖X‖ → ∞ for X ∈ K and for some X0 ∈ K. Then VI(F,K) always has a solution.

According to the above theorem, existence of a solution to a variational inequality problem is

guaranteed if the coercivity condition holds. Below, various monotonicity conditions are utilized

in addressing the qualitative properties of existence and uniqueness of solutions, but, first, basic

definitions of monotonicity are provided.

Definition 2.3: Monotonicity

F (X) is monotone on K if

〈F (X1)− F (X2), X1 −X2〉 ≥ 0, ∀X1, X2 ∈ K. (2.10)

Definition 2.4: Strict Monotonicity

F (X) is strictly monotone on K if

〈F (X1)− F (X2), X1 −X2〉 > 0, ∀X1, X2 ∈ K, X1 6= X2. (2.11)

Definition 2.5: Strong Monotonicity

F (X) is strongly monotone on K if

〈F (X1)− F (X2), X1 −X2〉 ≥ α‖X1 −X2‖2, ∀X1, X2 ∈ K, (2.12)

where α > 0.

Definition 2.6: Lipschitz Continuity

F (X) is Lipschitz continuous on K if there exists an L > 0, such that

〈F (X1)− F (X2), X1 −X2〉 ≤ L‖X1 −X2‖2, ∀X1, X2 ∈ K, (2.13)

where L is known as the Lipschitz constant.
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Theorem 2.4: Uniqueness of a Solution Under Strict Monotonicity

Suppose that F (X) is strictly monotone on K. Then the solution to the VI(F,K) problem is unique,

if one exists.

Theorem 2.5: Existence and Uniqueness Under Strong Monotonicity

Suppose that F (X) is strongly monotone on K. Then there exists precisely one solution X∗ to

VI(F,K).

Note that, according to Theorem 2.5, strong monotonicity of the function F guarantees both

existence and uniqueness of a solution, in the case of an unbounded feasible set K. If the feasible

set K is compact, that is, closed and bounded, the continuity of F guarantees the existence of a

solution. The strict monotonicity of F is then sufficient to guarantee the uniqueness of a solution,

provided that it exists.

2.2 The Relationships between Variational Inequalities and Game Theory

In this section, some of the relationships between variational inequalities and game theory are

briefly discussed.

Nash (1950, 1951) developed noncooperative game theory, involving multiple players, each of

whom acts in his/her own interest. In particular, consider a game with m players, each player

i having, without loss of generality, a strategy vector Xi = {Xi1, ..., Xin} selected from a closed,

convex set Ki ⊂ Rn. Each player i seeks to maximize his/her own utility function, Ui:K → R, where

K = K1×K2×· · ·×Km ⊂ Rmn. The utility of player i, Ui, depends not only on his/her own strategy

vector, Xi, but also on the strategy vectors of all the other players, (X1, . . . , Xi−1, Xi+1, . . . , Xm).

An equilibrium is achieved if no one can increase his/her utility by unilaterally altering the value

of its strategy vector. The formal definition of the Nash equilibrium is as follows.

Definition 2.7: Nash Equilibrium

A Nash equilibrium is a strategy vector

X∗ = (X∗
1 , . . . , X∗

m) ∈ K, (2.14)

where

Ui(X∗
i , X̂∗

i ) ≥ Ui(Xi, X̂
∗
i ), ∀Xi ∈ Ki,∀i, (2.15)

and X̂∗
i = (X∗

1 , . . . , X∗
i−1, X

∗
i+1, . . . , X

∗
m).
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It has been shown by Hartman and Stampacchia (1966) and Gabay and Moulin (1980) that,

given continuously differentiable and concave utility functions, Ui, ∀i, the Nash equilibrium problem

can be formulated as a variational inequality problem defined on K.

Theorem 2.6: Variational Inequality Formulation of Nash Equilibrium

Under the assumption that each utility function Ui is continuously differentiable and concave, X∗

is a Nash equilibrium if and only if X∗ ∈ K is a solution of the variational inequality

〈F (X∗), X −X∗〉 ≥ 0, X ∈ K, (2.16)

where F (X) ≡ (−∇X1U1(X), . . . ,−∇XmUm(X))T , and ∇XiUi(X) = (∂Ui(X)
∂Xi1

, . . . , ∂Ui(X)
∂Xin

).

The conditions for existence and uniqueness of a Nash equilibrium are now introduced. As

stated in the following theorem, Rosen (1965) presented existence under the assumptions that K is

compact and each Ui is continuously differentiable.

Theorem 2.7: Existence of a Solution Under Compactness and Continuity

Suppose that the feasible set K is compact and that each Ui is continuously differentiable ∀i. Then

existence of a Nash equilibrium is guaranteed.

Gabay and Moulin (1980) relaxed the assumption of compactness of K and established existence

of a Nash equilibrium after imposing a coercivity condition on F (X).

Theorem 2.8: Existence of a Solution Under Coercivity

Suppose that F (X), as given in Theorem 2.6, satisfies the coercivity condition (2.9). Then there

exists a Nash equilibrium.

Karamardian (1969), earlier, established existence and uniqueness of a Nash equilibrium under

the strong monotonicity assumption.

Theorem 2.9: Existence and Uniqueness of a Solution Under Strong Monotonicity

Assume that F (X), as given in Theorem 2.6, is strongly monotone on K. Then there exists precisely

one Nash equilibrium X∗.

Additionally, based on Theorem 2.4, uniqueness of a Nash equilibrium can be guaranteed under

the assumptions that F (X) is strictly monotone and that an equilibrium exists.

Theorem 2.10: Uniqueness of a Solution Under Strict Monotonicity

Suppose that F (X), as given in Theorem 2.6, is strictly monotone on K. Then the Nash equilibrium,
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X∗, is unique, if it exists.

It is important to note that one can construct associated dynamic adjustment or tatonnenment

processes associated with the players in a game. For background material on the theory of pro-

jected dynamical systems, see Dupuis and Nagurney (1993) and Nagurney and Zhang (1996), where

additional results can be found, including conditions under which the set of stationary points of a

projected dynamical system, which is a nonclassical dynamic system, coincides with the set of solu-

tions to the related variational inequality problem. In the latter reference, stability analysis results

are presented, of relevance to game theory problems as well as to a variety of equilibrium prob-

lems that have been formulated as variational inequality problems, from traffic network equilibrium

problems to spatial price equilibrium problems and even financial network problems.

We now turn to a discussion of Generalized Nash Equilibrium (GNE) in which the constraints

underlying the players’ strategies also depend on the strategies of their rivals. A frequently encoun-

tered class of Generalized Nash games considers common coupling constraints that the players’

strategies are required to satisfy (Kulkarni and Shanbhag (2012)). These games are also known

as Generalized Nash games with shared constraints (Rosen (1965), Facchinei and Kanow (2007),

Fischer, Herrich, and Schonefeld (2014)).

Definition 2.10: Generalized Nash Equilibrium

A strategy vector X∗ ∈ K ≡
∏m

i=1 Ki, X
∗ ∈ S, constitutes a Generalized Nash Equilibrium if for

each player i; i = 1, ...,m :

Ui(X∗
i , X̂∗

i ) ≥ Ui(Xi, X̂∗
i ), ∀Xi ∈ Ki,∀X ∈ S, (2.17)

where

X̂∗
i ≡ (X∗

1 , . . . , X∗
i−1, X

∗
i+1, . . . , X

∗
m),

Ki is the feasible set of individual player i and S is the feasible set consisting of the shared con-

straints.

Bensoussan (1974) formulated the GNE problem as a quasivariational inequality. Nevertheless,

it is recognized that GNE problems are challenging to solve as quasivariational inequality problems

since the state-of-the-art in terms of algorithmics is not as advanced as that for variational inequality

problems. Kulkarni and Shanbhag (2012) provide sufficient conditions to establish the theory of a

Variational Equilibrium as a refinement of the GNE, which is highly relevant to applications in the

COVID-19 pandemic, which we present later in this tutorial.

Definition 2.11: Variational Equilibrium

A strategy vector X∗ is said to be a variational equilibrium of the above Generalized Nash Equilib-
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rium game if X∗ ∈ K, where K ≡ K ∩ S, is a solution of the variational inequality:

−
m∑

i=1

〈∇XiÛi(X∗), Xi −X∗
i 〉 ≥ 0, ∀X ∈ K. (2.18)

2.3 An Algorithm

There are many algorithms for the computation of solutions to variational inequality problems,

including those based on the general iterative schemes of Dafermos (1983) and Dupuis and Nagurney

(1993). In this tutorial, we use the modified projection method of Korpelevich (1977), which

requires only Lipschitz continuity and monotonicity of F (X) for convergence, provided a solution

exists. We especially are interested in algorithms that resolve the variational inequality problem

into subproblems that can be solved easily and exactly in closed form.

The modified projection method, with τ denoting an iteration counter, is presented below.

Step 0: Initialization

Set X0 ∈ K. Let τ = 1 and let β be a scalar such that 0 < β ≤ 1
L , where L is the Lipschitz

continuity constant (cf. (2.13)).

Step 1: Computation

Compute X̄τ by solving the variational inequality subproblem:

〈X̄τ + βF (Xτ−1)−Xτ−1, X − X̄τ 〉 ≥ 0, ∀X ∈ K. (2.19)

Step 2: Adaptation

Compute Xτ by solving the variational inequality subproblem:

〈Xτ + βF (X̄τ )−Xτ−1, X −Xτ 〉 ≥ 0, ∀X ∈ K. (2.20)

Step 3: Convergence Verification

If max |Xτ
l −Xτ−1

l | ≤ ε, for all l, with ε > 0, a prespecified tolerance, then stop; else, set τ := τ +1,

and go to Step 1.

Theorem 2.11: Convergence of the Modified Projection Method

If F (X) is monotone and Lipschitz continuous (and a solution exists), the modified projection

algorithm converges to a solution of variational inequality (2.1a).
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We now present several important models and applications relevant to the COVID-19 pandemic

and beyond.

3. Commercial Supply Chains and the Inclusion of Labor

The COVID-19 pandemic has vividly and dramatically impacted labor, with workers getting ill,

some perishing, whereas others have experienced decreases in productivity. Some workers have not

been able to travel to locations where fresh produce needed to be picked, whereas others, including

seafarers were “stuck” on ships, due to visa issues and fears of the coronavirus, affecting trade,

as well as their well-being. Although economists have long considered labor as a critical resource,

along with capital, in various production functions, the inclusion of labor into general supply chains,

with an OR framework, did not occur until the pandemic struck.

Nagurney (2021b) constructed the first supply chain network optimization model that included

labor and labor productivity factors associated with each link in the supply chain subject to a

capacity on each link of labor, reflecting availability. That paper focused on perishable food prod-

ucts, since the food sector was one of the sectors greatly affected in a negative manner by labor

shortages in the pandemic with food workers, including pickers, processors, etc., being recognized as

essential workers (see IHS Markit (2020), Knight (2020)). That model used concepts of generalized

networks from Yu and Nagurney (2013); see also Besik and Nagurney (2017) and Nagurney et al.

(2017), to capture perishability of the food products as they move on pathways from origin nodes

to destination nodes. Nagurney (2021c), focusing on supply chain networks where perishability of

products is not a factor, proposed other sets of constraints on labor. In addition to capacities of

labor on links, she considered capacities of labor availability associated with different supply chain

network economic activities, such as production/manufacturing, storage/distribution, as well as

transportation, followed by a single bound on labor availability in the supply chain network, with

labor able to move across supply chain network economic activities. All the above models were

formulated, analyzed, and numerical examples solved, using the theory of variational inequalities,

with an eye towards the construction of game theoretic extensions.

Nagurney (2021a) proposed the first game theory framework for the inclusion of labor in com-

petitive supply chain networks under three sets of constraints. The first model, which we highlight

in this section, was a Nash Equilibrium one, since the bounds on labor were associated with the

individual links of the various competing firms. In contrast, with bounds on labor associated with

production, and, correspondingly, with storage, and with transportation, the firms’ strategies were

also constrained by these common, that is, shared constraints. Hence, the formalism therein, and

also for the final case of a capacitated labor amount in the supply chain network economy that

14



all the firms competed for and with labor free to move from activity to activity, was that of a

Generalized Nash Equilibrium.

3.1 The Supply Chain Network Game Theory Model with Labor Bounds on
Links

This model, and extensions, are due Nagurney (2021a), where additional results can be found. Here

we adapt the notation therein to conform more closely to that in Section 2. We consider m firms

that are involved in the production of a substitutable product and compete noncooperatively in

the various supply chain network economic activities of: production, transportation, storage, and

distribution of their products to consumers at the demand markets. The firms also compete with

one another for labor, since labor is essential to the above network economic activities. Each firm

is represented as a network of its economic activities as drawn in Figure 1. Note that the supply

chain networks of the individual firms do not have any links in common. The notation for the

model is given in Table 1.

