
Multitiered Blood Supply Chain Network Competition:

Linking Blood Service Organizations, Hospitals, and Payers

Pritha Dutta

Management and Management Science Department

Lubin School of Business

Pace University, NY 10038

and

Anna Nagurney

Department of Operations and Information Management

Isenberg School of Management

University of Massachusetts

Amherst, Massachusetts 01003

December 2018; revised July 2019 and November 2019

Operations Research for Health Care (2019), 23, 100230

Abstract

In this paper, we present a multitiered competitive supply chain network model for the

blood banking industry, with a focus on the United States, that captures the economic in-

teractions between three tiers of stakeholders; namely, the blood service organizations, the

hospitals or medical centers, which transfuse blood to patients, and the payer groups that pa-

tients belong to. In addition, the supply chain framework for this life-saving product includes

the competition among blood service organizations and their various supply chain activities.

We model the behavior of each category of stakeholder and use the theory of variational

inequalities to derive the equilibrium conditions for the entire supply chain. Illustrative

examples are provided, along with qualitative properties, followed by an algorithm, accom-

panied by convergence results, that is used to solve simulated numerical examples. Results

from these examples demonstrate that such a model can be effectively used to determine the

prices and blood pathways from blood service organizations to hospitals to payers.

Keywords: game theory, blood supply chains, healthcare
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1. Introduction

The blood banking industry world-wide is a capital-intensive industry in which, however,

the major stakeholders such as the blood suppliers and hospitals / medical centers in many

countries are nonprofit organizations. At every stage in the blood supply chain the blood

suppliers (blood service organizations) incur high costs associated with the collection of

whole blood, the processing of the collected blood and the segregation of the components,

the testing for disease markers, storage of blood bags at the appropriate temperature, and,

finally, distribution to hospitals and other medical facilities. With strict regulations enforced

in the United States by the Food and Drug Administration and the introduction of new

disease markers, such as the one for the Zika virus to ensure safety of the transfused blood,

there is, in addition, a recognition of the importance of research and development, which

also requires capital investment (Mulcahy et al. (2016)). The economic sustainability of the

blood service organizations is hence critical to ensure safe and steady supply of the life-saving

product, blood.

In the United States, the annual blood bank revenue is experiencing a decline, falling to

1.5 billion USD in 2014 from as high as 5 billion USD in 2008 (Wald (2014)) with the industry

faced with, on the average, a decreasing demand and a rise in stiff competition (Nagurney

(2017a)). This, in turn, has resulted in some significant developments in the blood banking

industry such as mergers and consolidations (Toland (2014), Tracy (2015)). The growing

trend of mergers is evident, for example, from the fact that the number of members in

America’s Blood Centers, the largest network of nonprofit community blood centers in North

America, has dropped from 87 to 68 members due to 19 partnerships and mergers formed

in the five years between 2010-2015 among their member blood banks (Masoumi, Yu, and

Nagurney (2017)). In the United States, America’s Blood Centers, which has in its network

large organizations such as the New York Blood Center and OneBlood, supplies about 50

percent of the blood, while the American Red Cross supplies approximately 40 percent, with

the remainder being collected by hospitals and medical centers (Nagurney (2017b)). In light

of recent changes in the industry there needs to be an intensified focus on the economics of

blood supply chain networks to identify alternative ways for blood banks to be cost-effective,

and, hence, sustainable.

Hospitals and, similarly, medical centers, in turn, have to manage their blood inventory

efficiently to minimize shortages and, at the same time, plan blood transfusions optimally

to reduce overutilization or wastage of donated blood. Mergers and consolidations have

been a characteristic of not only blood service organizations but also of hospitals, lately,

and competition among hospitals has decreased (Kacik (2017), Gaynor, Mostashari, and
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Ginsburg (2017)). Some policy makers are emphasizing the need for more competition among

health care providers for better service to patients at lower prices (Hyde (2016)) and this

has also been a recent topic of modeling research (see Nagurney and Li (2017)). On another

spectrum, industry executives argue that they face sufficient competition from neighboring

hospitals, new entrants, and alternative sources of health care. The cost of providing health

care is continuing to increase in the United States and it is becoming more difficult to

negotiate better reimbursement rates from hard-bargaining insurers (Dafny and Lee (2016)).

Hospitals in the United States get reimbursed for their patients’ procedures, including blood

transfusions, by different types of payers such as private insurers and government programs

such as Medicare.

The process of billing for blood products and receiving reimbursements for transfused

units from different payer groups is a complicated process. It has been a topic of concern

among industry professionals (America’s Blood Centers (2017)) and policy makers. The 2018

proposed reimbursement rates for blood products by the Centers for Medicare and Medicaid

Services showed reduction in prices for several products. These payment policies have been

criticized by organizations, including the America’s Blood Centers, who continue to push the

Centers for Medicare and Medicaid Services for fairer payment strategies (America’s Blood

Centers (2017)). The Medicare reimbursement for blood in inpatient setting falls under MS-

DRG (Medicare Severity Diagnosis Related Groups) which makes it difficult to separate the

exact costs for the blood products (Toner et al. (2011)), while the outpatient reimbursement

rates are determined using a cost-to-charge ratio methodology which uses data submitted by

the hospitals and is susceptible to errors due to use of improper billing codes. For example,

under the MS-DRG payment policy a hospital providing knee replacement to a patient gets

reimbursed for the medical procedure as a whole and not separately for the amount of blood

transfused as a part of the procedure. This policy often leads to underestimation of the costs

incurred in procuring blood.

Inadequate reimbursements from the payers, in turn, affect the transactions between

hospitals and blood service organizations who struggle to cover the rising cost of blood

collection and testing, and, thereby, impact the economic stability of the entire blood supply

chain (Mulcahy et al. (2016)). With the rise in competition among blood suppliers, the

negotiation power lies with the hospitals who would agree to pay lower prices if they are

unable to recover their own costs adequately. The blood banking industry, therefore, faces

serious challenges due to a clear disconnect between the payments received and the actual

cost of blood. However, the payment methods used by Medicare and other private insurance

companies following their suit, at present, succeed in checking the overutilization of blood.
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To solve the above mentioned issue Mulcahy et al. (2016) propose alternative payment

methods that might be beneficial for all stakeholders in the industry. One of the alternatives

is a cost-based reimbursement policy which would take into account the number of units

of blood transfused and the acquisition cost of blood, in contrast to the current inpatient

payment policy. The majority of blood transfusions, around 92-95 % occur in an inpatient

setting (Mulcahy et al. (2016)). Hence, blood transfusions in inpatient setting account for a

large portion of revenue generated from blood transfusion and needs to be studied extensively

for possible policy reforms.

In this paper, we develop an equilibrium model for a multitiered competitive supply chain

network for the blood banking industry, which takes into account both the logistical blood

flows and the financial interactions between the different tiers of decision-maker/stakeholders.

The contributions in this paper are manifold. Our model captures the decentralized nature

of the blood supply chains in the United States. It is the first competitive supply chain

network model in healthcare with multiple tiers, multiple paths, and multiple associated

distinct types of stakeholders. The objective here is to determine the optimal flows along

various paths from the blood service organizations to the hospitals, the amount of blood

transfused by different hospitals to patients belonging to different payer groups to meet

the demand, the price per unit that hospitals agree to pay to the different blood suppliers,

and the reimbursements received by different hospitals from different payer groups. As

mentioned earlier this paper not only looks at efficiently managing the product flow but also

the economics of the supply chain which is critical. To the best of our knowledge, there does

not exist any prior work which studies analytically the linkage between payer reimbursement

and blood product pricing. We base our model to some extent on the cost-based alternative

payment policy suggested in the report by Mulcahy et al. (2016) and provide a supply chain

network framework that aims to solve the issue of the disconnect between costs incurred by

blood service organizations, and hospitals, and the reimbursements received from payers. The

results obtained from testing our model in simulated numerical examples provide significant

insights to policy makers.

2. Literature Review

In this section, we highlight the existing literature on competitive supply chain networks

and game theory that is relevant to the model in this paper, as well as the literature on

blood supply chains, noting that, to-date, there has only been very limited research that

integrates game theory and blood supply chains.

There exists a body of scientific literature that uses the concept of Nash equilibrium
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(cf. Nash (1950, 1951)) in decentralized supply chains, although, overall, the work is fairly

recent (see, e.g., Nagurney, Dong, and Zhang (2002), Ha, Li, and Ng (2003), Bernstein and

Federgruen (2005), Dong et al. (2005), Xiao and Yang (2008), Anderson and Bao (2010),

Toyasaki, Daniele, and Wakolbinger (2014), and Saberi et al. (2018)), with the books by

Nagurney (2006a) and Nagurney and Li (2016) providing extensive references. In particu-

lar, Nagurney, Dong, and Zhang (2002) developed an equilibrium model for a competitive

supply chain network with separate tiers for multiple manufacturers, multiple retailers, and

multiple demand markets. They formulated and solved the multitiered supply chain network

equilibrium problem as a variational inequality problem to obtain the equilibrium product

flows and prices. Dong et al. (2005) conceptualized the three tiers in their supply chain

network to denote manufacturers who can use one of several shipment alternatives to send

the products to the distributors who comprise the second tier, and, finally, to retailers who

are faced with stochastic demand. Other papers dealing with competition among supply

chain stakeholders and demand uncertainty include those by Tsiakis et al. (2001), Bernstein

and Federgruen (2005), Xiao and Yang (2008), and Mahmoodi and Eshghi (2014).

Bernstein and Federgruen (2005) studied the equilibrium conditions in a two-echelon

supply chain where a single supplier supplies materials to multiple competing retailers who

face uncertain demand. The authors also explored the impacts of coordination between the

two echelons through contracts. Mahmoodi and Eshghi (2014) considered price competition

between two-tiered supply chains consisting of manufacturers and retailers. The authors

proposed three different algorithms to obtain the equilibrium solutions in three possible in-

dustry structures and examined the effects of competition and demand uncertainty intensity

on the solutions and supply chain profits in a numerical example. Farahani et al. (2014)

provided a comprehensive literature review of competitive supply chain design models in

which they classified the papers based on several major features of the models such as the

number of tiers considered, the type of demand, the type of competition, etc.