Each firm i; i = 1, . . . ,m, owns ni
M production facilities; has available ni

D distribution centers,

and serves nR demand markets. Let Li denote the links comprising the supply chain network of

firm i; i = 1, . . . ,m, that it owns/controls, with a total of nLi elements. The links of Li include firm

i’s links to its production nodes; the links from production nodes to the distribution centers, the

storage links, and the links from the distribution centers to the demand markets. L then denotes

the full set of links in the supply chain network economy with L = ∪m
i=1L

i containing a total of nL

elements. Let now G = [N , L] denote the graph consisting of the set of nodes N and the set of

links L in Figure 1. Each firm seeks to determine its optimal product quantities that maximize its

profits.

Observe that production links from the top-tiered nodes i; i = 1, . . . ,m, representing firm i,

in the figure are joined to the production nodes of firm i, which are denoted, respectively, by:

M i
1, . . . ,M

i
ni

M
. The links from the production nodes, are then connected to the distribution center

nodes of each firm i; i = 1, . . . ,m, and correspond to transportation links. These nodes are denoted

by Di
1,1, . . . , D

i
ni

D,1
. The links joining nodes Di

1,1, . . . , D
i
ni

D,1
with nodes Di

1,2, . . . , D
i
ni

D,2
are the

storage links. There are also distribution links joining the nodes Di
1,2, . . . , D

i
ni

D,2
for i = 1, . . . ,m,

with the bottom demand market nodes: 1, . . . , nR. We also consider links connecting the production

nodes with the demand market nodes to represent direct shipments to the demand markets, of high

relevance in the pandemic, as in the case of electronic commerce. Of course, such links can also

denote direct deliveries to consumers in the case that the producers are farms. Note that such

distribution channels have been observed in the pandemic, as well (see, for example, Shea (2020)).
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Figure 1: The Supply Chain Network Topology of the Game Theory Model with Labor

Table 1: Notation for the Supply Chain Game Theory Modeling Framework with Labor
Notation Definition

P i
k the set of paths in firm i’s supply chain network terminating in de-

mand market k; i = 1, . . . ,m; k = 1, . . . , nR.
P i the set of all nP i paths of firm i; i = 1, . . . ,m.
P the set of all nP paths in the supply chain network economy.

xp; p ∈ P i
k the nonnegative flow on path p originating at firm node i and termi-

nating at demand market k; i = 1, . . . ,m; k = 1, . . . , nR. We group
firm i’s product path flows into the vector xi ∈ R

nPi

+ . We emphasize
that xi is the vector of strategic variables of firm i. We then group
all the firms’ product path flows into the vector x ∈ RnP

+ .
fa the nonnegative flow of the product on link a, ∀a ∈ L. We group all

the link flows into the vector f ∈ RnL
+ .

la the labor on link a (usually denoted in person hours).
αa positive factor relating input of labor to output of product flow on

link a, ∀a ∈ L.

l̄a the upper bound on the availability of labor on link a, ∀a ∈ L.
dik the demand for the product of firm i at demand market k; i =

1, . . . ,m; k = 1, . . . , nR. We group the {dik} elements for firm i into
the vector di ∈ RnR

+ and all the demands into the vector d ∈ Rm×nR
+ .

ĉa(f) the total operational cost associated with link a, ∀a ∈ L.
πa cost of a unit of labor on link a.

ρik(d) the demand price function for the product of firm i at demand market
k; i = 1, . . . ,m; k = 1, . . . , nR.

We emphasize that the topology of the supply chain networks for all the firms in Figure 1 can be

modified/adapted accordingly to reflect a specific product and application under consideration.
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The conservation of flow equations, guaranteeing that the demand for each firm’s product is

satisfied by the product shipments, is as follows, for each firm i: i = 1, . . . ,m:∑
p∈P i

k

xp = dik, k = 1, . . . , nR. (3.1)

The path flows must be nonnegative; that is, for each firm i; i = 1, . . . ,m:

xp ≥ 0, ∀p ∈ P i. (3.2)

The link flows of each firm i; i = 1, . . . ,m, in turn, are related to the path flows by the expression:

fa =
∑
p∈P

xpδap, ∀a ∈ Li, (3.3)

where δap = 1, if link a is contained in path p, and 0, otherwise. (3.3) states that the product flow

of a firm on a link is equal to the sum of that product’s flows on paths that contain that link.

As in Nagurney (2021a,b,c), we assume here that the product output on each link is a linear

function of the labor input. This corresponds to a linear production function in economics (cf.

Mishra (2007)). Thus, we have that

fa = αala, ∀a ∈ Li, i = 1, . . . ,m. (3.4)

Observe that the greater the value of αa, the more productive labor is on the link.

The utility function of firm i, Ui; i = 1, . . . ,m, denotes the profit, which is given by the difference

between its revenue and its total costs:

Ui =
nR∑
k=1

ρik(d)dik −
∑
a∈Li

ĉa(f)−
∑
a∈Li

πala. (3.5a)

The first expression after the equal sign in (3.5a) is the revenue of firm i. The second one in (3.5) is

the total operational costs for the supply chain network Li of firm i, whereas the third expression is

the total labor costs of firm i. The functions Ui; i = 1, . . . ,m, are assumed to be concave, with the

demand price functions being monotone decreasing and continuously differentiable and the total

link cost functions being convex and also continuously differentiable.

The optimization problem of each firm i; i = 1, . . . ,m, is, hence, given by:

Maximize
nR∑
k=1

ρik(d)dik −
∑
a∈Li

ĉa(f)−
∑
a∈Li

πala, (3.5b)

subject to: (3.1), (3.2), (3.3), and (3.4).
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The additional constraints on the fundamental supply chain network model described above are:

la ≤ l̄a, ∀a ∈ L. (3.6)

Constraints (3.6) reflect that there is an upper bound on labor associated with each link in the

supply chain network.

We now reformulate the objective function of each firm i; i = 1, . . . ,m, given by (3.5b) in path

flow variables only. We are able to do this because of expressions (3.1), (3.2), (3.3), and (3.4),

which, recall, relates labor to product flow. Specifically, we can redefine the total operational cost

link functions as: c̃a(x) ≡ ĉa(f), ∀a ∈ L, and the demand price functions as: ρ̃ik(x) ≡ ρik(d), ∀i,
∀k. Furthermore, as established in Nagurney (2021b), in view of (3.3) and (3.4), we have that:

la =
P

p∈P xpδap

αa
, for all a ∈ L.

Recall also that, according to Table 1, xi denotes the vector of strategies, which are the path

flows, for each firm i; i = 1, . . . ,m. We can redefine the utility/profit functions Ũi(x) ≡ Ui;

i = 1 . . . , m, and group the profits of all the firms into an m-dimensional vector Ũ , such that

Ũ = Ũ(x). (3.7)

Objective function (3.5b), in view of the above, can, thus, be expressed as:

Maximize Ũi(x) =
nR∑
k=1

ρ̃ik(x)
∑
p∈P i

k

xp −
∑
a∈Li

c̃a(x)−
∑
a∈Li

πa

αa

∑
p∈P

xpδap. (3.8)

Furthermore, it readily follows that constraint (3.6) can be reexpressed exclusively using path

flows.

3.2 Governing Equilibrium Conditions and Variational Inequality Formulations

We now state the governing equilibrium conditions for the different scenarios and provide alter-

native variational inequality formulations for each scenario.

Nash Equilibrium Conditions and Variational Inequality Formulations

We define the feasible set Ki for firm i thus: Ki ≡ {xi|xi ∈ R
nPi

+ ,
P

p∈Pi xpδap

αa
≤ l̄a,∀a ∈ Li}, for

i = 1, . . . ,m. Also, we define K ≡
∏m

i=1 Ki.

Each firm competes noncooperatively until the following equilibrium is achieved.
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Definition 3.1: Supply Chain Network Nash Equilibrium

A path flow pattern x∗ ∈ K is a supply chain network Nash Equilibrium if for each firm i; i =

1, . . . ,m:

Ũi(xi∗, x̂i∗) ≥ Ũi(xi, x̂i∗), ∀xi ∈ Ki, (3.9)

where x̂i∗ ≡ (x1∗, . . . , xi−1∗, xi+1∗, . . . , xm∗).

According to (3.9), a supply chain Nash Equilibrium is established if no firm can improve upon

its profits unilaterally. We know that K is a convex set.

Applying the classical theory of Nash equilibria and variational inequalities, as noted in Section

2 of this tutorial, under our imposed assumptions on the underlying functions, it follows that the

solution to the above Nash Equilibrium problem (see Nash (1950, 1951)) coincides with the solution

of the variational inequality problem: determine x∗ ∈ K, such that

−
m∑

i=1

〈∇xiŨi(x∗), xi − xi∗〉 ≥ 0, ∀x ∈ K, (3.10)

where 〈·, ·〉 represents the inner product in the corresponding Euclidean space, which here is of

dimension nP , and ∇xiŨi(x) is the gradient of Ũi(x) with respect to xi.

Existence of a solution to variational inequality (3.10) is guaranteed since the feasible set K is

compact and the utility functions are continuously differentiable, under our imposed assumptions.

We now provide an alternative variational inequality to (3.10) over a simpler feasible set. We

introduce Lagrange multipliers λa associated with the constraint (3.6) for each link a ∈ L and

group the Lagrange multipliers for each firm i’s network Li into the vector λi. We then group

all such vectors for the firms into the vector λ ∈ RnL
+ . Also, we define the feasible sets: K1

i ≡
{(xi, λi)|(xi, λi) ∈ R

nPi+nLi

+ }; i = 1, . . . ,m, and K1 ≡
∏m

i=1 K1
i .

Then, using similar arguments as in Theorem 1 in Nagurney, Yu, and Besik (2017), the following

result is immediate.

Theorem 3.1: Alternative Variational Inequality Formulation of Nash Equilibrium

The supply chain network Nash Equilibrium satisfying Definition 3.1 is equivalent to the solution of

the variational inequality: determine the vector of equilibrium path flows and the vector of optimal

Lagrange multipliers, (x∗, λ∗) ∈ K1, such that:

m∑
i=1

nR∑
k=1

∑
p∈P i

k

∂C̃p(x∗)
∂xp

+
∑
a∈Li

λ∗a
αa

δap +
∑
a∈Li

πa

αa
δap − ρ̃ik(x∗)−

nR∑
l=1

∂ρ̃il(x∗)
∂xp

∑
q∈P i

l

x∗q

× [xp − x∗p]
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+
∑
a∈L

[
l̄a −

∑
p∈P x∗pδap

αa

]
× [λa − λ∗a] ≥ 0, ∀(x, λ) ∈ K1, (3.11)

where for each path p; p ∈ P i
k; i = 1, . . . ,m; k = 1, . . . , nR

∂C̃p(x)
∂xp

≡
∑
a∈Li

∑
b∈Li

∂ĉb(f)
∂fa

, (3.12a)

and
∂ρ̃il(x)

∂xp
≡ ∂ρil(d)

∂dik
. (3.12b)

The above feasible set K1 is the nonnegative orthant. This feature enables the implementation

of an algorithm, which we describe in the next section, which is an iterative procedure that yields

closed form expressions at an iteration for the path flows and the link Lagrange multipliers.

Variational inequality (3.11) can be put into standard form (2.1a). We define X ≡ (x, λ) and

F (X) ≡ (F 1(X), F 2(X)), where the p-th component of F 1(X) is given by: ∂C̃p(x)
∂xp

+
∑

a∈Li
λa
αa

δap +∑
a∈Li

πa
αa

δap − ρ̃ik(x) −
∑nR

l=1
∂ρ̃il(x)

∂xp

∑
q∈P i

l
xq, ∀ ∈ P , and the b-th component of F 2(X) is given

by: l̄b −
P

p∈P xpδbp

αb
, ∀b ∈ L, and where K ≡ K1, and N = nP + nL, then, clearly, (3.11) is of the

form (2.1a).

3.2 Application of the Modified Projection Method to Solve Numerical Exam-
ples

We now, for illustrative purposes, as well as pedagogy, present the Computation Step of the mod-

ified projection method (cf. (2.19)) for the solution of variational inequality (3.11) as well as the

Adaptation Step (cf. (2.20)).

Realization of the Modified Projection Method Computation Step 2.19 for VI 3.11

Specifically, at iteration τ , we compute each of the path flows x̄τ
p , p ∈ P i

k; i = 1, . . . ,m; k = 1, . . . , nR

according to:

x̄τ
p = max{0, xτ−1

p − β(
∂C̃p(xτ−1)

∂xp
+

∑
a∈Li

λτ−1
a

αa
δap +

∑
a∈Li

πa

αa
δap

−ρ̃ik(xτ−1)−
nR∑
l=1

∂ρ̃il(xτ−1)
∂xp

∑
q∈P i

l

xτ−1
q )} (3.13)

and each of the Lagrange multipliers λ̄τ
a, ∀a ∈ L, according to:

λ̄τ
a = max{0, λτ−1

a − β(l̄a −
∑

p∈P xτ−1
p δap

αa
)}. (3.14)
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Realization of the Modified Projection Method Computation Step 2.20 for VI 3.11

At iteration τ , we compute each of the path flows xτ
p , p ∈ P i

k; i = 1, . . . ,m; k = 1, . . . , nR, according

to:

xτ
p = max{0, xτ−1

p −β(
∂C̃p(x̄τ )

∂xp
+

∑
a∈Li

λ̄τ
a

αa
δap +

∑
a∈Li

πa

αa
δap− ρ̃ik(x̄τ )−

nR∑
l=1

∂ρ̃il(x̄τ )
∂xp

∑
q∈P i

l

x̄τ
q )} (3.15)

and each of the Lagrange multipliers λτ
a, ∀a ∈ L, according to:

λτ
a = max{0, λτ−1

a − β(l̄a −
∑

p∈P x̄τ
pδap

αa
)}. (3.16)

We now provide numerical examples that are inspired by disruptions in migrant labor for the

seasonal picking of berries, specifically, the picking of blueberries in the summer of 2020 of the

pandemic (see Tully (2020), Russell (2020), and Woolever (2020)). The numerical examples are

stylized, but Internet available resources were utilized to obtain relevant blueberry prices and

picking data in the United States (see Galinato, Gallardo, and Hong (2016) and howmuchitis.org

(2018)). The flow variables are in pounds of blueberries, whereas the prices are in dollars per

pound, and labor is in person hours.

The modified projection method was implemented in FORTRAN and a Linux system at the

University of Massachusetts Amherst used for the computation of the solutions. The demand for

each demand market was initialized at 40 and equally distributed among the paths connecting each

demand market from each origin node (firm). The Lagrange multipliers were all initialized to 0.

The modified projection method was considered to have converged if the absolute difference of the

path flows differed by no more than 10−7 and the same for the Lagrange multipliers.

Examples 3.1, 3.2, and 3.3 have the supply chain network topology given in Figure 2. In these

examples there are two competing food firms (which are blueberry farms), each with two planting

sites (production locations), and with access to a single distribution center. The two food firms

can sell their blueberries at two demand markets.

Example 3.1 - Baseline Example

The total operational cost functions for Food Firm 1 on its supply chain network L1 are:

ĉa(f) = .0006f2
a , ĉb(f) = .0007f2

b , ĉc(f) = .001f2
c , ĉd(f) = .001f2

d , ĉe(f) = .002f2
e ,

ĉf (f) = .005f2
f , ĉg(f) = .005f2

g .

Also, the total operational costs associated with Food Firm 2’s supply chain network L2 are:

ĉh(f) = .00075f2
h , ĉi(f) = .0008f2

i , ĉj(f) = .0005f2
j , ĉk(f) = .0005f2

k , ĉl(f) = .0015f2
l ,
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Figure 2: The Supply Chain Network Topology for the Numerical Examples 3.1 Through 3.3

ĉm(f) = .01f2
m, ĉn(f) = .01f2

n.

The costs for labor for Food Firm 1 are:

πa = 10, πb = 10, πc = 15, πd = 15, πe = 20, πf = 17, πg = 18,

and for Food Firm 2:

πh = 11, πi = 22, πj = 15, πk = 15, πl = 18, πm = 18, πn = 18.

The link labor productivity factors for the first firm are:

αa = 24, αb = 25, αc = 100, αd = 100, αe = 50, αf = 100, αg = 100,

and for the second firm:

αh = 23, αi = 24, αj = 100, αk = 100, αl = 70, αm = 100, αn = 100.

The bounds on labor for the first firm are:

l̄a = 10, l̄b = 200, l̄c = 300, l̄d = 300, l̄e = 100, l̄f = 120, l̄g = 120,
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and for the second firm:

l̄h = 800, l̄i = 90, l̄j = 200, l̄k = 200, l̄l = 300, l̄m = 100, l̄n = 100.

Observe that the labor availability on link a is low. This is done in order to capture a disruption

to labor in the pandemic.

The demand price functions for Food Firm 1 are: ρ11(d) = −.0001d11 − .00005d21 + 6 and

ρ12(d) = −.0002d12 − .0001d22 + 8.

The demand price functions for Food Firm 2 are: ρ21(d) = −.0003d21+7, ρ22(d) = −.0002d22+

7.

The paths are as follows: p1 = (a, c, e, f), p2 = (b, d, e, f), p3 = (a, c, e, g), path pr = (b, d, e, g),

p5 = (h, j, l,m), p6 = (i, k, l,m), p7 = (h, j, l, n), and p8 = (i, k, l, n).

The modified projection method converges to the path flow equilibrium pattern reported in

Table 2; see also the equilibrium link labor values reported in Table 3. All the Lagrange multipliers

are equal to 0.00 except for λ∗a = 4.925 with the labor equilibrium value on link a equal to its upper

bound of 10.00.

The product prices at equilibrium are:

ρ11 = 5.97, ρ12 = 7.91, ρ21 = 6.94, ρ22 = 6.96,

with equilibrium demands of:

d∗11 = 172.07, d∗12 = 359.15, ρ21 = 195.94, ρ22 = 197.86.

The profit of Food Firm 1 is: 1,671.80 and the profit of Food Firm 2 is: 1,145.06.

Example 3.2 – Modification of Demand Price Functions

Example 3.2 has the same data as Example 3.1 except that we modify the demand price functions

for the second firm to include a cross term, so that:

ρ21(d) = −.0003d21 − .0001d11 + 6, ρ22(d) = −.0002d22 − .0001d12 + 7.

The computed equilibrium path flows are reported in Table 2, with the computed equilibrium

link labor values given in Table 3.

The Lagrange multipliers are all equal to 0.00 except for λ∗a = 4.93.
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The product prices at equilibrium are now:

ρ11 = 5.97, ρ12 = 7.91, ρ21 = 6.92, ρ22 = 6.92,

with the equilibrium demands:

d∗11 = 172.07, d∗12 = 359.16, d∗21 = 195.48, d∗22 = 196.48.

The profit for Food Firm 1 is: 1,671.86 and the profit for Food Firm 2 is: 1,134.61. The profit

for Food Firm 1 rises ever so slightly, whereas that for Food Firm 2 decreases.

Example 3.3 – Disruptions in Storage Facilities

Example 3.3 has the same data as Example 3.2 except that we now consider a sizable disruption

in terms of the spread of COVID-19 at the distribution centers of both food firms with the bounds

on labor corresponding to the associated respective links being reduced to:

l̄e = 5, l̄l = 5.

The computed equilibrium path flows for this example are reported in Table 2 with Table 3

having the computed equilibrium link labor values for this example, as well.

All computed equilibrium Lagrange multipliers are now equal to 0 except for those associated

with the distribution center links, since the equilibrium labor values attain the imposed upper

bounds onn links e and l, with the respective equilibrium Lagrange multiplier values being:

λ∗e = 157.2138, λ∗l = 43.6537.

The product prices at equilibrium are now:

ρ11 = 5.99, ρ12 = 7.94, ρ21 = 6.94, ρ22 = 6.94,

with the equilibrium demands:

d∗11 = 30.03, d∗12 = 219.96, d∗21 = 174.61, d∗22 = 175.39.

The profit for Food Firm 1 is now dramatically reduced to 1,218.74 and the profit for Food Firm

2 also declines, but by a much smaller amount, to 1,126.73.

The above examples illustrate how a rigorous theoretical and computational supply chain net-

work game theory framework with the inclusion of labor can capture different disruptions and also

changes to the data.
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Table 2: Equilibrium Product Path Flows for Examples 3.1 Through 3.3

Equilibrium Product Path Flows Ex. 3.1 Ex. 3.2 Ex. 3.3
x∗p1

73.23 73.22 15.65
x∗p2

98.85 98.85 14.38
x∗p3

166.77 166.78 110.60
x∗p4

192.38 192.38 109.35
x∗p5

142.85 142.62 131.97
x∗p6

53.08 52.86 42.63
x∗p7

143.81 143.12 132.36
x∗p8

54.04 53.36 43.02

Table 3: Equilibrium Link Labor Values for Examples 3.1 Through 3.3

Equilibrium Link Labor Values Ex. 3.1 Ex. 3.2 Ex. 3.3
l∗a 10.00 10.00 5.26
l∗b 11.65 11.65 4.95
l∗c 2.40 2.40 1.26
l∗d 2.91 2.91 1.24
l∗e 10.62 10.62 5.00
l∗f 1.72 1.72 0.30
l∗g 3.59 3.59 2.20
l∗h 12.46 12.42 11.49
l∗i 4.46 4.43 3.57
l∗j 2.87 2.86 2.64
l∗k 1.07 1.06 0.86
l∗l 5.63 5.60 5.00
l∗m 1.96 1.95 1.75
l∗n 1.98 1.96 1.75

Example 3.4 – What If There is Only the First Food Firm?

In this example we assume that Food Firm 2 has exited from the supply chain network economy

and only Food Firm 1 remains with the data for Food Firm 1 exactly as in Example 3.1, except

that there are no cross terms in the demand price functions, since there is no other firm supplying

blueberries. The supply chain network topology is, hence, as in Figure 3.

The modified projection method yields the following equilibrium solution. The equilibrium path

flow pattern is:

x∗p1
= 72.99, x∗p2

= 99.19, x∗p3
= 167.01, x∗p4

= 193.21.

The equilibrium link labor values are:

l∗a = 10.00, l∗b = 11.70, l∗c = 2.40, l∗d = 2.92, l∗e = 10.65, l∗f = 1.72, l∗g = 3.60.
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Figure 3: Supply Chain Network Topology for Example 3.4

The Lagrange multipliers are all equal to 0, except for:

λ∗a = 5.0253.

The demand price at Demand Market 1 is: 5.98 and at Demand Market 2: 7.93 with the

computed respective demands being, respectively: 172.18 and: 360.22.

The profit of the firm is: 1, 680.61. Since the labor amount is at the bound on link a, the

associated Lagrange multiplier is positive. The demand prices at the two demand markets now

increase and the profit of Food Firm 1 also increases.

In Nagurney (2021c) additional models with other sets of labor constraints are constructed,

which are governed by a Generalized Nash Equilibrium, accompanied by numerical examples. We

now turn to game theory and disaster relief supply chains, with a focus on GNE.

4. Disaster Relief Supply Chains

As noted in the Introduction, the COVID-19 pandemic is a healthcare disaster on a global scale. As

people became ill, virtually all economic sectors were negatively affected, with supply chain networks

disrupted, resulting in fierce competition for many products, including medical supplies, such as

PPEs, and, more recently, even vaccines against the coronavirus. In this section, we highlight

a Generalized Nash Equilibrium model developed by Nagurney et al. (2021), where additional

results can be found. Additional Generalized Nash Equilibrium models, inspired by the COVID-
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19 pandemic, and with an eye towards enhanced preparedness and response, along with stochastic

elements, can be found in Salarpour and Nagurney (2021). The authors’ model is the first stochastic

Generalized Nash Equilibrium model for the study of competition among countries for limited

supplies of medical items (PPEs, ventilators, etc.) in the disaster preparedness and response phases

in the COVID-19 pandemic. Each country’s government faces a two-stage stochastic optimization

problem in which the first stage is before the pandemic declaration and the second stage is after the

pandemic declaration. See also Nagurney et al. (2020b) and the references therein. Therein the

authors also considered uncertainty with the consideration of multiple, competing decision-makers

in the first Stochastic Generalized Nash Equilibrium model for disaster relief. In their model, there is

a single relief item product and the humanitarian organizations compete for existing resources prior

to and post the disaster, adjusting their decisions based on the probability of different scenarios.

The Nagurney et al. (2020) model integrates logistical and financial features, since humanitarian

organizations compete for financial donations, and also freight service, with each one seeking to

maximize its expected utility.

4.1 The Generalized Nash Equilibrium Supply Chain Network Model for Med-
ical Supplies Under Stochastic Demand

In the supply chain network model (cf. Figure 4 for the bipartite network structure) there are m

supply points for the medical supplies, with a typical supply point denoted by i, and n demand

points, with a typical demand point denoted by j. The supply points can be in different regions,

states, or even countries. This is of relevance because the competition for PPEs and vaccines has

been global in nature. Demand points can be: hospitals, nursing homes, medical clinics, prisons,

etc., and even schools, depending on the specific application and medical product. The notation

for the model is given in Table 4.
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Figure 4: The Network Structure of the Competitive Game Theory Model for Medical Supplies
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Table 4: Notation for the Medical Supply Generalized Nash Equilibrium Network Model

Notation Definition
qij the amount of the medical item purchased from supply point i by j.

We first group all the i elements {qij} into the vector qj and then we
group such vectors for all j into the vector q ∈ Rmn

+ .
vj the projected demand at demand point j; j = 1, . . . , n.
dj the actual (uncertain) demand for the medical item at demand point

j; j = 1, . . . , n.
∆−

j the amount of shortage of the medical item at demand point j; j =
1, . . . , n.

∆+
j the amount of surplus of the medical item at demand point j; j =

1, . . . , n.
λ−j the unit penalty associated with a shortage of the medical item at

demand point j; j = 1, . . . , n.
λ+

j the unit penalty associated with a surplus of the medical item at
demand point j; j = 1, . . . , n.