While the majority of the papers discussed above deal with supply chain structures with

two tiers, in reality, supply chain networks may be more complex and involve multiple

network economic activities as well as several competing stakeholders. Nagurney (2010) pro-

posed a supply chain competition model with activities such as manufacturing, storage, and

distribution for profit-maximizing firms. Masoumi, Yu, and Nagurney (2012), in turn, con-

structed a supply chain network model for oligopolistic competition among pharmaceutical

companies while taking into account the perishable nature of drugs, weheras Yu and Nagur-

ney (2013) developed a competitive food supply chain network model, which also included

perishability and price differentiation.
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There also exists a wide range of literature on blood supply chains focusing on issues

from donor motivation and blood collection to inventory planning policy to facility location.

While some of the theoretical work on donor motivation focuses on altruism (Andreoni

(1990), Evans and Ferguson (2014)), there are empirical studies (cf. Nguyen et al. (2008) and

Schlumpf et al. (2008)) that address the various operational factors at the blood collection

sites that affect donor retention and recruitment. Nagurney and Dutta (2018) used empirical

findings to formulate a game theory model using variational inequality theory in which blood

service organizations utilize their quality of service at the blood collection sites to compete

with one another for donors.

The blood collection process lays the foundation to the entire supply chain and given the

associated problems it has been emphasized and incorporated in several papers in recent

times. In Fortsch and Perera (2018) the authors proposed a policy for donor-arrival that

is validated using real data to show how it can help deal with shortages and wastages,

two of the most persistent challenges in blood supply chains. In Ayer et al. (2017), the

authors worked with American Red Cross to develop a mathematical model for whole blood

collection for cryo production that meets the demand while reducing the total collection

cost. van Brummelen, de Kort and van Dijk (2015) studied the issue of long wait times for

donors. They investigated an analytic waiting time computation method and presented a

computation algorithm to approximate the total delay time approximation.

Since blood products are perishable and have very short shelf lives, with Red Blood Cells

(RBCs) lasting up to 42 days, and platelets only 5 days, there has been emphasis on this

aspect and, in turn, on inventory planning for blood products both at the blood bank level

and at the hospital level (cf. Nahmias (1982) and Pierskalla (2004)). Sarhangian et al. (2017)

studied the performance of threshold-based allocation policies for optimizing blood inventory

taking into consideration the trade-off between age of the blood and availability. Although it

has been controversial, extant literature shows no evidence to support that fresher blood has

better clinical outcomes (Alexander et al. (2016)). Some of the other recent contributions

in this area include those of Duan and Liao (2014), Gunpinar and Centeno (2015), and

Dillon, Oliveira, and Abbasi (2017), Puranam et al. (2017). In addition to optimizing the

inventory of RBCs, Duan and Liao (2014) tackle the issue of blood group compatibility and

substitution, while Dillon, Oliveira, and Abbasi (2017) use stochastic programming to deal

with the uncertainty in the demand for blood. Other recent papers that incorporate the

stochastic nature of demand for blood products in their models include those by Nagurney,

Masoumi, and Yu (2012), Fortsch and Khapalova (2016), Zahiri and Pishvaee (2017), and

Najafi, Ahmadi and Zolfagharinia (2017), Ramezanian and Behboodi (2017). While Fortsch
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and Khapalova (2016) tested various forecasting techniques to better predict the demand for

blood at the blood centers to reduce the uncertainty regarding the demand for blood, Najafi,

Ahmadi and Zolfagharinia (2017) developed a bi-objective integer programming model for

blood inventory management that provides solutions for handling issues of shortage and

wastage by allowing transshipment between hospitals.

The various inherent challenges in the management of blood supply chains such as short-

ages, uncertainty in demand, dependence on voluntary donors, and perishability, along with

emerging ones, such as competition, provide numerous opportunities and scope for research.

A literature search, nevertheless, reveals that, in many cases, these issues are addressed in

isolation. It is important to study the blood supply chain as a whole to understand and

model the interplay between the different stakeholders. Among the integrated supply chain

models reported in the literature review paper by Osorio, Brailsford, and Smith (2015), the

most relevant to our work is that of Nagurney, Masoumi, and Yu (2012), where the au-

thors developed a multicriteria optimization model taking into account all the major supply

chain activities between a regional blood bank and its demand markets. Inspired by this

work and the current competitive environment in the blood banking industry, Nagurney

and Dutta (2017) developed an integrated network model to capture the competition among

blood suppliers for donations as well as supply contracts with hospitals. Heidari-Fathian

and Pasandideh (2017), in turn, developed a three-echelon optimization model including

collection sites, donors, and demand points. They, further, differentiate between mobile and

demountabl collection facilities in developing their location allocation and inventory planning

model.

A major gap found in the extant literature is that the economic transactions included in

the models are limited to cost of activities such as collection, testing, and inventory holding,

and do not include the reimbursements or payments that the hospitals and blood service

organizations receive to cover these costs. While the minimization of cost is an important

aspect in blood supply chain optimization, there is a need for studies exploring the “two

key economic relationships at the core of the U.S blood system: the relationship between

hospitals and blood suppliers and the relationship between hospitals and health care payers”

(Mulcahy et al. (2016)), specifically, in the context of competition.

In this paper, we have tried to bridge the gaps in extant literature on both blood supply

chains and competitive supply chain networks with our multitiered model. We construct

an integrated supply chain network model that includes all major stakeholders in the blood

supply chain; namely, the blood banks or blood service organizations, the hospitals, and the

patient payer groups. It is important to mention that our focus is on the blood industry
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in the United States and other countries may have more centralized blood systems, such as

the United Kingdom, for example. However, the issue of efficient and effective management

of blood is an universal issue. For an interesting article on the results of a survey of blood

supply chain management in the Council of Europe (CoE) countries, and CoE observers

(Australia, Canada, New Zealand, and the United States), see Follea (2013).

The rest of the paper is organized as follows. In Section 3, we present the multitiered

blood supply chain network competition model, consisting of blood service organizations,

hospitals, and the payers. The behavior of each class of decision-makers is described, and a

unified variational inequality derived, whose solution yields equilibrium blood logistical flows

and prices. Illustrative examples are presented for clarification and exposition purposes.

We present numerical examples in Section 4, and summarize our results and present our

conclusions in Section 5.

3. The Multitiered Blood Supply Chain Network Competition Model

The blood supply chain network (cf. Figure 1) consists of I competing blood service

organizations (BSOs), with a typical BSO denoted by i, HnH
hospitals, with a typical hospital

denoted by j, and TnT
payers, with a typical payer denoted by k. The BSOs are depicted by

the top-most nodes in Figure 1 and the payers by the bottom nodes. Examples of patient

payer types in the United States include: Medicare, Medicaid, other public health insurance

programs, private health insurance such as UnitedHealthcare, the uninsured, etc. Each

blood service organization i collects blood from ni
C collection sites that include fixed and

mobile sites. Once blood is collected by BSO i; i = 1, . . . , I, it is sent to ni
P component

laboratories for testing and processing where whole blood is separated into components such

as Red Blood Cells (RBCs), platelets, and plasma. In our model, we consider only RBCs

since these are the most common blood products used for transfusion in surgeries, and,

henceforth, whenever we use the term “blood” we imply RBCs.

Blood is shipped from the component laboratories of each BSO i to ni
S storage facilities

that constitute the fifth tier of the supply chain network. The next level of nodes represents

the ni
D; i = 1, . . . , I, distribution centers. At times, the component laboratories, storage

facilities, and distribution centers are not separate physical entities but exist within the

blood centers. At the seventh tier blood reaches hospitals from multiple suppliers with

whom they have contracts (Merola (2017)). The hospitals also compete with one another

for patients. Each set of links between a pair of nodes denotes an activity along the supply

chain such as, for example, the collection of whole blood from donors, shipment, testing and

processing, storage, distribution, and, finally, transfusion. We now focus on the behavior
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JĴ













�

J
J

J
J

JĴ
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Figure 1: The Multitiered Blood Supply Chain Network Topology

of the decision-makers in the blood supply chain and their interplay. First, we discuss the

behavior of the blood service organizations and then turn to the hospitals and, finally, the

payers.
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3.1 Behavior of the Blood Service Organizations and Their Optimality Condi-

tions

A path is a sequence of links, which are directed, and originates at a top origin node

representing a blood service organization and ending at a hospital node. N and L are

defined as the sets of nodes and links, respectively, up to the seventh tier representing the

hospitals with Li denoting the set of links in BSO i’s supply chain for i = 1, . . . , I. Associated

with each link a, ∀a ∈ L, is a total cost function ĉa representing the cost for the activity.

It is to be noted that the amount of blood collected is never equal to the amount of

blood supplied to the hospitals. After collection at every stage of the supply chain, such

as testing, processing, storage, a fraction of blood is wasted due to errors such as misfilled

bags, incorrect labeling, etc., in addition to outdates due to the perishable nature of blood.

To capture this loss along the supply chain, we utilize a generalized network approach with

appropriate arc and path multipliers (see also, e.g., Masoumi, Yu, and Nagurney (2012) and

Nagurney et al. (2013)) as defined in Table 1.

Table 1: Multiplier Notation for Blood Loss
Notation Definition

αa The arc multiplier associated with link a, which represents the percent-
age of throughput on link a. αa ∈ (0, 1]; a ∈ L.

αap The arc-path multiplier, which is the product of the multipliers of the
links on path p that precede link a; a ∈ L and p ∈ P ; that is,

αap ≡


δap

∏
b∈{a′<a}p

αb, if {a′ < a}p 6= Ø,

δap, if {a′ < a}p = Ø,

where {a′ < a}p denotes the set of the links preceding link a in path p
and δap = 1, if link a is contained in path p, and 0, otherwise.

µp The multiplier corresponding to the percentage of throughput on path

p; that is, µp ≡
∏
a∈p

αa; p ∈ P , where P is the set of all paths connecting

the BSOs with the hospitals.

Let xp denote the nonnegative flow of blood on a path p sent from a BSO to a hospital.

Let the contracted amount of blood supplied by BSO i to hospital j be denoted by qij;

i = . . . , I; j = H1, . . . , HnH
. We consider this to be the projected demand for a week. Let

P i
j denote the set of all paths joining BSO i with hospital j.

The conservation of flow equation that has to hold for each BSO i; i = 1, . . . , I, at hospital
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j; j = H1, . . . , HnH
, is: ∑

p∈P i
j

xpµp = qij, (1)

that is, the sum of all the actual, after loss is factored in, path flows from a particular

BSO to a particular hospital should be equal to their contracted supply amount. The

total amount of blood supplied by a blood service organization i, qi, can be written as∑HnH
j=H1

∑
p∈P i

j
xpµp = qi.

Since the path flows must be nonnegative, we have that:

xp ≥ 0, ∀p ∈ P. (2)

Let fa denote the flow of blood on link a. Then, the following conservation of flow

equations must hold:

fa =
∑
p∈P

xpαap, ∀a ∈ L. (3)

According to equation (3), the initial blood product flow on link a is the sum of the

product flows along paths that contain that link, taking into account possible losses in the

preceding activities. We group all the flows corresponding to links in L into the vector

f ∈ RnL where nL is the total number of elements in L. The total link cost on a link a is

assumed to be, in general, a function of all the flows in the network. Therefore, we have that

ĉa = ĉa(f), ∀a ∈ L. (4)

The total cost on each link is assumed to be convex and continuously differentiable. The

total cost incurred by a blood service organization will be the sum of all the total costs on

links operated by the blood service organization. The price per unit charged by BSO i to

hospital j is denoted by ρ1∗
ij . We discuss how the equilibrium prices are recovered, once the

model is solved, later in this section. The revenue generated by each BSO is the product of

the unit price and the amount of blood supplied.

As noted earlier, blood service organizations in the United States are predominantly non-

profits. Therefore, there is a utility associated with the service that they provide (cf. Nagur-

ney, Alvarez Flores, and Soylu (2016) and Nagurney and Li (2017)). Let γij correspond to

a measurement of the satisfaction that blood service organization i derives from supplying

blood to hospital j. The overall such “service” utility of blood service organization i asso-

ciated with all the demand points is then given by
∑HnH

j=H1
γijqij. This service utility also
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represents altruism (cf. Nagurney, Alvarez Flores, and Soylu (2016)). In addition, each

blood service organization i associates a weight ωi with its service utility, which monetizes

it. According to the function ωi

∑HnH
j=H1

γijqij, the greater the amount made available, the

more patients that can benefit and, therefore, the greater the good that can be accomplished.

The utility function of blood service organization i; i = 1, . . . , I, denoted by Ui, can be

expressed as:

Ui =

HnH∑
j=H1

ρ1∗
ij qij + ωi

HnH∑
j=H1

γijqij −
∑
a∈Li

ĉa(f), (5a)

or, equivalently, in terms of path flows, through the use of equations (1) and (3).

Ûi(x) =

HnH∑
j=H1

ρ1∗
ij

∑
p∈P i

j

xpµp + ωi

HnH∑
j=H1

γij

∑
p∈P i

j

xpµp −
∑
a∈Li

˜̂ca(x), (5b)

with˜̂ca(x) ≡ ĉa(f), ∀a ∈ L.

It is to be noted that the utility of each blood service organization is over a time horizon

of a week.

The blood service organizations seek to maximize their utility, while competing for the

quantity of blood supplied and also, given the generality of the total cost functions (4),

through the other various activities, since they may, for example, compete for qualified staff,

etc. Hence, each BSO has as its strategic variables, its path flows, with Xi denoting the

vector of path flows corresponding to blood service organization i; i = 1, . . . , I:

Xi ≡ {{xp}|p ∈ P i} ∈ RnPi

+ , (6)

where P i denotes the set of all paths associated with BSO i and nP i denotes the number

of paths from BSO i to the hospitals. X is the vector of all path flows, that is, X ≡
{{Xi}|i = 1, . . . , I}. Further, we define the feasible set for blood service organization i as

Ki ≡ {Xi|xi ∈ R
nPi

+ }. All vectors are column vectors.

The blood service organizations compete noncooperatively in an oligopolistic market

framework in which each blood service organization selects its own optimal blood prod-

uct flows to maximize its utility, given the optimal ones of its competitors. The governing

equilibrium concept underlying the behavior of the blood service organizations is, there-

fore, that of Nash (1950, 1951) equilibrium. The optimality conditions for all the blood

service organizations simultaneously can be expressed as the following variational inequality

(cf. Gabay and Moulin (1980), Nagurney (1999)): determine x∗ ∈ K1, K1 ≡
∏I

i=1Ki, such
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that:
I∑

i=1

HnH∑
j=H1

∑
p∈P i

j

[
∂Ĉp(x

∗)

∂xp

− ωiγijµp − ρ1∗
ij µp

]
× [xp − x∗p] ≥ 0, ∀x ∈ K1, (7)

where ∂Ĉp(x)

∂xp
for paths p ∈ P i

j is given by

∂Ĉp(x)

∂xp

≡
∑
a∈Li

∑
b∈Li

∂ĉb(f)

∂fa

αap. (8)

The optimality conditions as expressed by (7) provide a nice economic interpretation

in that a blood service organization will supply blood to a hospital by a path p (flow on

the path will be positive) if the “marginal total cost” on the path is exactly equal to the

marginal utility associated with the weighted altruism of the pair (i, j) plus the marginal

revenue associated with the path p, with yield loss accounted for.

3.2 Behavior of the Hospitals and Their Optimality Conditions

We now discuss the competition among the hospitals. Hospitals are the stakeholders in

the blood supply chain network who are involved in transactions with both blood suppliers,

the BSOs, and the patient payer groups.

Each hospital j decides to transfuse an amount qjk of RBCs to patient group k. The total

amount of blood transfused by hospital j; j = H1, . . . , HnH
, cannot exceed the total amount

it receives from its contracted suppliers. Therefore, the following condition must be satisfied

TnT∑
k=T1

qjk ≤
I∑

i=1

qij, (9a)

or, equivalently,
TnT∑
k=T1

qjk ≤
I∑

i=1

∑
p∈P i

j

xpµp. (9b)

We denote the price charged by hospital j; j = H1, . . . , HnH
, per unit of RBCs transfused

as ρ2∗
j . Similar to blood service organizations, many hospitals are nonprofits and, hence, will

have a weighted altruism factor in their utility function which is given as βj

∑TnT
k=T1

θjkqjk. In

the case of a for profit hospital the weight βj will simply be zero.

In addition to the cost of acquiring blood from the suppliers, hospitals incur a holding

cost for maintaining a proper inventory of blood. This cost is denoted by hj for hospital j;
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j = H1, . . . , HnH
, and is a function of

∑TnT
k=T1

qjk, the total amount of blood transfused at

hospital j.

The optimization problem for hospital j; j = H1, . . . , HnH
, then becomes

Maximize ρ2∗
j

TnT∑
k=T1

qjk + βj

TnT∑
k=T1

θjkqjk − hj(

TnT∑
k=T1

qjk)−
I∑

i=1

ρ1∗
ij

∑
p∈P i

j

xpµp, (10)

subject to constraint (9b) and the nonnegativity constraints: xp ≥ 0, ∀p ∈ Pj, where Pj is

the set of all paths terminating in j, and qjk ≥ 0 for all j and k.

We now obtain the optimality conditions of the hospitals, assuming that each hospital is

faced with the above optimization problem, and that the hospitals compete in a noncoop-

erative manner to maximize their utilities, given the actions of the other hospitals. It is to

be noted that the hospitals seek to determine the optimal quantities to be supplied to the

patient groups as well as the amount to be received from different suppliers. Assuming that

the holding cost for each hospital is convex and continuous, the optimality conditions for all

hospitals, simultaneously, coincide with the solution of the variational inequality: determine

(x∗, q∗, η∗) ∈ K2 satisfying

I∑
i=1

HnH∑
j=H1

∑
p∈P i

j

[
ρ1∗

ij µp−η∗jµp

]
×[xp−x∗p]+

HnH∑
j=H1

TnT∑
k=T1

[
−ρ2∗

j −βjθjk+
∂hj(

∑TnT
k=T1

q∗jk)

∂qjk
+η∗j

]
×[qjk−q∗jk]

+

HnH∑
j=H1

[ I∑
i=1

∑
p∈P i

j

x∗pµp −
TnT∑
k=T1

q∗jk

]
× [ηj − η∗j ] ≥ 0, ∀(x, q, η) ∈ K2, (11)

with feasible set K2 defined as:

K2 ≡ {(x, q, η)|x ∈ RnP
+ , q ∈ RnHnT

+ , η ∈ RnH
+ }. (12)

Here ηj is the Lagrange multiplier associated with constraint (9) for hospital j, η is the

nH-dimensional vector of all the multipliers, and q denotes the nHnT -dimensional vector of

blood flows between the hospitals and patient groups. For further background on such a

derivation, see Nagurney, Dong, and Zhang (2002) and the references therein. Similar to

(7), in the derivation of the variational inequality (11), we do not have the prices charged as

variables. They become endogenous variables in the complete equilibrium model.

We now discuss the economic interpretation of the hospitals’ optimality conditions and

the justification of the hj functions. From the first term in (11) we can infer that if there

is a positive flow of RBCs between a blood service organization and a hospital, then η∗j is
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precisely equal to the hospital’s payment to the supplier, ρ1∗
ij . From the second term of (11)

we see that if q∗jk is positive, that is, if patients from payer group k get transfusions from

hospital j, then the unit price charged by hospital j, ρ2∗
j , plus its marginal service utility,

βjθjk, is exactly equal to its marginal cost of holding inventory plus its unit cost of procuring

blood (since η∗j = ρ1∗
ij ). Further, from the third term in (11) we can infer that if η∗j is

positive, then the amount of blood received by hospital j is exactly equal to the amount

of blood transfused at hospital j. Hence, we can say that the inventory holding cost of a

hospital is a function of the total amount of blood transfused at a hospital.

3.3 Behavior of the Payer Groups and Equilibrium Conditions

As mentioned earlier, the payers are conceptualized as patients belonging to different

payer groups. Since most of the surgeries requiring blood transfusion such as knee replace-

ments, cardiovascular surgery, organ transplants, etc., are planned ahead of time, we assume

that the demand for blood at each payer node depends on the reimbursement that the payers

(insurers) are willing to give. The type of insurance is also known before blood transfusion

takes place. Since for a patient getting treatment at a hospital, the blood required for

transfusion will be provided by that particular hospital, we expect that the demand at each

hospital from each payer group may be different. Demand at patient payer group k for

transfusions at hospital j is denoted by djk. The amount that payer type k is willing to

reimburse to hospital j is given as ρ3
jk. Thus, we have that

djk = djk(ρ
3), ∀j,∀k, (13)

where ρ3 is the nHnT -dimensional vector of payer prices. The demand is assumed to be

monotonically decreasing in the reimbursement for the hospital, but increasing in the reim-

bursements for other hospitals. However, it is to be noted that if the demand is quite price

inelastic then the coefficients should be set accordingly.