ρi the price of the medical item at supply point i; i = 1, . . . ,m.
cij(q) the generalized cost of transportation associated with transporting

the medical item from supply point i to demand point j, which in-
cludes the financial cost, relevant tariffs/taxes, time, and risk. We
group all the generalized costs into the vector c(q) ∈ Rmn.

Si the nonnegative amount of the medical item available for purchase
at supply point i; i = 1, . . . ,m.

µi the nonnegative Lagrange multiplier associated with the supply con-
straint at supply point i. We group the Lagrange multipliers into
the vector µ ∈ Rm

+ .

We emphasize that the demand for the medical product at the demand points is uncertain be-

cause of the unpredictability of the actual demand at the demand points. There is a rich supporting

literature on supply chain network models with uncertain demand with associated shortage and

surplus penalties (see, e.g., Dong, Zhang, and Nagurney (2004), Nagurney, Yu, and Qiang (2011),

Nagurney and Masoumi (2012), Nagurney, Masoumi, and Yu (2015)). Nagurney and Nagurney

(2016) developed a supply chain network model for disaster relief under cost and demand uncer-

tainty. As noted in Nagurney et al. (2021), the probability distribution of demand for PPEs can

be constructed by utilizing census data and/or information gathered during the pandemic disaster

preparedness phase.

Some Preliminaries

We now recall some preliminaries, and then discuss the objective functions.
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We have that dj denotes the actual (uncertain) demand at destination point j; hence:

Pj(Dj) = Pj(dj ≤ Dj) =
∫ Dj

0
Fj(t)dt, j = 1, . . . , n, (4.1)

where Pj and Fj denote the probability distribution function, and the probability density function

of demand at point j, respectively.

The variable vj is the “projected demand” for the medical item at demand point j; j = 1, . . . , n

and, thus, the amounts of shortage and surplus at demand point j are determined, respectively, as

follows:

∆−
j ≡ max{0, dj − vj}, j = 1, . . . , n, (4.2a)

∆+
j ≡ max{0, vj − dj}, j = 1, . . . , n. (4.2b)

Moreover, also, as noted in Nagurney et al. (2021), the expected values of shortage and surplus

at each demand point are, therefore:

E(∆−
j ) =

∫ ∞

vj

(t− vj)Fj(t)dt, j = 1, . . . , n, (4.3a)

E(∆+
j ) =

∫ vj

0
(vj − t)Fj(t)dt, j = 1, . . . , n. (4.3b)

The expected penalty incurred by demand point j due to the shortage and surplus of the medical

item is equal to:

E(λ−j ∆−
j + λ+

j ∆+
j ) = λ−j E(∆−

j ) + λ+
j E(∆+

j ), j = 1, . . . , n, (4.4)

with the weights λ+
j + λ−j being greater than zero, for each demand point j. The weight λ−j is,

typically, significantly higher than the weight λ+
j for each j since a shortage of the medical items

can be expected to yield greater suffering and loss of life.

The projected demand at demand point j, vj , is equal to the sum of flows of the medical item

to j:

vj ≡
m∑

i=1

qij , j = 1, . . . , n. (4.5)

Here, we assume that each demand location j, which recall can refer to a hospital, healthcare

organization, nursing home, medical facility, etc., seeks to minimize the total costs associated with

the purchasing of the medical item plus the total cost of transportation plus the expected cost due

to a shortage or surplus at j.

The objective function of each demand point j is, thus:

Minimize
m∑

i=1

ρiqij +
m∑

i=1

cij(q) + λ−j E(∆−
j ) + λ+

j E(∆+
j ) (4.6)
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subject to:
n∑

j=1

qij ≤ Si, i = 1, . . . ,m, (4.7)

qij ≥ 0, i = 1, . . . ,m. (4.8)

Observe that the first term in the objective function (4.6) corresponds to the medical item purchas-

ing costs; the second term corresponds to the generalized total transportation costs; the third term

in (4.6) represents the expected cost due to shortage or surplus of the medical item at the demand

point j. The constraints (4.7) represent common, that is, shared constraints in that the demand

locations compete for the medical items that are available for purchase at the supply locations at

a maximum available supply. The constraints in (4.8) correspond to the nonnegativity assumption

on the medical item purchase volumes.

We assume that the total generalized transportation cost functions are continuously differen-

tiable and convex. Note that, in our model, the transportation costs can, in general, depend

upon the vector of medical item flows since there is competition for freight service provision in the

pandemic.

As established in Nagurney et al. (2021), the expected shortage and surplus cost function

λ−j E(∆−
j ) + λ+

j E(∆+
j ) is convex.

The objective function (4.6) for j is referred to as the disutility of j and we denote it by DUj(q);

j = 1, . . . , n.

We define the feasible sets Kj ≡ {qj ≥ 0}; j = 1, . . . , n. We define K ≡
∏n

j=1 Kj . We also

define the feasible set S ≡ {q|q satisfying (4.7))}, which consists of the shared constraints.

Definition 4.1: Generalized Nash Equilibrium for Medical Items

A vector of medical items q∗ ∈ K ∩ S is a Generalized Nash Equilibrium if for each demand point

j; j = 1, . . . , n:

DUj(q∗j , q̂
∗
j ) ≤ DUj(qj , q̂

∗
j ), ∀qj ∈ Kj ∩ S, (4.9)

where q̂∗j ≡ (q∗1, . . . , q
∗
j−1, q

∗
j+1, . . . , q

∗
n).

According to (4.9), an equilibrium is established if no demand point has any incentive to unilat-

erally change its vector of medical item purchases/shipments. In this supply chain network model

the objective function of a demand point depends not only on the vector of strategies of its own

strategies and on those of the other demand points, but the feasible set does as well. Therefore, this

supply chain network game theory model is not a Nash (1950, 1951) model, but is a Generalized
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Nash Equilibrium model. In the COVID-19 pandemic, the competition has included competition

for limited supplies of PPEs, ventilators, associated medical treatments, as well as vaccines.

As noted in Section 2, the concept of a Variational Equilibrium, allows us to formulate the

above GNE conditions as the solution to a finite-dimensional variational inequality problem. The

algorithms for variational inequality problems are at a much more advanced state than are those

for quasivariational inequalities, which have been utilized for GNE problems in the past. Indeed, as

noted also in Nagurney, Yu, and Besik (2017), in Nagurney, Salarpour, and Daniele (2019), and in

Nagurney et al. (2020), we can define a Variational Equilibrium which is a refinement and a specific

type of GNE (cf. Kulkarni and Shabhang (2012)) that enables a variational inequality formulation.

Specifically, we now define the feasible set K ≡ K ∩ S.

Definition 4.2: Variational Equilibrium

A vector of medical items q∗ ∈ K is a Variational Equilibrium of the above Generalized Nash

Equilibrium problem if it is a solution to the following variational inequality:
n∑

j=1

m∑
i=1

∂DUj(q∗)
qij

× (qij − q∗ij) ≥ 0, ∀q ∈ K. (4.10)

The variational inequality (4.10), in expanded form, is: determine q∗ ∈ K such that
n∑

j=1

m∑
i=1

[
ρi +

m∑
l=1

∂clj(q∗)
∂qij

+ λ+
j Pj(

m∑
l=1

q∗lj)− λ−j (1− Pj(
m∑

l=1

q∗lj))

]
×

[
qij − q∗ij

]
≥ 0, ∀q ∈ K.

(4.11)

We now expand on the interpretation of the above, which is also relevant to disaster relief

applications, and, in particular, to the pandemic. The variational equilibrium guarantees that the

Lagrange multipliers associated with the shared constraints are identical for all the demand points.

This feature provides an elegant fairness and equity interpretation.

Variational inequality (4.11) can be put into standard form (cf. also (2.1a)), where the problem

is to determine a vector X∗ ∈ K ⊂ RN , such that

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (4.12)

where F is a given continuous function from K to RN , and K is a given closed, convex set.

Let X ≡ q and F (X) be the vector with elements: {∂DUj(q
∗)

qij
}, ∀j, i with K as originally defined

and N = mn. Then, variational inequality (4.11) can be put into standard form (4.12), under the

imposed assumptions.
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Since the function F (X) that enters the variational inequality is continuous and the feasible

set K is not only convex but also compact because the supplies of the medical items are bounded,

existence of a solution X∗ is guaranteed (see Theorem 2.2).

An alternative variational inequality is now provided. We associate a nonnegative Lagrange

multiplier µi with constraint (4.7), for each supply location i = 1, . . . ,m and we group all the

Lagrange multipliers into the vector µ ∈ Rm
+ . We define the feasible set K2 ≡ {(q, µ)|q ≥ 0, µ ≥ 0}.

Then, using arguments as in Nagurney, Salarpour, and Daniele (2019), an alternative variational

inequality like the one in (4.11) is: determine (q∗, µ∗) ∈ K2 such that
n∑

j=1

m∑
i=1

[
ρi +

m∑
l=1

∂clj(q∗)
∂qij

+ λ+
j Pj(

m∑
l=1

q∗lj)− λ−j (1− Pj(
m∑

l=1

q∗lj) + µ∗i

]
×

[
qij − q∗ij

]

+
m∑

i=1

Si −
n∑

j=1

q∗ij

× [µi − µ∗i ] ≥ 0, ∀(q, µ) ∈ K2. (4.13)

Variational inequality (4.13) can also be put into standard form (4.12). Let X ≡ (q, µ)

and F (X) ≡ (F 1(X), F 2(X)) where F 1(X) has as its (i, j)-th component: ρi +
∑m

l=1
∂clj(q)
∂qij

+

λ+
j Pj(

m∑
l=1

qlj) − λ−j (1 − Pj(
m∑

l=1

qlj) + µi; i = 1, . . . ,m; j = 1, . . . , n, and the i-th component of

F 2(X) is Si −
∑n

j=1 qij , for i = 1, . . . ,m. Furthermore, K ≡ K2 and N = mn + m.

4.2 Computation of Numerical Examples

We emphasize that additional theoretical results can be found in Nagurney et al. (2021). We now

provide the realization of the modified projection method (cf. Section 2) for the solution of the

above alternative variational inequality problem.

We now provide the explicit formulae for the medical item flows and the Lagrange multipliers

at iteration τ for Step 1. The analogues for Step 2 can be easily derived accordingly.

Specifically, we have the following formulae:

Explicit Formula for the Medical Item Flow for Each i, j at Iteration τ of Step 1

Determine q̄τ
ij for each i, j at Step 1 iteration τ according to:

q̄τ
ij = max{0, qτ−1

ij +β(−ρi−
m∑

l=1

∂clj(qτ−1)
∂qij

−λ+
j Pj(

m∑
l=1

qτ−1
lj )+λ−j (1−Pj(

m∑
l=1

qτ−1
lj ))−µτ−1

i )}. (4.14)

Explicit Formula for the Lagrange Multiplier for Each i at Iteration τ of Step 1
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Determine µ̄τ
i for each i at Step 1 iteration τ according to:

µ̄τ
i = max{0, µτ−1

i + β(−Si +
n∑

j=1

qτ−1
ij )}. (4.15)

The modified projection method was implemented in FORTRAN and the computer system used

was a Linux system at the University of Massachusetts Amherst. The algorithm was initialized by

setting the medical item flows and the Lagrange multipliers to 0.00. The convergence condition for

all the examples was that the absolute value of two successive variable iterates was less than or

equal to 10−8. The β parameter in the modified projection method was: .1.

The numerical examples (with additional ones reported in Nagurney et al. (2021)) are focused on

the procurement of N95 masks but in the scenario of increasing demand among smaller healthcare

organizations in the form of medical practices. The qijs are in units since these medical practices

are small relative to hospitals, etc. Please see the following news article by O’Connell (2020) and

also Wan (2020).

Example 4.1: One Supply Point and Two Demand Points

The supply chain network topology for this example is given in Figure 5. We assume a uniform

probability distribution in the range [100, 1000] at the first demand point. The probability distri-

bution at the second demand point has the same lower and upper bounds as in the first demand

point. The additional data are, for the first demand point:

ρ1 = 2, S1 = 1000, c11(q) = .005q2
11 + .01q11, λ−1 = 1000, λ+

1 = 10,

and for the second demand point:

c12(q) = .01q2
12 + .02, λ−2 = 1000, λ+

2 = 10.
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Figure 5: Supply Chain Network Topology for Example 4.1

The modified projection method converges to the following equilibrium solution:

q∗11 = 502.20, q∗12 = 497.80, µ∗1 = 541.61.
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The available supply of 1000 N95 masks is exhausted between the two demand points, and

the associated Lagrange multiplier µ∗1 is positive. The equilibrium conditions hold with excellent

accuracy.

Example 4.2: Two Supply Points and Two Demand Points

In Example 4.2, we consider the impacts of the addition of a second supply point to Example 4.1.

The supply chain network topology is now as in Figure 6.
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Figure 6: Supply Chain Network Topology for Example 4.2

The data are as in Example 4.1 with the following additions:

S2 = 500, ρ2 = 3, c21(q) = .015q2
21 + .03, c22(q) = .02q2

22 + .04q22.