In reality, healthcare payments received by different hospitals from the same payer might

vary significantly (Luhby (2013)). The reimbursement or payer price can depend on several

factors such as the payer mix, whether it is a teaching or non-teaching hospital, the hos-

pital’s location, its healthcare network, etc. For example, Medicare pays a higher rate to

teaching hospitals while private insurance companies negotiate better rates for hospitals in

their network.

The payers take into account not only the price charged by the hospitals in determining

which hospital to choose, but also the transaction cost. Let cjk denote the transaction cost

between hospital j and payer group k. We assume that the transaction cost is continuous,
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positive, and of the general form

cjk = cjk(q), ∀j,∀k. (14)

Following Nagurney, Dong, and Zhang (2002) (see also Nagurney (2006b)), we have

that the equilibrium conditions are: For all hospitals j; j = H1, . . . , HnH
, and payers

k = T1, . . . , TnT
:

ρ2∗
j + cjk(q

∗)

{
= ρ3∗

jk if q∗jk > 0,

≥ ρ3∗
jk if q∗jk = 0.

(15)

and

djk(ρ
3∗)

{
= q∗jk if ρ3∗

jk > 0,

≤ q∗jk if ρ3∗
jk = 0.

(16)

Conditions (15) imply that, in equilibrium, if q∗jk is positive, that is, there are patients

at the hospital k that get blood transfusions from hospital j, then the price charged by

the hospital plus the transaction cost does not exceed the price that the payer is willing

to reimburse. Conditions (16) state that, if the equilibrium price that a particular payer

group is willing to pay for the blood product from a particular hospital is positive, then the

quantity of blood obtained from a hospital is precisely equal to the demand of blood for

that payer group. These conditions correspond to the well-known spatial price equilibrium

conditions but applied to an entirely novel context of multitiered blood supply chain networks

(cf. Takayama and Judge (1971), Nagurney (1999), and the references therein).

In equilibrium, conditions (15) and (16) will have to hold for all k, and can, in turn,

be expressed as the variational inequality problem (see, e.g., Nagurney (1999)): determine

(q∗, ρ3∗) ∈ K3, such that

HnH∑
j=H1

TnT∑
k=T1

[ρ2∗
j + cjk(q

∗)− ρ3∗
jk]× [qjk − q∗jk] +

HnH∑
j=H1

TnT∑
k=T1

[q∗jk − djk(ρ
3∗)]× [ρ3

jk − ρ3∗
jk] ≥ 0,

∀(q, ρ3) ∈ K3, (17)

where the feasible set K3 ≡ {(q, ρ3) ∈ R2nHnT
+ }.

3.4 The Equilibrium Conditions of the Blood Supply Chain

In equilibrium, the amount of blood supplied by the blood service organizations must

be equal to the amount of blood received by the hospitals. In addition, the amount of

blood transfused by the hospitals must be equal to the amount needed by the patients.

Furthermore, the equilibrium quantities and price pattern in the blood supply chain must
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satisfy the sum of the inequalities (7), (11), and (17), to formalize the agreements between

the tiers. Hence, although there is competition across a tier of decision-makers, whether

BSOs or hospitals, there is cooperation between tiers and the prices assist in this. We now

state this explicitly in the following definition.

Definition 1: Multitiered Blood Supply Chain Network Equilibrium

The equilibrium state of the supply chain is one where the blood product (RBC) flows between

the three distinct tiers of decision makers coincide and the blood flows and prices satisfy the

sum of the optimality conditions (7), (11), and (17).

We now establish the following:

Theorem 1: Variational Inequality Formulation of the Multitiered Blood Supply

Chain Network Equilibrium

The equilibrium conditions governing the multitiered blood supply chain network are equiva-

lent to the solution of the variational inequality problem given by: determine (x∗, q∗, η∗, ρ3∗) ∈
K4 satisfying:

I∑
i=1

HnH∑
j=H1

∑
p∈P i

j

[
∂Ĉp(x

∗)

∂xp

− ωiγijµp − η∗jµp

]
×[xp − x∗p]

+

HnH∑
j=H1

TnT∑
k=T1

[cjk(q
∗) +

∂hj(
∑TnT

k=T1
q∗jk)

∂qjk
+ η∗j − βjθjk − ρ3∗

jk]× [qjk − q∗jk]

+

HnH∑
j=H1

[ I∑
i=1

∑
p∈P i

j

x∗pµp −
TnT∑
k=T1

q∗jk

]
× [ηj − η∗j ] +

HnH∑
j=H1

TnT∑
k=T1

[q∗jk − djk(ρ
3∗)]× [ρ3

jk − ρ3∗
jk] ≥ 0,

∀(x, q, η, ρ3) ∈ K4, (18)

where K4 ≡ {(x, q, η, ρ3) ∈ RnP +2nHnT +nH
+ }.

Proof: We first establish necessity, that the equilibrium conditions imply variational in-

equality (18). Observe that, indeed, the summation of (7), (11), and (17), yields variational

inequality (18), after algebraic simplification.

For sufficiency we now establish the converse, that is, that a solution to variational in-

equality (18) satisfies the sum of inequalities (7), (11), and (17), and is, therefore, an equi-

librium according to Definition 1. To inequality (18) we add the term −ρ1∗
ij µp + ρ1∗

ij µp to

the term in the first set of brackets preceding the multiplication sign and we add the term

−ρ2∗
j + ρ2∗

j to the term in brackets preceding the second multiplication sign. Such “terms”
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do not change the value of the inequality since their value is equal to zero, with the resulting

inequality of the form

I∑
i=1

HnH∑
j=H1

∑
p∈P i

j

[
∂Ĉp(x

∗)

∂xp

− ωiγijµp − η∗jµp − ρ1∗
ij µp + ρ1∗

ij µp

]
×[xp − x∗p]

+

HnH∑
j=H1

TnT∑
k=T1

[cjk(q
∗) +

∂hj(
∑TnT

k=T1
q∗jk)

∂qjk
+ η∗j − βjθjk − ρ3∗

jk − ρ2∗
j + ρ2∗

j ]× [qjk − q∗jk]

+

HnH∑
j=H1

[ I∑
i=1

∑
p∈P i

j

x∗pµp −
TnT∑
k=T1

q∗jk

]
× [ηj − η∗j ] +

HnH∑
j=H1

TnT∑
k=T1

[q∗jk − djk(ρ
3∗)]× [ρ3

jk − ρ3∗
jk] ≥ 0,

∀(x, q, η, ρ3) ∈ K4, (19)

which, in turn, can be rewritten as

I∑
i=1

HnH∑
j=H1

∑
p∈P i

j

[
∂Ĉp(x

∗)

∂xp

− ωiγijµp − ρ1∗
ij µp

]
× [xp − x∗p] +

I∑
i=1

HnH∑
j=H1

[
ρ1∗

ij µp − η∗jµp

]
× [xp − x∗p]

+

HnH∑
j=H1

TnT∑
k=T1

[
−ρ2∗

j −βjθjk+
∂hj(

∑TnT
k=T1

q∗jk)

∂qjk
+η∗j

]
×[qjk−q∗jk]+

HnH∑
j=H1

[ I∑
i=1

∑
p∈P i

j

x∗pµp−
TnT∑
k=T1

q∗jk

]
×[ηj−η∗j ]

+

HnH∑
j=H1

TnT∑
k=T1

[ρ2∗
j + cjk(q

∗)− ρ3∗
jk]× [qjk − q∗jk] +

HnH∑
j=H1

TnT∑
k=T1

[q∗jk − djk(ρ
3∗)]× [ρ3

jk − ρ3∗
jk] ≥ 0,

∀(x, q, η, ρ3) ∈ K4. (20)

But inequality (20) is equivalent to the price and product flow pattern satisfying the sum

of (7), (11), and (17). The proof is complete. 2

We can rewrite the variational inequality (18) in standard variational inequality form (see

Nagurney (1999)), that is: determine Y ∗ ∈ K ⊂ RN , such that

〈F (Y ∗), Y − Y ∗〉 ≥ 0, ∀Y ∈ K, (21)

where Y ≡ (x, q, η, ρ3), F (Y ) ≡ (Fp, F
1
jk, Fj, F

2
jk)p∈P i

j
; i = 1, . . . , I; j = H1, . . . , HnH

; k = T1, . . . , TnT
,

and the specific components of F are given by the functional terms preceding the multiplica-

tion signs in (18), and K ≡ K4. The term 〈·, ·〉 denotes the inner product in N -dimensional

Euclidean space, where N here is nP + 2nHnT + nH .
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The variables in the variational inequality problem are: the blood product (RBC) flows

from the blood service organizations to the hospitals, x, the quantities of blood transfused

by the hospitals to the patient groups, q, the prices associated with transfusing and storing

blood by the hospitals, η, and the demand market prices or reimbursement rates, ρ3.

We now discuss how to recover the blood service organizations’ equilibrium prices, ρ1∗
ij , for

all i, j, and the hospitals’ equilibrium prices, ρ2∗
j , for all j, from the solution of the variational

inequality (18). In the previous discussion in Section 3.2 we mention that if there is positive

flow of blood products between a blood service organization and hospital, then η∗j is precisely

equal to the hospital’s payment to the supplier, ρ1∗
ij . η∗j is obtained from the solution of the

inequality (18). On the other hand, prices charged by the hospitals, ρ2∗
j s, can be obtained

by finding a q∗jk > 0, and then from (15) setting

ρ2∗
j = ρ3∗

jk − cjk(q
∗),

where ρ3∗
jk is obtained from the solution of variational inequality (18).

We now establish the result that, in equilibrium, the sum of the amounts of blood supplied

to each hospital is equal to the sum of the amounts of blood transfused at that hospital. This

implies that each hospital, assuming utility maximization, purchases from the blood service

organizations equal the amount of blood that is actually transfused to the patients. We

make use of variational inequality (18) to establish the above-mentioned result. From the

third term in (18) we can see that if η∗j > 0, then we have
∑I

i=1

∑
p∈P i

j
x∗pµp =

∑TnT
k=T1

q∗jk. In

other words, the “market clears” for hospital j. Let us now consider the case where η∗j = 0.

We see from (7) that, if x∗p > 0, then we have that

∂Ĉp(x
∗)

∂xp

= ωiγijµp + ρ1∗
ij µp,

and, if x∗p = 0, then we have that

∂Ĉp(x
∗)

∂xp

≥ ωiγijµp + ρ1∗
ij µp.