The modified projection method converges to the following equilibrium solution:

q∗11 = 526.31, q∗12 = 473.69, q∗21 = 225.57, q∗22 = 274.43, µ∗1 = 261.17, µ∗2 = 258.65.

With the addition of a new supply point for medical supplies, both demand points gain signif-

icantly in terms of the volume of N95 masks that each procure, Furthermore, the supplies of the

medical item at each supply point are fully sold out. Hence, both equilibrium Lagrange multipliers

are positive.

Example 4.3: Two Supply Points and Three Demand Points

Example 4.3 is constructed from Example 4.2 with Demand Point 3 added, as depicted in Figure

7.

Example 4.3 has the same data as Example 4.2 but with the addition of data for Demand Point

3 as follows:

c13(q) = .01q2
13 + .02q13, c23(q) = .015q2

23 + .03q23, λ−3 = 1000, λ+
3 = 10.
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Figure 7: Supply Chain Network Topology for Example 4.3

The probability distribution for the N95 masks associated with Demand Point 3 is uniform with a

lower bound of 200 and an upper bound of 1000.

The modified projection method converges to the following equilibrium solution:

q∗11 = 360.11, q∗12 = 318.83, q∗13 = 321.06,

q∗21 = 122.29, q∗22 = 161.10, q∗23 = 216.62, µ∗1 = 565.25, µ∗2 = 564.16.

Note that, with increasing competition for the N95 masks with another demand point, both

Demand Points 1 and 2 experience decreases in procurement of supplies. The two supply points

again fully sell out of their N95 masks and the associated equilibrium Lagrange multipliers are both

positive.

Example 4.4: Two Supply Points and Four Demand Points

In Example 4.4, yet another demand point is added to the supply chain network topology of

Example 4.3 (cf. Figure 8). Smaller medical practices are increasingly concerned about being able

to secure the much needed PPEs to protect the health of their employees and the viability of their

practices.
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Figure 8: Supply Chain Network Topology for Example 4.4

The data for this example are the same as those for Example 4.3, and the probability distribution

structure for the demand at Demand Point 4 is the same, with the following additional data for
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the new Demand Point 4:

c14(q) = .015q2
14 + .03q14, c24(q) = .025q2

24 + .05q24, λ−4 = 1000, λ+
4 = 10.

The modified projection method converges to the following equilibrium solution:

q∗11 = 260.73, q∗12 = 229.36, q∗13 = 251.22, q∗14 = 258.69,

q∗21 = 79.57, q∗22 = 109.17, q∗23 = 160.46, q∗24 = 150.81, µ∗1 = 725.71, µ∗2 = 724.91.

As noted in Nagurney et al. (2021) the equilibrium conditions hold with excellent accuracy for

this example, as was the case for all the other numerical example computed solutions. The suppliers

of the N95 sell out their supplies. However, the demand points lose in terms of supply procurement

for their organizations with the increased demand and competition from yet another demand point.

We emphasize that the obtained numerical results are consistent with what is being observed in

practice and the results also provide managerial insights. For example, the numerical results confirm

that more supply points with sufficient supplies are needed to guarantee that organizations are not

deprived of critical supplies due to competition. As a result of this competition and limited local

availability, in particular in the case of supplies such as masks, ventilators, and even coronavirus

test kits, we are seeing multiple countries now setting up local production sites with even some

companies switching from their usual product manufacturing to the production of much needed

medical supplies, including PPEs (Bradsher (2020)).

5. Cooperation in Disaster Relief

In Sections 3 and 4 the focus was on noncooperative game theory and supply chain network models

inspired by the COVID-19 pandemic, with the model in Section 3 providing a commercial supply

chain network framework, and with the inclusion of labor, and with the model in Section 4 being

one representing organizations competing for medical supplies, which have been limited, in the

pandemic. Here, in contrast, we turn to cooperation among organizations in a disaster setting.

As emphasized in Nagurney and Qiang (2020), opportunities for cooperation among organizations

engaged in disaster response may exist in their supply chains from procurement to storage and even

in the case of transportation and distribution (see Van Wassenhove (2006), Nagurney and Qiang

(2009), Balcik et al. (2010), among others). Furthermore, cooperation among organizations may

reduce materiel convergence and release resources, including personne, for more important life-

saving tasks (cf. Nagurney, Alvarez Flores, and Soylu (2016)). There is also great promise in the

COVID-19 pandemic of enhanced partnerships and these even may be between private companies,
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including pharmaceutical ones (Hopkins (2021)). Lessons learned from disaster management are,

hence, potentially of great benefit to pandemic preparedness, response, and even recovery.

Here we highlight how to quantify synergies due to cooperation associated with multiproduct

supply chains of multiple organizations, engaged in disaster response, including the COVID-19 pan-

demic. The models, due to Nagurney and Qiang (2020), capture the uncertainties associated with

costs and demands. A mean-variance approach is used to include risk associated with the uncer-

tainties, along with a synergy measure for the determination of the potential strategic advantages

of cooperation among organizations for disaster management.

Nagurney and Qiang (2009), earlier, described how the multiproduct supply chain network mod-

els of Nagurney, Woolley, and Qiang (2010) could be used to measure the synergy associated with

teaming in the form of horizontal cooperation between humanitarian organizations. Masoumi, Yu,

and Nagurney (2017), later, constructed several synergy measures to evaluate the mergers or acqui-

sitions associated with multiple blood banks in the United States, which are, typically, nonprofits.

Their blood supply chain network models pre- and post- the merger/acquisition were generalized,

nonlinear networks in order to capture the perishability of blood. Toyasaki et al. (2017), noting

horizontal cooperation for inventory management, and practiced by the United Nations Human-

itarian Response Depot (UNHRD) network, built an analytical framework to identify horizontal

cooperation for such management between humanitarian organizations.

5.1 The Multiproduct Supply Chain Network Models

Section 5.1.1 describes the underlying supply chain network associated with multiple, individual or-

ganizations without horizontal cooperation and their associated economic activities of procurement,

transportation, storage, and distribution. Section 5.1.2 presents the supply chain network model

with horizontal cooperation. The models extend those of Nagurney (2009), Nagurney, Woolley, and

Qiang (2010), Nagurney and Nagurney (2016), and Masoumi, Yu, and Nagurney (2017) to mul-

tiproduct supply chains of multiple organizations, with uncertainties in both costs and demands,

and upper bounds on links.

5.1.1 The Case without Horizontal Cooperation Multiproduct Supply Chain Network
Model

We first formulate the multiproduct decision-making optimization problems faced by m organiza-

tions without horizontal cooperation. This model is Case 0. Each organization is represented as a

network of its supply chain activities, as depicted in Figure 9. Each organization i; i = 1, . . . ,m,

has available ni
M procurement facilities, ni

S storage facilities, and serves ni
D disaster areas. Let
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Gi = [Ni, Li] denote the graph consisting of nodes [Ni] and directed links [Li] representing the

supply chain activities associated with each organization i; i = 1, . . . ,m. Let L0 denote the links:

L1 ∪ L2 ∪ · · ·Lm as in Figure 9. Each organization is involved in the procurement, transportation,

storage, and distribution of J products, with a typical product denoted by j.
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Figure 9: Supply Chains of Organizations 1 through m Prior to Cooperation

The links from the top-tiered nodes i; i = 1, . . . ,m, in each supply chain network in Figure

9 are connected to the procurement nodes of the respective organization i, which are denoted,

respectively, by: M i
1, . . . ,M

i
ni

M
and are the procurement links. The links from the procurement

nodes are joined to the storage center nodes of each organization i; i = 1, . . . ,m, and are denoted

by Si
1,1, . . . , S

i
ni

S ,1
. These links represent the transportation links between the procurement facilities

and the storage centers. Links connecting nodes Si
1,1, . . . , S

i
ni

S ,1
with nodes Si

1,2, . . . , S
i
ni

S ,2
for i =

1, . . . ,m, are the storage links for the products. Also, there are distribution links connecting nodes

Si
1,2, . . . , S

i
ni

S ,2
for i = 1, . . . ,m with the disaster region nodes: Di

1, . . . , D
i
ni

D
for each organization

i = 1, . . . ,m. These are the demand points. Each organization i is responsible for providing the

products to specific disaster areas (see Figure 9), prior to the cooperation, for the victims.

The notation and discussion below build upon those in Section 4. Specifically, demands for

the products are assumed to be random and are associated with each product, and each demand

point. Let dj
ik denote the random variable representing the actual demand for product j and let

vj
ik denote the projected random demand for product j; j = 1, . . . , J , at demand point Di

k for
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i = 1, . . . ,m; k = 1, . . . , ni
D. In addition, the probability density function of the actual demand

for product j is F j
ik(t) at disaster area Di

k; i = 1, . . . ,m; k = 1, . . . , ni
D. Hence, we can define the

cumulative probability distribution function of dj
ik as Pj

ik(v
j
ik) = Pj

ik(d
j
ik ≤ vj

ik) =
∫ vj

ik
0 F j

ik(t)d(t).

Following Masoumi, Yu, and Nagurney (2017) and Dong, Zhang, and Nagurney (2004), we also

define the supply shortage and surplus for product j; j = 1, . . . , J , at disaster area Di
k; i = 1, . . . ,m;

k = 1, . . . , ni
D, as

∆j−
ik ≡ ∆j−

ik (vj
ik) ≡ max{0, dj

ik − vj
ik} (5.1a)

∆j+
ik ≡ ∆j+

ik (vj
ik) ≡ max{0, vj

ik − dj
ik}. (5.1b)

The expected value of the shortage ∆j−
ik , denoted by E(∆j−

ik ), and of the surplus ∆j+
ik , denoted

by E(∆j+
ik ), for j = 1, . . . , J ; Di

k; i = 1, . . . ,m; k = 1, . . . , ni
D, are

E(∆j−
ik ) =

∫ ∞

vj
ik

(t− vj
ik)F

j
ik(t)d(t), E(∆j+

ik ) =
∫ vj

ik

0
(vj

ik − t)F j
ik(t)d(t). (5.2)

The penalty associated with the shortage and the surplus of the demand for product j; j =

1, . . . , J , at the disaster area Di
k is denoted by λj−

ik and λj+
ik , respectively, where i = 1, . . . ,m;

k = 1, . . . , ni
D.

A path consists of a sequence of links originating at a node i; i = 1, . . . ,m, corresponding to

supply chain activities of: procurement, transportation, storage, and distribution of the products

to the disaster area nodes. We let xj
p denote the nonnegative flow of product j on path p. Let

P 0
Di

k
denote the set of all paths joining an origin node i with (destination) disaster area node Di

k.

The paths associated with a given organization, prior to a possible cooperation, share no links

with paths of the other organization. This feature is no longer the case (see also Nagurney (2009)

and Masoumi, Yu, and Nagurney (2017)) once cooperation happens. Then, as we will show, the

number of paths as well as the sets of paths change, as do the number of links and the sets of

links, as described in Section 5.1.2. The conservation of flow equations are: for each organization

i; i = 1, . . . ,m, each product j; j = 1, . . . , J , and each disaster area Di
k; k = 1, . . . , ni

D:∑
p∈P 0

Di
k

xj
p = vj

ik, i = 1, ...,m; j = 1, . . . , J ; k = 1, . . . , ni
D. (5.3)

In other words, the projected demand for each disaster relief product associated with a humanitarian

organization at a demand point must be satisfied by the sum of the product path flows of the

organization’s supply chain network.

Links are denoted by a, b, etc. Let f j
a denote the flow of product j on link a. We also have the
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following conservation of flow equations:

f j
a =

∑
p∈P 0

xj
pδap, j = 1 . . . , J ; ∀a ∈ L0, (5.4)

where δap = 1 if link a is contained in path p and δap = 0, otherwise. Here P 0 denotes the set of all

paths in Figure 1, that is, P 0 = ∪i=1,...,I;k=1,...,ni
D
P 0

Di
k
. The path flows must be nonnegative, that

is,

xj
p ≥ 0, j = 1, . . . , J ; ∀p ∈ P 0. (5.5)

The path flows are grouped into the vector x.

There is a total cost associated with each product j; j = 1, . . . , J , and each link of the network

of each organization i; i = 1, . . . ,m. The total cost on a link a associated with product j is

denoted by ĉj
a. The total cost of a link associated with a product, be it a procurement link, a

transportation/distribution link, or a storage link can be, for the sake of generality, a function

of the flow of all the products on the link. Furthermore, the total costs can be influenced by

uncertainty factors. Hence, the total cost on link a, ĉj
a, takes the form:

ĉj
a = ĉj

a(f
1
a , . . . , fJ

a , ωj
a), j = 1, . . . , J ; ∀a ∈ Li,∀i, (5.6)

where ωj
a is a random variable associated with various disaster events, which have an impact on

the total cost of link a, ∀a, and product j; j = 1, . . . , J . It is assumed that the distribution of the

ωj
as is known.

As stated in Nagurney and Qiang (2020), the top tier links in Figure 9 have associated with

them multiproduct total cost functions that capture the purchasing/procurement costs of the prod-

ucts. The links comprising the second tier links have associated with them multiproduct total cost

functions that capture the total costs associated with the transportation to the storage facilities.

The third tier links have associated with them multiproduct total cost functions that reflect stor-

age costs. The bottom-tiered links have total cost functions associated with them that capture the

distribution costs.

It is important to emphasize that the supply chain networks of the organizations, as depicted

in Figure 9, include the prepositioning of the relief items in the preparedness phase of disaster

management, through the storage links, plus the distribution of the relief items via the distribution

links in the response phase.

Building on the earlier literature utilizing a mean-variance approach, the organizations consider

both costs and risks in their operations with each organization seeking to minimize its expected

total cost and the valuation of its risk. Moreover, since the organizations’ supply chains without
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horizontal cooperation have no links or costs in common (cf. Figure 9), the optimization prob-

lems of the organizations are independent prior to the possible cooperation. Each organization i;

i = 1, . . . ,m seeks to determine the link flows and the projected random demands that solve the

following optimization problem:

Minimize

E(
J∑

j=1

∑
a∈Li

ĉj
a(f

1
a , . . . , fJ

a , ωj
a)) + ξi(V (

J∑
j=1

∑
a∈Li

ĉj
a(f

1
a , . . . , fJ

a , ωj
a)))

+
J∑

j=1

ni
D∑

k=1

(
λj−

ik E(∆j−
ik ) + λj+

ik E(∆j+
ik )

) (5.7)

subject to: constraints (5.3) – (5.5) and the following capacity constraints:

J∑
j=1

γjf
j
a ≤ ua, ∀a ∈ Li. (5.8)

The term γj in (5.8) reflects the volume taken up by product j; the term ua is the nonnegative

capacity of link a.

The first and the second terms in (5.7) are the expected total cost of organization i and the

variance of the total cost, respectively, with the term ξi being the risk aversion factor of organization

i. V (
∑J

j=1

∑
a∈Li

ĉj
a(f1

a , . . . , fJ
a , ωj

a)) denotes the variance of the total cost of organization i. The

third term in (5.7) is the total costs related to the shortage and/or surplus of the relief items

at the disaster areas that i is responsible for. The total operational costs and the variances in

(5.7) are assumed to be convex. As argued in Section 4, we know that
∑ni

D
k=1

(
λj−

ik E(∆j−
ik ) +

λj+
ik E(∆j+

ik )
)

is also convex (see, also, Nagurney, Masoumi, and Yu (2012)). We know then that

the objective function (5.7) is convex for each i; i = 1, . . . ,m. Also, the individual terms in (5.7)

are continuously differentiable. Under the above imposed assumptions, the optimization problem

is a convex optimization problem and, clearly, the feasible set underlying the problem represented

by the constraints (5.3) – (5.5) and (5.8) is non-empty, so it follows from the standard theory of

nonlinear programming that an optimal solution exists.

The objective function (5.7) is referred to as the total generalized cost TGC0
i for i = 1, . . . ,m.

We associate the Lagrange multiplier ηa with constraint (5.8) for each a ∈ L0 with ηa ≥ 0,∀a ∈ L0

and we denote the associated optimal Lagrange multiplier by η∗a,∀a ∈ L0. We group the link flows

into the vector f , the projected demands into the vector v, and the Lagrange multipliers into the

vector η.

Let K0 denote the set where K0 ≡ {(f, v, η)|∃x such that (5.3) − (5.5) and η ≥ 0 hold}. We

now provide the variational inequality formulation of the problem (5.7) for all organizations i;
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i = 1, . . . ,m, simultaneously. Since we are considering Case 0, we denote the solution of variational

inequality (VI) (5.9) below as (f0∗, v0∗, η0∗) and we refer to the corresponding vectors of variables

with superscripts of 0. We now state a theorem, due to Nagurney and Qiang (2020).

Theorem 5.1: Variational Inequality Formulation of Case 0: No Cooperation

The vector of link flows, projected demands, and Lagrange multipliers (f0∗, v0∗, η0∗) ∈ K0 is an

optimal solution to (5.7), for all organizations i; i = 1, . . . ,m, subject to their constraints (5.3)–

(5.5) and (5.8), if and only if it satisfies the following variational inequality problem:

m∑
i=1

J∑
j=1

∑
a∈Li

[
∂E(

∑J
l=1

∑
a∈Li

ĉl
a(f

1∗
a , . . . , fJ∗

a , ωl
a))

∂f j
a

+ξi

∂V (
∑J

l=1

∑
a∈Li

ĉl
a(f

1∗
a , . . . , fJ∗

a , ωl
a))

∂f j
a

+ γjη
∗
a]× [f j

a − f j∗
a ]

+
m∑

i=1

J∑
j=1

ni
D∑

k=1

[
λj+

ik P
j
ik(v

j∗
ik )− λj−

ik (1− Pj
ik(v

j∗
ik )

]
× [vj

ik − vj∗
ik ]

+
∑
a∈L0

[ua −
J∑

j=1

γjf
j∗
a ]× [ηa − η∗a] ≥ 0, ∀(f0, v0, η0) ∈ K0. (5.9)

5.1.2 The Case with Horizontal Cooperation Multiproduct Supply Chain Network
Model

We now formulate the case with horizontal cooperation of the multiproduct supply chain network

model, referred to as Case 1. Figure 10 represents the supply chain network topology for Case 1.

There is a supersource node 0, which represents the “teaming/merging” in terms of cooperation of

the organizations in terms of their supply chain networks with additional links connecting node 0

to nodes 1 through m.

The optimization problem in Case 1 is also concerned with cost and risk minimization. We refer

to the network in Figure 10, underlying this integration, as G1 = [N1, L1] where N1 ≡ N0∪ node

0 and L1 ≡ L0∪ the additional links as in Figure 10 and we associate total cost functions as in

(5.6) with the new links, for each product j. If the total cost functions on the cooperation links

connecting node 0 to node 1 through node m are set equal to zero, this means that the cooperation

is costless in terms of the integrated supply chain network of the organizations.

A path p now (cf. Figure 10) originates at node 0 and ends in one of the bottom disaster nodes.

Let xj
p, under the cooperation network configuration given in Figure 9, denote the flow of product
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Figure 10: Supply Chain Network after Cooperation

j on path p joining (origin) node 0 with a disaster area node. Then, the following conservation of

flow equations must hold for each i, j, k: ∑
p∈P 1

Di
k

xj
p = vj

ik, (5.10)

where P 1
Di

k
denotes the set of paths connecting node 0 with disaster area node Di

k in Figure 10.

Because of cooperation, the disaster areas can obtain each product j from any procurement facility,

and any storage facility. The set of paths P 1 ≡ ∪i=1,m;k=1,...,ni
D
P 1

Di
k
.

As previously, let f j
a denote the flow of product j on link a. We must also have the following

conservation of flow equations satisfied:

f j
a =

∑
p∈P 1

xj
pδap, j = 1, . . . , J ; ∀a ∈ L1. (5.11)

In addition, the path flows must be nonnegative for each product j:

xj
p ≥ 0, j = 1, . . . , J ; ∀p ∈ P 1. (5.12)
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The supply chain network activities have nonnegative capacities, denoted as ua, ∀a ∈ L1, with

γj representing the volume factor for product j. The following constraints must, hence, hold:

J∑
j=1

γjf
j
a ≤ ua, ∀a ∈ L1, (5.13)

where ξ is the associated risk aversion factor of the teamed organizations under cooperation.

The optimization problem for the teamed supply chain network is:

Minimize E(
J∑

j=1

∑
a∈L1

ĉj
a(f

1
a , . . . , fJ

a , ωj
a)) + ξ

V (
J∑

j=1

∑
a∈L1

ĉj
a(f

1
a , . . . , fJ

a , ωj
a))



+
m∑

i=1

J∑
j=1

ni
D∑

k=1

(
λj−

ik E(∆j−
ik ) + λj+

ik E(∆j+
ik )

)
(5.14)

subject: (5.10) – (5.13).

The solution to the optimization problem (5.14) subject to constraints (5.10), for all i, j, k,

through (5.13) can also be obtained as a solution to a variational inequality problem, similar to

(5.9), where now links a ∈ L1. The vectors f , v, and η retain their prior definitions, but are

re-dimensioned accordingly and superscripted with 1. Finally, instead of the feasible set K0 we now

have K1 ≡ {(f, v, η)|∃x such that (5.10)− (5.12) hold and η ≥ 0}.

For consistency, objective function (5.14) is referred to as the total generalized cost TGC1.

We denote the solution to the variational inequality (VI) problem (5.15) below governing Case

1 by (f1∗, v1∗ , η1∗) and denote the vectors of corresponding variables as (f1, v1, η1). The proof of

the following is immediate.

Theorem 5.2: Variational Inequality Formulation of Case 1: Cooperation

The vector of link flows, projected demands, and Lagrange multipliers (f1∗, v1∗, η1∗) ∈ K1 is an

optimal solution to (5.14), subject to constraints (5.10)–(5.13), if and only if it satisfies the following

variational inequality problem:

J∑
j=1

∑
a∈L1

[
∂E(

∑J
l=1

∑
a∈L1 ĉl

a(f
1
a , . . . , fJ

a , ωl
a))

∂f j
a

+ ξ
∂V (

∑J
l=1

∑
a∈L1 ĉl

a(f
1∗
a , . . . , fJ∗

a , ωl
a))

∂f j
a

+ γjη
∗
a]

×[f j
a − f j∗

a ] +
m∑

i=1

J∑
j=1

ni
D∑

k=1

[
λj+

ik P
j
ik(v

j∗
ik )− λj−

ik (1− Pj
ik(v

j∗
ik )

]
× [vj

ik − vj∗
ik ]

+
∑
a∈L1

[ua −
J∑

j=1

γjf
j∗
a ]× [ηa − η∗a] ≥ 0, ∀(f1, v1, η1) ∈ K1. (5.15)
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Definition 5.1: Total Generalized Costs at the Optimal Solutions to the Supply Chain

Network Problems without and with Cooperation

Let TGC0∗ denote the total generalized cost:
∑m

i TGC0
i =E(

∑J
j=1

∑
a∈L0 ĉj

a(f1
a , . . . , fJ

a , ωj
a))+

∑m
i=1 ξi

[
V (

∑J
j=1

∑
a∈Li

ĉj
a(f1

a , . . . , fJ
a , ωj

a))
]
+

∑m
i=1

∑J
j=1

∑ni
D

k=1

(
λj−

ik E(∆j−
ik )+

λj+
ik E(∆j+

ik )
)
, evaluated at the optimal solution (f0∗, v0∗, η0∗) to (5.9).

Also, let TGC1∗ = E(
∑J

j=1

∑
a∈L1 ĉj

a(f1
a , . . . , fJ

a , ωj
a)) + ξ

[
V (

∑J
j=1

∑
a∈L1 ĉj

a(f1
a , . . . , fJ

a , ωj
a))

]
+

∑m
i=1

∑J
j=1

∑ni
D

k=1

(
λj−

ik E(∆j−
ik )+λj+

ik E(∆j+
ik )

)
, denote the total generalized cost evaluated at the

solution (f1∗, v1∗, η1∗) to (5.15).

5.2 Synergy Quantification

We now quantify the synergy associated with cooperation of the organizations by analyzing the

total generalized costs under the cases with and without supply chain network cooperation.

We denote the synergy by STGC . It is the percentage difference between the total generalized

cost without vs. with the horizontal cooperation (evaluated at the respective optimal solutions):

STGC ≡ [
TGC0∗ − TGC1∗

TGC0∗ ]× 100%. (5.16)

Observe from (5.16) that the lower the total generalized cost TGC1∗, the higher the synergy

associated with the supply chain network cooperation and, therefore, the greater the total cost

savings resulting from the cooperation. As noted in Nagurney and Qiang (2020), the general costs

include not only the monetary costs, but also the risks and uncertainties involved in the supply

chain as well as the associated penalties of shortages and surpluses. In specific disaster relief

operations, including in the pandemic, one may evaluate the integration of supply chain networks

with only a subset of the links connecting the original supply chain networks. Figure 10 would be

then be adapted accordingly and the synergy as in (5.16) computed with TGC1∗ corresponding to

the specific supply chain network topology.

We now recall an interesting theorem, due also to Nagurney and Qiang (2020), which reveals

that, under certain assumptions related to the total operational costs associated with the supply

chain integration and risk factors, the associated synergy can never be negative.

Theorem 5.3

If the total generalized cost functions associated with the cooperation links from node 0 to nodes

1 through m for each product are identically equal to zero, and if the risk aversion factors ξi;

i = 1, . . . ,m, are all equal and set to ξ, then the associated synergy, STGC , can never be negative.
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As emphasized in Nagurney and Qiang (2020), because of the conservation of flow equations

(5.10) and (5.11), and constraints (5.12) and (5.13), we can construct a variational inequality

formulation equivalent to the one in (5.15), but in path flows, rather than in links flows (the same

holds for a path flow version of VI (5.9)). The alternative variational inequality enables a nice

application of the modified projection method.

We group the path flows into the vector x ∈ RnP1 , where nP 1 is the number of paths in P 1. We

let nL1 denote the number of links in L1.