Hence, from the first term in inequality (18), we can say that, if η∗j = 0, then

∂Ĉp(x
∗)

∂xp

− ωiγijµp ≥ 0,

which implies that x∗p = 0, p ∈ P i
j , ∀i, j. It follows then from the third term of (18) that∑TnT

k=T1
q∗jk = 0, and, hence, the market clears also in this case since the flow into a hospital

is equal to the flow out and equal to zero. We have, thus, established the following:
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Corollary 1

The market for the blood product clears for each hospital at the multitiered blood supply chain

network equilibrium.

3.5. Illustrative Examples

In this section we present two examples to illustrate some of the above mentioned con-

cepts. The blood supply chain topology is depicted in Figure 2.
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Figure 2: The Blood Supply Chain Network Topology for the Illustrative Examples

Example 1

There are two blood service organizations supplying blood to two hospitals. The hospitals

in turn treat patients who belong to the group Payer type 1. From each BSO there are two

paths reaching each hospital. For simplicity, each path consists of two links. The paths are

defined as follows: p1 = (1, 2), p2 = (1, 3), p3 = (4, 5), and p4 = (4, 6). The time horizon is

assumed to be a week.

The total link cost functions are:

ĉ1(f1) = f 2
1 + 1.5f1, ĉ2(f2) = f 2

2 + 2f2, ĉ3(f3) = f 2
3 + 2.5f3,

ĉ4(f4) = f 2
4 + 2f4, ĉ5(f5) = f 2

5 + 2f5, ĉ6(f6) = f 2
6 + 2.5f6.

20



In this example we assume that no amount of blood is lost in the supply chain; hence,

the arc-path multipliers, µps are all equal to 1, ∀p. Again, for ease of calculation, the

parameters associated with the altruism components of the utility functions are all zero, i.e,

ω1 = ω2 = βH1 = βH2 = 0.

The holding cost functions for the two hospitals are:

hH1(qH1T1) = 1.5× qH1T1 , hH2(qH2T1) = 1.5× qH2T1 .

The transaction cost functions between the hospitals and payers are:

cH1T1(qH1T1) = qH1T1 + 100, cH2T1(qH2T1) = qH2T1 + 100.

The demand price functions are:

dH1T1 = −0.005ρ3
H1T1

+ 0.002ρ3
H2T1

+ 100, dH2T1 = −0.005ρ3
H2T1

+ 0.002ρ3
H1T1

+ 100.

Using inequality (18) we obtain ten linear equations as follows:

4x∗p1
+ 2x∗p2

+ 3.5− η∗H1
= 0,

4x∗p2
+ 2x∗p1

+ 4− η∗H2
= 0,

4x∗p3
+ 2x∗p4

+ 4− η∗H1
= 0,

4x∗p4
+ 2x∗p3

+ 4.5− η∗H2
= 0,

q∗H1T1
+ η∗H1

− ρ3∗
H1T1

+ 101.5 = 0,

q∗H2T1
+ η∗H2

− ρ3∗
H2T1

+ 101.5 = 0,

x∗p1
+ x∗p3

− q∗H1T1
= 0,

x∗p2
+ x∗p4

− q∗H2T1
= 0,

q∗H1T1
+ 0.005ρ3∗

H1T1
− 0.002ρ3∗

H2T1
− 100 = 0,

q∗H2T1
+ 0.005ρ3∗

H2T1
− 0.002ρ3∗

H1T1
− 100 = 0.

The equilibrium blood path flows from the blood service organizations to the hospitals

obtained by solving the above equations are: x∗p1
= x∗p2

= 49.29, x∗p3
= x∗p4

= 49.21.

In the absence of the altruism factors, we have that the η∗j s are precisely equal to the

prices charged by the blood service organizations, ρ1∗
ij s. The equilibrium prices charged by
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the BSOs are: η∗H1
= 299.25, η∗H2

= 299.75, respectively. This means that Hospital 1 agrees

to pay $299.25 per unit of blood and Hospital 2 agrees to pay $299.75 per unit of blood.

The price per unit charged by the hospitals are: ρ2∗
H1

= 300.75 and ρ2∗
H2

= 301.25. This

makes sense and is fair since Hospital 2 pays a higher price for acquiring the blood, the price

charged is also slightly higher than that of Hospital 1.

At equilibrium, the quantities of blood transfused at each hospital are: q∗H1T1
= q∗H2T1

=

98.50. Lastly, the reimbursements that Payer type 1 is willing to pay to Hospital 1 and

Hospital 2 are: ρ3∗
H1T1

= 499.25 and ρ3∗
H2T1

= 499.75, respectively.

Example 2

In this example, the data remain as in Example 1, except that we modify the arc multipliers

so that not all are equal to 1:

α1 = 1, α2 = 0.95, α3 = 1, α4 = 1, α5 = 1, α6 = 0.98.

Hence, the path multipliers are:

µp1 = 1× 0.95 = 0.95, µp2 = 1, µp3 = 1, µp4 = 1× 0.98 = 0.98.

Again, using inequality (18), we obtain the following set of equations:

3.9x∗p1
+ 2x∗p2

+ 3.5− 0.95η∗H1
= 0,

4x∗p2
+ 2x∗p1

+ 4− η∗H2
= 0,

4x∗p3
+ 2x∗p4

+ 4− η∗H1
= 0,

3.96x∗p4
+ 2x∗p3

+ 4.5− 0.98η∗H2
= 0,

q∗H1T1
+ η∗H1

− ρ3∗
H1T1

+ 101.5 = 0,

q∗H2T1
+ η∗H2

− ρ3∗
H2T1

+ 101.5 = 0,

0.95x∗p1
+ x∗p3

− q∗H1T1
= 0,

x∗p2
+ 0.98x∗p4

− q∗H2T1
= 0,

q∗11 + 0.005ρ3∗
H1T1

− 0.002ρ3∗
H2T1

− 100 = 0,

q∗H2T1
+ 0.005ρ3∗

H2T1
− 0.002ρ3∗

H1T1
− 100 = 0.

The equilibrium path flows are now: x∗p1
= 48.35, x∗p2

= 51.36, x∗p3
= 52.53, x∗p4

= 48.10.
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The equilibrium prices charged by the BSOs are: η∗H1
= 310.29, η∗H2

= 307.63, respectively.

The price per unit charged by Hospital 1 and Hospital 2 are ρ2∗
H1

= 311.75 and ρ2∗
H2

= 307.63,

respectively.

At equilibrium, the quantities of blood transfused at each hospital are: q∗H1T1
= 98.46, q∗H2T1

=

98.49. The reimbursements that Payer type 1 is willing to pay to Hospital 1 and Hospital 2

are: ρ3∗
H1T1

= 510.26, and ρ3∗
H2T1

= 506.12, respectively.

If we compare the results in the two examples, we can see that even under the consid-

eration that a fraction of the collected blood perishes or is wasted along the supply chain,

the amount of blood transfused at each hospital remains almost same. However, while in

Example 1 all the paths had similar flows, in case of Example 2, the paths without loss

have higher flows than those with loss. Due to wastage of some amount of collected blood

the cost is likely to increase, and hence, the equilibrium prices obtained in Example 2 are

higher. The payer agrees to pay higher rates in Example 2 which enables the hospitals to

pay higher prices to the blood suppliers to cover the cost of the wasted blood and still meet

the demand. Hence, the blood supply chain functions efficiently even in the face of loss of

blood products.

4. Numerical Examples

In this Section, we present further numerical examples, based on a more elaborate net-

work, that we solve using the modified projection method of Korpelevich (1977). For the

detailed statement of the algorithm and the convergence conditions please refer to The Al-

gorithm section of the Appendix.

In our network structure shown in Figure 3 there are two blood service organizations,

one a smaller regional blood bank, and the other a larger one. Both of these blood service

organizations supply blood to two hospitals which treat patients belonging to three payer

groups: two private ones. Given that hospitals and blood centers are facing shortages, it is

not unreasonable to assume that each hospital has more than one supplier to mitigate the

risk of running out of blood as observed in the Northeastern part of US. We now provide

the data for this problem.

Baseline Example

In Lagerquist et al. (2017), the authors provide an analysis of the cost of transfusing one

unit of RBC in a Canadian hospital. Based on their data, the per unit cost of inventory and

storage at the hospital was obtained as 30.80 CAD.
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Figure 3: The Supply Chain Network Topology for Numerical Examples

Using this information and converting it to USD the inventory holding costs for the two
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hospitals are constructed as:

hH1(

T3∑
k=T1

qH1k) = 23.6× (qH1T1 + qH1T2 + qH1T3),

and

hH2(

T3∑
k=T1

qH2k) = 24× (qH2T1 + qH2T2 + qH2T3).

Below, we present the transaction cost functions for this problem. It is to be noted that

this cost might include various costs that are not directly associated with the procurement

of blood, and maintaining its inventory such as cost of cross-matching, transfusion, and

administrative costs for billing, etc. Linear cost functions are used which are given as follows:

cH1T1(qH1T1) = 0.5qH1T1 + 10, cH1T2(qH1T2) = 0.5qH1T2 + 9, cH1T3(qH1T3) = 0.5qH1T3 + 8,

cH2T1(qH2T1) = 0.5qH2T1 + 10, cH2T2(qH2T2) = 0.5qH2T2 + 10, cH2T3(qH2T3) = 0.5qH2T3 + 8.

While it is mentioned in the introduction that reimbursements received by a hospital from

different payers might vary, the transaction costs might also vary depending on the type of

payer. According to Ho and Lee (2017) average cost per patient for a hospital varies from

one payer to another due to long-term relationships with particular insurance companies or

due to ” complementarities in information systems with some insurers.”

Assuming that the overall base weekly demand for RBCs across all payer types at each

hospital is 250 units the demand price functions are constructed as follows:

dH1T1 = −0.007ρ3
H1T1

+ 0.001ρ3
H2T1

+ 100, dH2T1 = −0.005ρ3
H2T1

+ 0.003ρ3
H1T1

+ 100,

dH1T2 = −0.007ρ3
H1T2

+ 0.001ρ3
H2T2

+ 50, dH2T2 = −0.005ρ3
H2T2

+ 0.003ρ3
H1T2

+ 50,

dH1T3 = −0.007ρ3
H1T3

+ 0.001ρ3
H3T1

+ 100, dH2T3 = −0.005ρ3
H2T3

+ 0.003ρ3
H1T3

+ 100.

The weights associated with the altruism components of the blood service organizations’

objective function are ω1 = ω2 = 1. The coefficients of the altruism function are assumed to

be γ1H1 = 1, γ1H2 = 1, γ2H1 = 1, γ2H2 = 1. The hospitals also have an altruism component in

their objective functions and the associated weights are assumed to be βH1 = βH2 = 1, while

the coefficients are θH1T1 = 1, θH1T2 = 1, θH1T3 = 2, θH2T1 = 1, θH2T2 = 1, θH2T3 = 2. Both

hospitals associate greater service utility in treating patients belonging to government payer

program.
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We implemented the modified projection method in FORTRAN and a Linux system at

the University of Massachusetts Amherst was used for the computations. The algorithm was

initialized by setting all the variables equal to 0.00 and with ψ set to .05. The algorithm was

considered to have converged when the absolute value of the difference of each successive

iteration was less than or equal to 10−4. The equilibrium conditions held with an excellent

accuracy.

In Table 2 we provide the total link cost functions, the arc multipliers associated with each

link as well as the computed equilibrium link flows. The total link cost functions capture

the fact that the two most expensive operations for the blood services organizations are

collection of blood from donors, and testing and processing of the collected units.

In addition to the computed equilibrium link flow values in Table 2, which are obtained

from the equilibrium path flows, the other computed equilibrium values of the variables are:

η∗H1
= 184.92, η∗H2

= 194.67,

q∗H1T1
= 98.46, q∗H1T2

= 48.61, q∗H1T3
= 98.55,

q∗H2T1
= 99.43, q∗H2T2

= 49.53, q∗H2T3
= 99.41.

and

ρ3∗
H1T1

= 257.76, ρ3∗
H1T2

= 231.83, ρ3∗
H1T3

= 245.80

ρ3∗
H2T1

= 268.39, ρ3∗
H2T2

= 233.43, ρ3∗
H2T3

= 266.37.

Using the procedure described in Section 3, the equilibrium prices of the BSOs and those

of the hospitals are recovered as follows: ρ1∗
1H1

= ρ1∗
2H1

= 184.92 and ρ1∗
1H2

= ρ1∗
2H2

= 194.67.

Also, ρ2∗
H1

= 198.52 and ρ2∗
H2

= 208.67..

Also, for completeness, we report the incurred demands at the equilibrium prices at the

different payers:

dH1T1 = 98.46, dH1T2 = 48.61, dH1T3 = 98.55,

dH2T1 = 99.43, dH2T2 = 49.53, dH2T3 = 99.41.

Finally, the incurred utilities of the blood service organizations and the hospitals at the

equilibrium pattern are presented. The utility of BSO 1 is: 25,187.59 and that of BSO 2:

47,806.95. The utility of Hospital H1 is: 985.40 and that of Hospital H2: 495.25.

We now consider three variants of the baseline example, in which the weights associated

with altruism are modified. Specific changes made to the basline example are reported below.
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Table 2: Definition of Links, Associated activity, Arc Multipliers, Total Operational Link
Cost Functions, and Equilibrium Link Solution

Link a From Node To Node Activity αa ĉa(f) f ∗a
1 1 C1

1 Collection 1.00 0.452
1 + 0.6f1 49.96

2 1 C1
2 Collection 1.00 0.35f 2

2 + 0.5f2 57.35
3 1 C1

3 Collection 1.00 0.32f 2
3 + 0.6f3 64.24

4 C1
1 B1

1 Shipment 1.00 0.09f 2
4 + 0.36f4 49.96

5 C1
2 B1

1 Shipment 1.00 0.12f 2
5 + 0.5f5 57.35

6 C1
3 B1

1 Shipment 1.00 0.1f 2
6 + 0.35f6 64.24

7 B1
1 P 1

1 Testing/ Processing 0.98 0.5f 2
7 + 0.86f7 171.55

8 P 1
1 S1

1 Storage 1.00 0.12f 2
8 + 0.5f8 168.12

9 S1
1 D1

1 Shipment 1.00 0.09f 2
9 + 0.5f9 64.36

10 S1
1 H1 Distribution 1.00 0.05f 2

10 + 0.68f10 103.76
11 D1

1 H1 Distribution 1.00 0.04f 2
11 + 0.8f11 0.00

12 D1
1 H2 Distribution 1.00 0.06f 2

12 + 0.8f12 64.36
13 2 C2

1 Collection 1.00 0.3f 2
13 + 0.8f13 104.72

14 2 C2
2 Collection 1.00 0.25f 2

14 + 0.65f14 138.95
15 2 C2

3 Collection 1.00 0.32f 2
15 + 0.6f15 97.36

16 C2
1 B2

1 Shipment 1.00 0.1f 2
16 + 0.28f16 82.57

17 C2
1 B2

2 Shipment 1.00 0.15f 2
17 + 0.3f17 22.15

18 C2
2 B2

1 Shipment 1.00 0.15f 2
18 + 0.35f18 33.17

19 C2
2 B2

2 Shipment 1.00 0.12f 2
19 + 0.45f19 105.78

20 C2
3 B2

1 Shipment 1.00 0.16f 2
20 + 0.5f20 53.18

21 C2
3 B2

2 Shipment 1.00 0.08f 2
21 + 0.6f21 44.17

22 B2
1 P 2

1 Testing/Processing 0.98 0.4f 2
22 + 0.65f22 168.93

23 B2
2 P 2

2 Testing/Processing 0.97 0.45f 2
23 + 0.8f23 172.11

24 P 2
1 S2

1 Storage 0.96 0.02f 2
24 + 0.05f24 165.55

25 P 2
2 S2

2 Storage 1.00 0.04f 2
25 + 0.07f25 166.94

26 S2
1 D2

1 Shipment 1.00 0.2f 2
26 + 0.4f26 80.61

27 S2
1 D2

2 Shipment 1.00 0.18f 2
27 + 0.6f27 78.32

28 S2
2 D2

1 Shipment 1.00 0.12f 2
28 + 0.45f28 99.96

29 S2
2 D2

2 Shipment 1.00 0.15f 2
29 + 0.5f29 66.98

30 D2
1 H1 Distribution 1.00 0.08f 2

30 + 0.5f30 75.12
31 D2

1 H2 Distribution 1.00 0.1f 2
31 + 0.6f31 105.45

32 D2
2 H1 Distribution 1.00 0.12f 2

32 + 0.35f32 66.75
33 D2

2 H2 Distribution 1.00 0.16f 2
33 + 0.4f33 78.55
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The remainder of the data remains as in the baseline example. The computed equilibrium

flows are reported in Table 3 for all the variants.

Variant 1

In Variant 1 the weights of the BSOs are all set to zero, that is, ω1 = ω2 = 0.

Besides the reported link equilibrium values in Table 3, the modified projection method

also yielded the following equilibrium values for the other variables:

η∗H1
= 283.54, η∗H2

= 293.33,

q∗H1T1
= 97.87, q∗H1T2

= 48.02, q∗H1T3
= 97.96,

q∗H2T1
= 99.23, q∗H2T2

= 49.33, q∗H2T3
= 99.21,

and

ρ3∗
H1T1

= 356.08, ρ3∗
H1T2

= 330.15, ρ3∗
H1T3

= 344.12,

ρ3∗
H2T1

= 366.95, ρ3∗
H2T2

= 332.00, ρ3∗
H2T3

= 364.93.

For completeness we also report the recovered prices at the top tier and the middle tier.

Specifically, we have: ρ1∗
1H1

= ρ1∗
2H1

= 283.54 and ρ1∗
1H2

= ρ1∗
2H2

= 293.33. In addition, we have

that: ρ2∗
H1

= 297.14 and ρ2∗
H2

= 307.33.

Also, for completeness, we would like to mention that the incurred demands at the equi-

librium prices at the different payers are exactly equal to the corresponding q∗jk value, which

conforms well with the equilibrium conditions.

The utility of BSO 1 is now: 24,952.65 and that of BSO 2 is: 47,365.72, whereas the

utility of Hospital H1 is: 979.48 and that of Hospital H2 is: 493.29.

Variant 2

In Variant 2, only the weights associated with the hospitals are set to zero, that is, we have

βH1 = βH2 = 0 with all the rest of the data as in the baseline example. Please refer to Table

3 for the computed equilibrium link flows.

As can be seen from Table 3 all the equilibrium link flows are higher than the correspond-

ing values for Variant 1.

The other computed equilibrium values of the variables are:

η∗H1
= 184.74, η∗H2

= 194.49,
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Table 3: Links and Link Equilibrium Solution for Variant Examples
Link a From Node To Node Variant 1 f ∗a Variant 2 f ∗a Variant 3 f ∗a

1 1 C1
1 49.71 49.94 49.68

2 1 C1
2 57.08 57.32 57.04

3 1 C1
3 63.93 64.20 63.89

4 C1
1 B1

1 49.71 49.92 49.68
5 C1

2 B1
1 57.08 57.32 57.04

6 C1
3 B1

1 63.93 64.20 63.89
7 B1

1 P 1
1 170.72 171.44 170.61

8 P 1
1 S1

1 167.31 168.01 167.20
9 S1

1 D1
1 64.26 64.34 64.25

10 S1
1 H1 103.05 103.67 102.95

11 D1
1 H1 0.00 0.00 0.00

12 D1
1 H2 64.26 64.34 64.25

13 2 C2
1 104.22 104.66 104.16

14 2 C2
2 138.29 138.27 138.21

15 2 C2
3 96.89 97.30 96.83

16 C2
1 B2

1 82.18 82.52 82.13
17 C2

1 B2
2 22.04 22.13 22.03

18 C2
2 B2

1 33.01 33.15 32.99
19 C2

2 B2
2 105.28 105.72 105.21

20 C2
3 B2

1 52.93 53.15 52.90
21 C2

3 B2
2 43.96 44.15 43.94

22 B2
1 P 2

1 168.12 168.82 168.02
23 B2

2 P 2
2 171.29 172.00 171.18

24 P 2
1 S2

1 164.76 165.45 164.66
25 P 2

2 S2
2 166.15 166.84 166.04

26 S2
1 D2

1 80.23 80.56 80.18
27 S2

1 D2
2 77.94 78.27 77.89

28 S2
2 D2

1 99.49 99.90 99.42
29 S2

2 D2
2 66.66 66.94 66.62

30 D2
1 H1 74.53 75.04 74.45

31 D2
1 H2 105.18 105.42 105.15

32 D2
2 H1 66.28 66.68 66.22

33 D2
2 H2 78.33 78.52 78.30
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q∗H1T1
= 98.41, q∗H1T2

= 48.56, q∗H1T3
= 98.42,

q∗H2T1
= 99.41, q∗H2T2

= 49.46, q∗H2T3
= 99.42,

and

ρ3∗
H1T1

= 267.54, ρ3∗
H1T2

= 241.62, ρ3∗
H1T3

= 265.55,

ρ3∗
H2T1

= 278.20, ρ3∗
H2T2

= 253.33, ρ3∗
H2T3

= 276.20.