We define the feasible set K2 ≡ {(x, η)|x ≥ 0, η ≥ 0}. Then the VI (5.17) below follows directly

from the relationships between variational inequalities and nonlinear programming problems (cf.

Nagurney (1999) and the references therein) (or, equivalently, by utilizing the conservation of

flow expressions and embedding them into the link flow VI analogue (5.15), along with algebraic

simplification). A vector of path flows and Lagrange multipliers (x∗, η∗) ∈ K2 is an optimal solution

to problem (5.14) subject to (5.10) – (5.13) if and only if it satisfies the variational inequality:

J∑
j=1

∑
p∈P 1

∂TGC1(x∗)

∂xj
p

+ γj

∑
a∈L1

η∗aδap

× [
xj

p − xj∗
p

]

+
∑
a∈L1

ua −
J∑

j=1

γj

∑
p∈P 1

xj∗
p δap

× [ηa − η∗a] ≥ 0, ∀(x, η) ∈ K2. (5.17)

Variational inequality (5.17) can be put into standard form (2.1a). Let X ≡ (x, η) and F (X) ≡
(F1(X), F2(X)), where F1(X) consists of elements:[

∂TGC1(x)

∂xj
p

+ γj
∑

a∈L1 ηaδap

]
, ∀j, ∀p ∈ P 1, and F2(X) of elements:

[
ua −

∑J
j=1 γj

∑
p∈P 1 xj

pδap

]
,

∀a ∈ L1. Then, clearly, (5.17) can be put into the form (2.1a), where N = nP 1 + nL1 .

5.3 Numerical Examples

The numerical examples are inspired, in part, by ongoing refugee/migrant crises as in Central

America and Mexico (cf. Stemple (2019)), which are ongoing and have been exacerbated in the

COVID-19 pandemic (see Nagurney, Daniele, and Cappello (2021)). Slow-onset, ongoing disasters

are providing huge challenges for various organizations, including humanitarian ones, and govern-

ments, to provide the necessary food, water, medicines, etc., to the needy in a variety of shelters.

The numerical examples are stylized but reflect real-world features. Furthermore, as in the case of

the refugee/migrant crisis emanating from Central America, numerous organizations are involved

in providing assistance and, hence, it is valuable to be able to assess possible synergies since the

demand is so great. Using carefully calibrated historical data and information, the models can be
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used to assist the organizations on how to cooperate in terms of the delivery of relief products in

a cost-effective manner.

The pre-cooperation supply chain network for the numerical examples is depicted in Figure 11

and the cooperation one in Figure 12.

According to Figure 11, there are two organizations, Organization 1 and Organization 2, each

of which is to provide relief items to disaster victims at two demand points. The demand points

associated with Organization 1, D1
1 and D1

2, differ from those of Organization 2, that is, D2
1 and

D2
2.
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Figure 11: Pre-Cooperation Supply Chain Network Topology for the Numerical Examples

Pre-cooperation, each organization can procure the relief items from two possible locations

(distinct for each organization) and then have the items transported for storage to a separate

storage facility, from which the relief items are ultimately transported to the points of demand. On

the other hand, under cooperation, as the supply chain network in Figure 11 reveals, the demand

points can be serviced by either organization (or both), and they can make use of one another’s

storage facilities as well as freight services for transportation and distribution, and can also avail

themselves of all the procurement location options.

In the numerical examples, we consider a single product and, thus, we suppress the superscripts

associated with products in our notation.

The total link cost functions are of the form:

ĉa = ca(fa, ωa) = ωaĝafa + gafa, ∀a ∈ L1.
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Figure 12: Cooperation Supply Chain Network Topology for the Examples

The objective function (5.14) takes the form:

Minimize
∑
a∈L1

E(ωa)ĝafa+
∑
a∈L1

gafa+ξV (
∑
a∈L1

ωaĝafa)+
m∑

i=1

ni
D∑

k=1

(
λ−ikE(∆−

ik)+λ+
ikE(∆+

ik)
)
, (5.18)

where in the examples m = 2.

The covariance matrix associated with the ĉa(fa, ωa), ∀a ∈ L1, is the 28× 28 matrix σ2I, since

there are 28 links in the network in Figure 12.

Following Nagurney and Nagurney (2016), we know that:∑
a∈L1

σ2ĝ2
af

2
a = V (

∑
a∈L1

ωaĝafa) = V (
∑
a∈L1

ωaĝa

∑
q∈P

xqδaq); (5.19)

hence,
∂V (

∑
a∈L1 ωaĝa

∑
q∈P xqδaq)

∂xp
= 2σ2

∑
a∈L1

ĝ2
afaδap. (5.20)

We define the following marginal total cost on a link a, Ĝc′a, as:

Gĉ′a ≡ E(ωa)ĝa + ga + ξ2σ2ĝ2
afa, (5.21)

and the following marginal total cost on a path:

GĈ ′
p ≡

∑
a∈L1

Gĉ′aδap, ∀p ∈ P 1. (5.22)
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For both the pre-cooperation model and the cooperation model, Steps 1 and 2 of the modified

projection method (cf. (2.19) and (2.20)) result in closed form expressions for the product path

flows as well as the Lagrange multipliers at each iteration. Below we provide the associated explicit

formulae for Step 1 for the solution of VI (5.17). Analogous formulae are easily obtained for Step

2.

Closed Form Expressions for the Product Path Flows and the Lagrange Multipliers at

Step 1 of Iteration τ

The closed form expression for the product path flow x̄p
jτ

for each p ∈ P 1; j = 1, . . . , J , at iteration

τ is:

x̄p
jτ

= max{0, β

−∂TGC1(xτ−1)

∂xj
p

− γj

∑
a∈L1

ητ−1
a δap

 + xj
p
τ−1}. (5.23)

The closed form expression for the Lagrange multiplier η̄τ
a for a ∈ L1 is:

η̄τ
a = max{0, β

 J∑
j=1

γj

∑
p∈P 1

xj
p
τ−1

δap − ua

 + ητ−1
a }. (5.24)

Note that ∂TGC1(xτ−1)
∂xp

in the algorithmic statement (5.23) would take the form (cf. Masoumi,

Yu, and Nagurney (2017)), ∀i, ∀k, ∀p ∈ P 1
Di

k
:

∂TGC1(xτ−1)
∂xp

= GĈ ′
p(x

τ−1)− λ−ik(1− Pik(
∑

q∈P 1
Di

k

xτ−1
q )) + λ+

ikPik(
∑

q∈P 1
Di

k

xτ−1
q ). (5.25)

We implemented the algorithm in FORTRAN and utilized a Linux system at the University

of Massachusetts Amherst for the computations. The algorithm was initialized with the projected

demand for each demand point set to 100 and equally distributed among the paths. The convergence

tolerance ε was set to 10−5; that is, the algorithm was terminated when the absolute value of the

difference of successive path flows at two iterations as well as that of successively computed Lagrange

multipliers were all less than or equal to this ε value.

Example 5.1

The definitions of the links, the upper bounds on the links, and the associated total link cost

functions are given in Table 5 for Example 5.1. Example 5.2 is constructed from Example 5.1. It

has the same data except for the probability distribution functions at the demand points. The time

horizon under consideration is one week.
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Since we assume one type of relief item, we set (cf. (5.8)) γ1 = 1. The product to be delivered to

the shelters is that of relief item kits, so our costs/prices associated with the procurement links (cf.

Table 5) are reasonable (cf. Nagurney, Salarpour, and Daniele (2019)). The weights ξ1 = ξ2 = 1

apply for the without cooperation supply chain network problem (cf. Figure 11).

The demand at each of the four demand points in Figures 11 and 12 for Example 5.1 is assumed

to follow a continuous uniform distribution on the intervals: [150, 400], [150, 250], [150, 500], and

[100, 200], respectively. Hence, the demand at the second demand point of each HO is lower than

at its first demand location. We then have that, for Organization 1:

P11(
∑

p∈P 0
D1

1

xp) =

∑
p∈P 0

D1
1

xp − 150

400− 150
, P12(

∑
p∈P 0

D1
2

xp) =

∑
p∈P 0

D1
2

xp − 150

250− 150
,

and, for Organization 2:

P21(
∑

p∈P 0
D2

1

xp) =

∑
p∈P 0

D2
1

xp − 150

500− 150
, P22(

∑
p∈P 0

D2
2

xp) =

∑
p∈P 0

D2
2

xp − 100

200− 100
.

The demand points associated with Organization 1 are in the western part of a region, whereas

those associated with Organization 2 are in the eastern part. Their respective storage centers are

located centrally.

We set σ2 = 1. For the construction of the Gĉ′a, ∀a ∈ L1, please refer to equation (5.21) and

Table 5.

Also, we set: λ−ik = 10000 and λ+
ik = 100 for both organizations and all demand points since

shortages are penalized more than surpluses.

The computed optimal link flows and Lagrange multipliers for this example, prior to cooperation,

are reported in Table 6.

The component of the total generalized cost TGC0∗ not including the penalized expected short-

ages and surpluses is equal to 1, 415, 963, whereas the total generalized cost TGC0∗ = 1, 024, 443, 264.

As can be seen from the results in Table 6, the volume of relief item flows into each demand

point is above the minimum amount of the corresponding interval of the associated probability

distribution. Interestingly, the relief item flows on the procurement links of both organizations are

at their respective link capacities and, hence, the corresponding optimal Lagrange multipliers are

positive. The organizations may wish to discuss with their suppliers the possibility of procuring

additional items in the future.
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Table 5: Definition of Links, the Link Upper Bounds, and Associated Total Cost and Other Func-
tions for Examples 5.1 and 5.2

Link a From Node To Node ua ĉa(fa, ωa)=ωaĝafa + gafa E(ωa) Gĉ′a
1 1 M1

1 200 ω12f1 + 60f1 1 8f1 + 62
2 1 M1

2 175 ω2f2 + 55f2 1 2f2 + 56
3 M1

1 S1
1,1 250 ω3f3 + 4f3 1 2f3 + 5

4 M1
2 S1

1,1 200 ω4f4 + 5f4 1 2f4 + 6
5 S1

1,1 S1
1,2 400 ω5f5 + 2f5 1 2f5 + 3

6 S1
1,2 D1

1 300 ω62f6 + 2f6 1 8f6 + 4
7 S1

1,2 D1
2 300 ω72f7 + 2f7 1 8f7 + 4

8 2 M2
1 175 ω8f8 + 50f8 1 2f8 + 51

9 2 M2
2 175 ω9f9 + 45f9 1 2f9 + 46

10 M2
1 S2

1,1 300 ω10f10 + 2f10 1 2f10 + 3
11 M2

2 S2
1,1 300 ω11f11 + 6f11 1 2f11 + 7

12 S2
1,1 S2

1,2 450 ω122f12 + 2f12 1 8f12 + 4
13 S2

1,2 D2
1 350 ω13f13 + 7f13 1 2f13 + 8

14 S2
1,2 D2

2 200 ω14f14 + 8f14 1 2f14 + 9
15 1 M2

1 150 ω15f15 + 50f15 1 2f15 + 51
16 1 M1

2 175 ω16f16 + 45f16 1 2f16 + 46
17 2 M1

1 175 ω172f17 + 60f17 1 8f17 + 62
18 2 M1

2 150 ω18f18 + 55f18 1 2f18 + 56
19 M1

1 S2
1,1 200 ω19f19 + 5f19 1 2f19 + 6

20 M1
2 S2

1,1 200 ω20f20 + 6f20 1 2f20 + 7
21 M2

1 S1
1,1 200 ω21f21 + 3f21 1 2f21 + 4

22 M2
2 S1

1,1 200 ω22f22 + 7f22 1 2f22 + 8
23 S1

1,2 D2
1 200 ω232f23 + 3f23 1 8f23 + 5

24 S1
1,2 D2

2 200 ω242f24 + 3f24 1 8f24 + 5
25 S2

1,2 D1
1 150 ω25f25 + 8f25 1 2f25 + 9

26 S2
1,2 D1

2 150 ω26f26 + 9f26 1 2f26 + 10
27 0 1 large 0 – 0
28 0 2 large 0 – 0

In Table 7, we report the computed optimal solution for the cooperation supply chain network

for Example 5.1. We set ξ = 1.

Again, the relief item flows to the demand points are all greater than the lower value of the

interval of the respective probability distribution. Moreover, whereas in the case without coopera-

tion, a total of 725 relief items were delivered across all demand points, now 850 have been delivered

under cooperation. Hence, victims benefit from the cooperation of organizations.