As for the equilibrium prices at the top and middle tiers, these are now: ρ1∗
1H1

= ρ1∗
2H1

=

184.74 and ρ1∗
1H2

= ρ1∗
2H2

= 194.49. In addition, we have: ρ2∗
H1

= 278.20 and ρ2∗
H2

= 218.49

As in the above examples, the q∗jk value coincides with the incurred equilibrium demand

djk(ρ
3∗),∀j, k.

The utility of BSO 1 is now: 25,156.20 and that of BSO 2: 47,747.99, whereas the utility

of Hospital H1 is: -0.02 and that of Hospital H2 is: 0.01.

This result is quite interesting. First, note that the entire supply chain of each BSO is

captured in the model. As for the hospitals, the focus is on its blood supply operations, but

each hospital engages in numerous other activities. The utilities of both hospitals without the

altruism component of the objective functions are essentially zero, which implies economic

sustainability on the part of the blood operations. It is important to emphasize that the

hospitals are nonprofits and, were they for profit organizations, then their respective objective

functions would be modified from those in (5.10). Moreover, it is to be noted that in the

United States, blood transfusion costs account for 1% of a hospital’s budget, typically, which

is considerd to be high (Hemez (2016)).

Variant 3

In Variant 3, all the weights associated with altruism for all the BSOs and all the hospitals

were identically equal to zero, with the rest of the data as in the baseline example. This

would correspond, in effect, to the stakeholders in terms of the BSOs and the hospitals being

non altruistic and operating, more or less, in a profit-like manner. Please refer to Table 3 for

the computed equilibrium link flow pattern. Observe that, of the three Variant examples, the

equilibrium link flows are the lowest for Variant 3. Also, note that the highest equilibrium

link flows occur in the baseline example. The computed equilibrium values for the other

variables are:

η∗H1
= 283.36, η∗H2

= 293.15,

q∗H1T1
= 97.82, q∗H1T2

= 47.94, q∗H1T3
= 97.83,
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q∗H2T1
= 99.21, q∗H2T2

= 49.26, q∗H2T3
= 99.22,

and

ρ3∗
H1T1

= 365.87, ρ3∗
H1T2

= 339.94, ρ3∗
H1T3

= 363.87,

ρ3∗
H2T1

= 376.76, ρ3∗
H2T2

= 351.78, ρ3∗
H2T3

= 374.76.

The recovered equilibrium prices charged by the hospitals to the BSOs are: ρ1∗
1H1

= ρ1∗
2H1

=

283.36 and ρ1∗
1H2

= ρ1∗
2H2

= 293.15. The recovered prices at the hospitals are: ρ2∗
H1

= 306.96

and ρ2∗
H2

= 317.15. The utility of BSO 1 is now: 24,921.40 and that of BSO 2: 47,307.50,

whereas the utility of Hospital H1 is now: -.12 and that of Hospital H2: .06. Again, the

utilities of both hospitals are essentially zero in this variant, which represents that none

of the stakeholders assign a positive value to the altruism component in their respective

objective functions.

Additional Discussion of the Numerical Results

As can be seen from the numerical results in the examples the equilibrium prices increase

down the tiers, which is very reasonable economic behavior. Furthermore, as can be seen

from Variant 3, the equilibrium prices charged to the various payers are the highest of all the

examples. There are few studies that report price per pint of blood charged in various parts

of the country. In Toner at al. (2011), the authors report that the average cost of acquisition

of one unit of RBCs in the West is 228.31 with a standard deviation of 42. According to

Ellingson et al. (2017), the interquartile range for the price paid by hospitals in the United

States for a unit of leukocyte-reduced RBCs in 2015 was from 197 to 228, while that of

non-leukocyte-reduced RBCs was 185 to 205.

We emphasize that, although the network for these examples is stylized, they, neverthe-

less, illustrate important features of this unique supply chain in which the product cannot

be produced but must be donated, and it then undergoes multiple activities of testing, pro-

cessing, and distribution to hospitals, with subsequent dissemination to needy patients for

the medical procedures. Moreover, the model captures, in a novel way, that payments for

blood services can depend on the method of payment and reimbursement to hospitals.

5. Summary and Conclusion

In this paper, we developed a mathematical model that integrates the behaviors of three

major stakeholders in the blood supply chain: blood service organizations, hospitals and

medical centers, and patient payer groups. The model captures the current competitive

landscape of the blood banking industry in the United States, and explores a cost-based
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pricing scheme for blood products that is aimed at bridging the disconnect between actual

costs of acquiring a unit of red blood cells for transfusion and the payments received by the

hospitals and the blood suppliers. The model optimizes the flow of blood through the paths

joining the blood service organizations with the hospitals, the amount of blood transfused to

each patient payer group at each hospital, and determines the equilibrium prices charged by

the blood service organizations, and the reimbursements received by the hospitals. To the

best of our knowledge, this is the first supply chain network model to include the complex

economic interplays between the different tiers of decision-makers in the blood supply chain.

We also quantify and incorporate the nonprofit or altruistic nature of blood centers and

hospitals through a service utility component in their utility functions.

The theory of variational inequalities was utilized to formulate the equilibrium conditions

for each stakeholder, and, subsequently, the entire integrated supply chain. Examples are

presented for illustrative purposes. Further, the modified projection method is applied to

solve numerical examples consisting of complex network structures.

The equilibrium prices obtained from the examples reveal how the prices increase as the

blood service organizations and hospitals act less altruistically. Under every scenario that

is examined the prices obtained closely resemble those in the actual world. The results also

show that the equilibrium prices increase in progression down the tiers, which ensures the

economic stability of the blood supply chain. In terms of policy implications the results show

the benefit of having a pricing scheme for blood products based on the volume of blood trans-

fused and the actual costs of all the supply chain operations, and how the reimbursements

to hospitals vary by payer type.
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Appendix

Qualitative Properties

We provide some qualitative properties of the solution to the variational inequality (18).

We first present the existence results. Since the feasible set underlying the variational in-

equality problem (18), K4, is not compact it is not possible to derive existence of a solution

from the sole assumption of continuity of the function F (Y ) (cf. Kinderlehrer and Stampac-

chia (1980)). However, we can impose a rather weak condition to ensure the existence of a

solution pattern. Let

Kb ≡ {(x, q, η, ρ3)|0 ≤ x ≤ b1; 0 ≤ q ≤ b2; 0 ≤ η ≤ b3; 0 ≤ ρ3 ≤ b4}, (A.1)

where b = (b1, b2, b3, b4) and x ≤ b1; q ≤ b2; η ≤ b3; ρ
3 ≤ b4 means that xp ≤ b1; qjk ≤

b2; ηj ≤ b3; ρ
3
jk ≤ b4 for all p ∈ P i

j ,∀i, j, k. Then Kb is a bounded, closed convex subset of

RnP +2nHnT +nH
+ . Thus, the following variational inequality:

〈F (Y b), Y − Y b〉 ≥ 0, ∀Y b ∈ Kb, (A.2)

admits at least one solution Y b ∈ Kb, from the standard theory of variational inequalities,

since Kb is compact and F is continuous. Following Kinderlehrer and Stampacchia (1980)(

see also Theorem 1.5 in Nagurney (1999)), we have:

Lemma A.1

Variational inequality (21) admits a solution if and only if there exists a b > 0 such that

variational inequality (23) admits a solution in Kb with

xb < b1, qb < b2, ηb < b3, ρ3b < b4. (A.3)

Under the conditions in Theorem 2 below it is possible to construct the upper bounds

b1, b2, b3, and b4 large enough so that the restricted variational inequality (A.2) will satisfy

the boundedness condition (A.3) and, thus, existence of a solution to the original variational

inequality problem according to Lemma 1 will hold.

Theorem A.1: Existence of a Solution

Suppose that there exist positive constants M , N , and R with R > 0 such that:

∂Ĉp(x)

∂xp

− ωiγijµp ≥M, ∀x with xp ≥ N, p ∈ P i
j ,∀i, j, (A.4)

cjk(q) +
∂hj(

∑TnT
k=T1

qjk)

∂qjk
≥M, ∀q with qjk ≥ N,∀j, k,
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djk(ρ
3) ≤ N, ∀ρ3 with ρ3

jk > R,∀j, k. (A.5)

Then variational inequality (21); equivalently, variational inequality (18), admits at least one

solution.

Proof: Follows from Lemma 1. See also the proof of existence for Proposition 1 in Nagurney

and Zhao (1993) and the existence proof in Nagurney, Dong, and Zhang (2003). 2

We argue that, from an economics perspective, assumptions (A.4) and (A.5) are reason-

able, since when the flow of RBCs on a path between a blood service organization and a

hospital pair is large, we can expect the “marginal” cost on the path minus the marginal

service utility associated with the weighted altruism to exceed a positive lower bound. Sim-

ilarly, when the amount of blood transfused by a hospital to a patient group is positive, the

transaction cost between the pair and marginal cost of holding the blood in inventory by

the hospital will exceed a lower bound. Lastly, in the case where the demand market price

is very high, the demand for the product can be expected to be low (even if slightly).

Lemma A.2: Monotonicity

Assume that the link total cost functions and the inventory holding cost functions are convex,

the transaction cost functions are monotone increasing, and the demand functions are mono-

tone decreasing functions. Then the vector function F that enters the variational inequality

(21) is monotone, that is,

〈F (Y ′)− F (Y ′′), Y ′ − Y ′′〉 ≥ 0, ∀Y ′, Y ′′ ∈ K. (A.6)

Proof: Let Y ′ = (x′, q′, η′, ρ3′), Y ′′ = (x′′, q′′, η′′, ρ3′′) with Y ′ ∈ K and Y ′′ ∈ K. Then

inequality (A.6) can be seen in the following deduction:

〈F (Y ′)− F (Y ′′), Y ′ − Y ′′〉 =
I∑

i=1

HnH∑
j=H1

∑
p∈P i

j

[
∂Ĉp(x

′)

∂xp

− ∂Ĉp(x
′′)

∂xp

]
× [x′p − x′′p]

+

HnH∑
j=H1

TnT∑
k=T1

[
∂hj(

∑TnT
k=T1

q′jk)

∂qjk
−
∂hj(

∑TnT
k=T1

q′′jk)

∂qjk

]
× [q′jk − q′′jk]

+

HnH∑
j=H1

TnT∑
k=T1

[
cjk(q

′)− cjk(q
′′)

]
× [q′jk − q′′jk]
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+

HnH∑
j=H1

TnT∑
k=T1

[−djk(ρ
3′) + djk(ρ

3′′)]× [ρ3′
jk − ρ3′′

jk ]

= (I) + (II) + (III) + (IV ). (A.7)

Now, we can write (I) as:

(I) =
I∑

i=1

HnH∑
j=H1

∑
p∈P i

j

[
∂Ĉp(x

′)

∂xp

− ∂Ĉp(x
′′)

∂xp

]
× [x′p − x′′p]

=
I∑

i=1

HnH∑
j=H1

∑
p∈P i

j

[∑
a∈Li

∑
b∈Li

∂ĉb(f
′)

∂fa

αap −
∂ĉb(f

′′)

∂fa

αap

]
× [x′p − x′′p]

=
I∑

i=1

HnH∑
j=H1

[∑
a∈Li

∑
b∈Li

∂ĉb(f
′)

∂fa

− ∂ĉb(f
′′)

∂fa

]
×

∑
p∈P i

j

[x′pαap − x′′pαap]

=
I∑

i=1

HnH∑
j=H1

[∑
a∈Li

∑
b∈Li

∂ĉb(f
′)

∂fa

− ∂ĉb(f
′′)

∂fa

]
× [

∑
p∈P i

j

x′pαap −
∑
p∈P i

j

x′′pαap]

=
I∑

i=1

HnH∑
j=H1

[∑
a∈Li

∑
b∈Li

∂ĉb(f
′)

∂fa

− ∂ĉb(f
′′)

∂fa

]
× [f ′a − f ′′a ]. (A.8)

Since the total link cost functions are convex, we have:

(I) =
I∑

i=1

HnH∑
j=H1

[∑
a∈Li

∑
b∈Li

∂ĉb(f
′)

∂fa

− ∂ĉb(f
′′)

∂fa

]
× [f ′a − f ′′a ] ≥ 0. (A.9)

The convexity of the holding cost functions, hj(qj) for all j yields

(II) =

HnH∑
j=H1

TnT∑
k=T1

[
∂hj(

∑TnT
k=T1

q′jk)

∂qjk
−
∂hj(

∑TnT
k=T1

q′′jk)

∂qjk

]
× [q′jk − q′′jk] ≥ 0. (A.10)

Since cjk, for all j, k, are assumed to be monotone increasing, and djk, for all j, k, are

assumed to be monotone decreasing, we have that

(III) =

HnH∑
j=H1

TnT∑
k=T1

[
cjk(q

′)− cjk(q
′′)

]
× [q′jk − q′′jk] ≥ 0, (A.11)
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and

(IV ) =

HnH∑
j=H1

TnT∑
k=T1

[−djk(ρ
3′) + djk(ρ

3′′)]× [ρ3′
jk − ρ3′′

jk ] ≥ 0. (A.12)

Substituting (A.9) – (A.12) into the right-hand side of (A.7), we conclude that (A.7) is

nonnegative. The proof is complete. 2

Definition A.1: Lipschitz Continuity

The function that enters the variational inequality problem (21) is Lipschitz continuous if

‖F (Y ′)− F (Y ′′)‖ ≤ L ‖Y ′ − Y ′′‖ ∀Y ′, Y ′′ ∈ K, (A.13)

where L > 0 is known as the Lipschitz constant.

We utilize the properties of monotonicity and Lipschitz continuity to establish the con-

vergence of the algorithm in the following section.

The Algorithm

We recall here the algorithm that we utilize to solve variational inequality problem (21),

which is in standard form, and, equivalently, (18), in our numerical examples in the next

section. The algorithm is the modified projection method of Korpelevich (1977) and it is

guaranteed to converge provided that the function F that enters the variational inequality

is monotone and Lipschitz continuous (and that a solution exists).

The statement of the modified projection method is as follows, where τ is the iteration

counter:

The Modified Projection Method

Step 0. Initialization

Initialize with Y 0 ∈ K. Set τ = 1 and select ψ, such that 0 < ψ ≤ 1/L, where L is the

Lipschitz constant (see (A.13)).

Step 1: Computation

Compute Ȳ τ by solving the variational inequality subproblem:

〈Ȳ τ + ψF (Y τ−1)− Y τ−1, Y − Ȳ τ 〉 ≥ 0, ∀Y ∈ K. (A.14a)

We now expand (A.14a), according to the details of (18), for our model. Compute
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(x̄τ , q̄τ , η̄τ , ρ̄3τ ) ∈ K4 by solving the variational inequality subproblem:

I∑
i=1

HnH∑
j=H1

∑
p∈P i

j

[
x̄τ

p + ψ

(
∂Ĉp(x

τ−1)

∂xp

− ωiγijµp − ητ−1
j µp

)
− xτ−1

p

]
× [xp − x̄τ

p]

+

HnH∑
j=H1

TnT∑
k=T1

[
q̄τ
jk +ψ

(
cjk(q

τ−1)+
∂hj(

∑TnT
k=T1

qτ−1
jk )

∂qjk
+ητ−1

j −βjθjk−ρ3
jk

τ−1
)
−qτ−1

jk

]
× [qjk− q̄τ

jk]

+

HnH∑
j=H1

[
η̄τ

j + ψ

( I∑
i=1

∑
p∈P i

j

xτ−1
p µp −

TnT∑
k=T1

qτ−1
jk

)
− ητ−1

j

]
× [ηj − η̄τ

j ]

+

TnT∑
k=T1

[
ρ̄3τ

jk + ψ

(
qτ−1
jk − djk(ρ

3τ−1
)

)
− ρ3

jk
τ−1

]
× [ρ3

jk − ρ̄3τ
jk ] ≥ 0, ∀(x, q, η, ρ3) ∈ K4. (A.14b)

Step 2: Adaptation

Compute Y τ by solving the variational inequality subproblem:

〈Y τ + ψF (Ȳ τ )− Y τ−1, Y − Y τ 〉 ≥ 0, ∀Y ∈ K. (A.15a)

We expand (36a) according to (18). Compute (xτ , qτ , ητ , ρ3τ ) ∈ K4 by solving the varia-

tional inequality subproblem:

I∑
i=1

HnH∑
j=H1

∑
p∈P i

j

[
xτ

p + ψ

(
∂Ĉp(x̄

τ )

∂xp

− ωiγijµp − η̄τ
j µp

)
− xτ−1

p

]
× [xp − xτ

p]

+

HnH∑
j=H1

TnT∑
k=T1

[
qτ
jk + ψ

(
cjk(q̄

τ ) +
∂hj(

∑TnT
k=T1

q̄τ
jk)

∂qjk
+ η̄τ

j − βjθjk − ρ̄3τ
jk

)
− qτ−1

jk

]
× [qjk − qτ

jk]

+

HnH∑
j=H1

[
ητ + ψ

( I∑
i=1

∑
p∈P i

j

x̄τ
pµp −

TnT∑
k=T1

q̄τ
jk

)
− ητ−1

]
× [ηj − ητ

j ]

+

TnT∑
k=T1

[
ρ3τ

jk + ψ

(
q̄τ
jk − djk(ρ̄

3τ )

)
− ρ3

jk
τ−1

]
× [ρ3

jk − ρ3τ
jk ] ≥ 0, ∀(x, q, η, ρ3) ∈ K4. (A.15b)

Step 3: Convergence Verification

If |Y τ − Y τ−1| ≤ ε, for ε > 0, a pre-specified tolerance level, then stop; otherwise, set

τ := τ + 1, and go to Step 1.
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Specifically, for our model, if |xτ
p−xτ−1

p | ≤ ε, |qτ
jk−qτ−1

jk | ≤ ε, |ητ
j −ητ−1

j | ≤ ε, |ρ3τ−ρ3τ−1| ≤
ε ∀p ∈ P i

j , i = 1, ..., I, j = H1, ..., HnH
, k = T1, ..., TnT

for ε > 0, a pre-specified tolerance

level, then stop; otherwise, set τ := τ + 1, and go to Step 1.

Explicit Formulae for the Modified Projection Method

The elegance of this algorithm applied to our blood supply chain network competition model

in that at each iteration, closed form expressions are obtained for the variables, resulting in an

easy to implement computational procedure. Below we provide the closed form expressions

for the solutions of (A.14b).

The closed form expression for the blood path flows at iteration τ is: For each path

p ∈ P i
j ,∀i, j, compute:

x̄τ
p = max

{
0, xτ−1

p − ψ

(
∂Ĉp(x

τ−1)

∂xp

− ωiγijµp − ητ−1
j µp

)}
. (A.16)

The amount of blood transfused, qjk, ∀j, k, at iteration τ , is computed according to:

q̄τ
jk = max

{
0, qτ−1

jk − ψ

(
cjk(q

τ−1) +
∂hj(

∑TnT
k=T1

qτ−1
jk )

∂qjk
+ ητ−1

j − βjθjk − ρ3
jk

τ−1
)}

. (A.17)

The Lagrange multipliers, ηj, j = H1, . . . , HnH
, are computed at iteration τ using the

formula:

η̄τ
j = max

{
0, ητ−1

j − ψ

( I∑
i=1

∑
p∈P i

j

xτ−1
p µp −

TnT∑
k=T1

qτ−1
jk

)}
. (A.18)

Lastly, at iteration τ , the closed form expression for the demand prices, ρ3
jk, j = H1, . . . , HnH

;

k = T1, . . . , TnT
, is:

ρ̄3τ
jk = max

{
0, ρ3τ−1

jk − ψ

(
qτ−1
jk − djk(ρ

3τ−1
)

)}
. (A.19)

Analogous closed form expressions to those above can be easily obtained also for (A.15b).

Theorem A.2: Convergence

Assume that the function F (Y ) that enters the variational inequality (21) is monotone

and Lipschitz continuous and that a solution exists. Then the modified projection method

described above converges to the solution of the variational inequality (21); equivalently,

(18).

Proof: This proof follows from Korpelevich (1977), since conditions for convergence are

satisfied under te imposed assumptions. 2
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