In the optimal solution to the supply chain network with cooperation, as reported in Table

7, the relief item flows at the two storage locations are now at capacity levels, as is the flow on
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Table 6: Optimal Link Flows and Lagrange Multipliers for Examples 5.1 and 5.2 without Cooper-
ation

Example 5.1 Example 5.2
Link a From Node To Node f∗a η∗a f∗a η∗a

1 1 M1
1 200 3448 200 1878

2 1 M1
2 175 4753 175 3183

3 M1
1 S1

1,1 200 0 200 0
4 M1

2 S1
1,1 175 0 175 0

5 S1
1,1 S1

1,2 375 0 375 0
6 S1

1,2 D1
1 202 0 187.5 0

7 S1
1,2 D1

2 173 0 187.5 0
8 2 M2

1 175 3774 175 1026
9 2 M2

2 175 3775 175 1027
10 M2

1 S2
1,1 175 0 175 0

11 M2
2 S2

1,1 175 0 175 0
12 S2

1,1 S2
1,2 350 0 350 0

13 S2
1,2 D2

1 226 0 200 0
14 S2

1,2 D2
2 124 0 150 0

the shipment link from the second storage facility to the fourth (last) demand point. Hence, the

Lagrange multipliers associated with these links (links 5, 12, and 26) are now positive.

The component of the total generalized cost TGC1∗, not including the penalized expected short-

ages and surpluses, is equal to 1, 480, 565, whereas the total generalized cost TGC1∗ = 466, 333, 824.

The resulting synergy for Example 5.1, associated with cooperation, is, hence, STGC = 54%.

The organizations also gain under cooperation, in addition to the refugees.

Example 5.2

Example 5.2 has the identical data to that in Example 5.1 except that we assume that there are

now better estimates of the demand ranges for the first and third demand points. We now have

that, for Organization 1:

P11(
∑

p∈P 0
D1

1

xp) =

∑
p∈P 0

D1
1

xp − 150

250− 150
,

and for Organization 2:

P21(
∑

p∈P 0
D2

1

xp) =

∑
p∈P 0

D2
1

xp − 150

250− 150
.
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Table 7: Optimal Link Flows and Lagrange Multipliers for Examples 5.1 and 5.2 with Cooperation

Example 5.1 Example 5.2
Link a From Node To Node f∗a η∗a f∗a η∗a

1 1 M1
1 86 0 106 0

2 1 M1
2 112 0 106 0

3 M1
1 S1

1,1 78.5 0 100 0
4 M1

2 S1
1,1 106 0 100 0

5 S1
1,1 S1

1,2 400 7291 400 11305
6 S1

1,2 D1
1 79.5 0 110 0

7 S1
1,2 D1

2 140 0 110 0
8 2 M2

1 114 0 106 0
9 2 M2

2 114 0 106 0
10 M2

1 S2
1,1 120 0 113 0

11 M2
2 S2

1,1 120 0 113 0
12 S2

1,1 S2
1,2 450 4917 450 9737

13 S2
1,2 D2

1 96 0 123 0
14 S2

1,2 D2
2 115 0 82 0

15 1 M2
1 114 0 106 0

16 1 M1
2 114 0 106 0

17 2 M1
1 86 0 106 0

18 2 M1
2 112 0 106 0

19 M1
1 S2

1,1 93.5 0 113 0
20 M1

2 S2
1,1 117 0 113 0

21 M2
1 S1

1,1 108 0 100 0
22 M2

2 S1
1,1 108 0 100 0

23 S1
1,2 D2

1 81 0 100 0
24 S1

1,2 D2
2 100 0 70 0

25 S2
1,2 D1

1 90 0 123 0
26 S2

1,2 D1
2 150 703 123 0

27 0 1 425 0 425 0
28 0 2 425 0 425 0

The computed optimal solution for the supply chain network for Example 5.2 without cooper-

ation is reported in Table 6 and that for the supply chain network with cooperation is reported in

Table 7.

In Example 5.2, the same links in the without cooperation supply chain network are at their

capacities, in terms of the link flows, as in Example 5.1; that is, the procurement links. Also, in the

case of cooperation, the storage links are at their capacities in both Examples 5.1 and 5.2, whereas

link 26, corresponding to a shipment/distribution link, is only at its capacity in Example 5.1 and

not in Example 5.2.
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The component of the total generalized cost TGC0∗, not including the penalized expected short-

ages and surpluses, is equal to 1, 409, 139, whereas the total generalized cost TGC0∗ = 494, 335, 328.

The component of the total generalized cost TGC1∗, not including the penalized expected shortages

and surpluses, is equal to 1,498,029, whereas the total generalized cost TGC1∗ = 1, 536, 779.

The resulting synergy associated with cooperation for Example 5.2 has STGC = 99%. With

tighter estimates of the projected demand, a higher generalized total cost synergy is achieved. The

needy now receive volumes of relief kits closer to the higher bound of the respective interval over

which the probability distribution function is defined.

Example 5.3

In Example 5.3, we consider the situation where Organization 1 is in a developed country with

access to more resources, whereas Organization 2 is in a developing country with fewer resources,

and is also more susceptible/exposed to natural disasters and strife, with a greater number of

victims requiring shelters.

The data for Example 5.3 are as in Example 5.2 except for the following: the capacities on

certain procurement links were increased so that:

u1 = 400, u2 = 350, u7 = 350, u8 = 350.

Also, in order to reflect that Organization 1 has access to greater resources, the capacity on its

storage link (link 5) was increased, so that now

u5 = 600.

P11 and P12 remain as in Example 5.2, but, in order to consider higher demand at demand

points originally associated with Organization 2 (cf. Figure 12) in Example 5.3 we have now that:

P21(
∑

p∈P 0
D2

1

xp) =

∑
p∈P 0

D2
1

xp − 400

500− 400
,

and

P22(
∑

p∈P 0
D2

2

xp) =

∑
p∈P 0

D2
2

xp − 300

400− 300
.

The computed optimal solution for this example without cooperation is reported in Table 8,

and that for this example with cooperation, in Table 9.

The component of the total generalized cost TGC0∗, not including the penalized expected short-

ages and surpluses, is equal to 1, 974, 112 whereas the total generalized cost TGC0∗ = 2, 574, 611, 712.
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Table 8: Optimal Link Flows and Lagrange Multipliers for Example 5.3 without Cooperation

Example 5.3
Link a From Node To Node f∗a η∗a

1 1 M1
1 207 0

2 1 M1
2 200 0

3 M1
1 S1

1,1 207 0
4 M1

2 S1
1,1 200 1276

5 S1
1,1 S1

1,2 407 0
6 S1

1,2 D1
1 204 0

7 S1
1,2 D1

2 204 0
8 2 M2

1 225.4 0
9 2 M2

2 225.6 0
10 M2

1 S2
1,1 225 0

11 M2
2 S2

1,1 225 0
12 S2

1,1 S2
1,2 450 17549

13 S2
1,2 D2

1 274 0
14 S2

1,2 D2
2 176 0

Whereas in Example 5.2 the total volume of delivered relief items was 850; in Example 5.3 the

total volume is 1, 050.

In Example 5.3, under cooperation, both organizations utilize the storage facilities to their

capacities.

The component of the total generalized cost TGC1∗, not including the penalized expected short-

ages and surpluses, is equal to 2,108,016 whereas the total generalized cost TGC1∗ = 2, 255, 516.

The synergy STGC is again 99%, showing the potential benefits of cooperation among organi-

zations for disaster relief, including in the COVID-19 pandemic.
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Table 9: Optimal Link Flows and Lagrange Multipliers for Example 5.3 with Cooperation

Example 5.3
Link a From Node To Node f∗a η∗a

1 1 M1
1 131 0

2 1 M1
2 131 0

3 M1
1 S1

1,1 150 0
4 M1

2 S1
1,1 150 0

5 S1
1,1 S1

1,2 600 12652
6 S1

1,2 D1
1 99 0

7 S1
1,2 D1

2 99 0
8 2 M2

1 131 0
9 2 M2

2 131 0
10 M2

1 S2
1,1 113 0

11 M2
2 S2

1,1 113 0
12 S2

1,1 S2
1,2 450 21084

13 S2
1,2 D2

1 234 0
14 S2

1,2 D2
2 153 0

15 1 M2
1 131 0

16 1 M1
2 131 0

17 2 M1
1 131 0

18 2 M1
2 131 0

19 M1
1 S2

1,1 113 0
20 M1

2 S2
1,1 113 0

21 M2
1 S1

1,1 150 0
22 M2

2 S1
1,1 150 0

23 S1
1,2 D2

1 200 12619
24 S1

1,2 D2
2 200 2565

25 S2
1,2 D1

1 32 0
26 S2

1,2 D1
2 32 0

27 0 1 525 0
28 0 2 525 0

6. Summary, Conclusions, and Suggestions for Future Research

The COVID-19 pandemic has vividly demonstrated the importance of and the need for tools from

operations research and analytics. Faced with this global healthcare disaster, operations researchers

have applied tools from simulation to game theory to enable deeper insights into all facets of gaining

a greater understanding of the impacts and the management of this disaster as well as the response

to it.

In this tutorial, game theory is overviewed, within the context of recently introduced new models
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inspired by the COVID-19 pandemic, along with the methodology of the theory of variational

inequalities, which is applied for problem formulation, qualitative analysis, as well as computations.

The theoretical foundations are recalled and three supply chain network based frameworks, drawn

from the literature, with updates, presented. The first supply chain network game theory model

overviewed in this tutorial is due to Nagurney (2021a). It incorporates labor as a critical resource

and enables the investigation of the quantification of disruptions to labor, as well as changes to

the productivity of labor. In the pandemic, the world has seen essential workers, who courageously

serve as frontline workers, from the food industry to healthcare, getting ill from COVID-19, with the

effects of labor shortages propagating in the associated supply chains and affecting not only local,

but also global markets, and, of course, communities. This model is an example of a noncooperative

game theory model, governed by a Nash equilibrium. The model provides the basis for other

possible extensions, including those that have considered other types of constraints on labor (see,

e.g., Nagurney (2021a, c)). Specifically, in the pandemic, we have seen workers in some sectors

being retrained or reallocated to other sectors, where there was great need for labor. We have also

seen migration of healthcare workers across many miles to provide much needed care and services

in hospitals in regions severely impacted in different waves of the pandemic, and short of staff. It

is expected that research on incorporating labor into the modeling of supply chains will continue,

since truly, as noted in Nagurney (2021d), “in the end, it’s all about people.”

The second model is also a noncooperative game theory model, but governed by a Generalized

Nash Equilibrium. It captures the intense competition for medical supplies in the COVID-19

pandemic, and also includes demand uncertainty. The model is of relevance to PPEs, ventilators,

testing kits, and, now, even, COVID-19 vaccines. The reason that a Generalized Nash Equilibrium

concept is needed for this application is that the supplies have been limited, and, therefore, the

constraints faced by the various players in the game depend on one another’s strategies and, of

course, their respective utility functions do as well. The utility functions that the players seek

to optimize are quite different from those in the first supply chain network application, which is

focused on commercial supply chains. This work, due to Nagurney et al. (2021), has also recently

stimulated the development of GNE models in which each player (which can even be a country) is

faced with a two-stage stochastic optimization problem (see Salarpour and Nagurney (2021)). It is

expected that the operations research based pandemic research will continue to make use of and,

perhaps, also further integrate and extend the humanitarian operations and logistics literature.

The third model in this tutorial demonstrates how one can quantify the synergy associated with

the possibility of cooperation among multiple organizations involved in multiple product supply

chains involved in providing relief items in a disaster that can include a pandemic. The model

also handles demand uncertainty, as well as cost uncertainty. The setup uses a mean variance
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approach. This work, due to Nagurney and Qiang (2020), can serve as the foundation for assessing

possible public private partnerships and can even be integrated with labor constructs as in the first

model in this tutorial. We expect that cooperation among relevant entities, including governments,

will be essential in the continuing battles of this pandemic and in mitigating and preparing for

future pandemics. Furthermore, it would be very worthwhile to investigate additional cooperative

game theory concepts in the pandemic setting. For example, the use of the Bargaining Nash

concept, which has been applied to the sharing of cybersecurity information (cf. Nagurney and

Shukla (2017)), could be used to model partnerships even between competing pharmaceutical firms

involved in vaccine production, to start.

It is also important to emphasize that rigorous supply chain network models, in both optimiza-

tion and game theory settings, can be very useful for policymakers in the pandemic and beyond.

For example, related optimization and game theory models, similar to those described in this

tutorial have been constructed for blood supply chains by Nagurney, Masoumi, and Yu (2012),

Masoumi, Yu, and Nagurney (2017), Dutta and Nagurney (2019), and Nagurney and Dutta (2019)

and highlighted in the article by Nagurney (2020b). The latter article was referenced on the first

page of the memo on the US blood supply by then California Attorney General Xavier Becerra to

Admiral Brett Giroir, MD, then the Assistant Secretary for Health, U.S. Department of Health &

Human Services, and signed by 21 other State Attorneys General (see Becerra (2020)) and helped

to influence policy.

We expect that operations researchers’ work will continue to be valued and recognized in the

pandemic, harkening back to the discipline’s origins and contributions in World War II. Indeed,

it is times such as these, although very discomfiting and painful, that demonstrate what science

can accomplish and the great impact of operations research, with its innovative models, efficient

algorithms, and insights drawn from computational studies, on both decision-making and policy-

making. The world, through the studies and writings, the presentations, and advocacy of members

of our scientific discipline, now better understands and values supply chains, which are networks of

connectivity for products that sustain life worldwide.
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