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Abstract: The concept of “equilibrium” is fundamental to many disciplines, including eco-

nomics and operations research. The theory of variational inequalities continues to provide

a rich methodological framework for the formulation, analysis, and solution of a wide range

of equilibrium problems with many recent applications, because of their relevance, including

policies associated with the trade of commodities. In this paper, we add to the literature on

multicommodity trade by constructing a spatial price equilibrium model with tariffs that al-

lows for the investigation of rerouting of commodities to evade tariffs, as has been happening

for several years now, along with “trade wars.”
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1. Introduction

Equilibrium is a central concept in many scientific disciplines, including economics and

operations research. Its importance has been demonstrated in applications such as traffic

network equilibrium problems (cf. Beckmann, McGuire and Winsten (1956), Braess (1968),

Dafermos and Sparrow (1969), Smith (1979), Dafermos (1980), Bertsekas and Gafni (1982),

Patriksson (1994), Nagurney (2000), Patriksson and Rockafellar (2003), Boyce, Mahmassani,

and Nagurney (2005) and the references therein, and Braess, Nagurney, and Wakolbinger

(2005)) and spatial price equilibrium problems (see Samuelson (1952), Takayama and Judge

(1964, 1971), Florian and Los (1982), Dafermos and Nagurney (1984), Pang (1984), Friesz,

Harker, and Tobin (1984), Harker (1985), Nagurney, Thore, and Pan (1996), Labys and

Yang (1997), Nagurney (1999), Daniele (2004), Nagurney, Salarpour, and Dong (2022),

Nagurney et al. (2024a, b), Hassani et al. (2025) and the references therein). Examples of

other important equilibrium problems include: general economic equilibrium problems (cf.

Debreu (1959), Scarf (1973), Todd (1976), Border (1985), Manne (1985), Dafermos (1990),

Zhao and Dafermos (1991), Zhao and Nagurney (1993), Jofré, Rockafellar, and Wets (2007,

2017, 2023)), a variety of game theory (cf. Nash (1950, 1951)) and oligopolistic market

equilibrium problems (see, e.g., Gabay and Moulin (1980), Dafermos and Nagurney (1987),

Yu and Nagurney (2013), Besik and Nagurney (2017), Besik, Nagurney, and Dutta (2023)),

and even problems of human migration (see Nagurney (1989), Nagurney, Pan, and Zhao

(1992), Nagurney, Daniele, and Nagurney (2020), Nagurney and Daniele (2021), Nagurney,

Daniele, and Cappello (2021)).

Equilibrium has also emerged as an important concept in numerous supply chain network

problems (cf. Nagurney, Dong, and Zhang (2002) and the books by Nagurney (2006), Nagur-

ney and Li (2016), Nagurney (2023) and the references therein). It is also emerging as a

topic in disaster management and emergency response (see Nagurney, Salapour, and Daniele

(2019), Nagurney et al. (2024b)). Equilibrium has, hence, been a topic driving methodolog-

ical advances for both qualitative analysis of solutions in a plethora of applications as well

as their computation.

Concomitantly, policies have emerged as powerful instruments to alter the behavior of

various decision-makers in equilibrium problems, many of which may take on a network

structure (see, for example, Nagurney (2021)). For example, tolls have been constructed

so that, once applied, user-optimizing behavior on congested urban transportation networks

becomes, at the same time, system-optimizing (see Dafermos and Sparrow (1971), Dafermos

(1973), Nagurney (2025)). A variety of trade policy instruments include: tariffs (Nagurney,

Nicholson, and Bishop (1996), Nagurney, Besik, and Dong (2019), Nagurney, Besik, and Li
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(2019)), quotas (Nagurney, Besik, and Nagurney (2019), Nagurney, Salarpour, and Dong

(2022)), with subsidies also garnering a lot of attention in terms of research and the real

world due to impacts such as “trade wars.” Subsidies have also been studied as a means to

reduce food insecurity (see Nagurney et al. (2023), Nagurney (2024)).

The theory of variational inequalities (cf. Hartman and Stampacchia (1966), Kinderlehrer

and Stampacchia (1980), Dafermos (1980), Rockafellar and Wets (1998), Nagurney and

Zhang (1996), Nagurney (1999), Facchinei and Pang (2003)) is providing a rich framework

for the formulation, analysis, and computation of solutions to a wide range of equilibrium

problems, with some noted above. Being able to incorporate policies into equilibrium settings

in economics and operations research enables the provision of insights for strategic decision-

making and evaluation.

In this paper, we introduce a new multicommodity trade model based on spatial price

equilibrium in which multicommodity tariffs can be imposed by destination countries on the

commodities based on their country of origin. Through the introduction of path tariffs we are

able to identify equilibrium conditions that allow for the rerouting of commodities in order

to evade tariffs. The tariffs are unit tariffs (see Nagurney (2022), Nagurney, Salarpour, and

Dong (2022), and Nagurney et al. (2023)) as opposed to ad valorem tariffs (cf. Nagurney,

Nicholson, and Bishop (1996)) or tariff rate quotas, which are two-tiered tariffs (see Nagurney,

Besik, and Dong (2019)). We allow for multiple trade routes; that is, paths, between country

origin nodes and country destination nodes, and these paths can consist of one or more links.

The links, in turn, in the case of rerouting of the commodity through countries to evade a

tariff, can correspond to transportation links or repackaging/reprocessing links. For the sake

of generality, we consider links to be transaction links, with associated costs.

Spatial price equilibrium models, introduced by Samuelson (1952) and Takayama and

Judge (1964, 1971), are partial equilibrium models and assume perfect competition. As

noted in Nagurney et al. (2023), variational inequality formulations of such problems relaxed

previously imposed assumptions on the underlying supply price and demand price functions

with unit transportation cost functions, typically, assumed to be fixed, that enabled op-

timization reformulations of the equilibrium conditions. Furthermore, the importance of

having alternative routes between supply and demand markets, along with capturing con-

gestion on transportation links, was recognized already in the models of Florian and Los

(1982), Dafermos and Nagurney (1984), Friesz, Harker, and Tobin (1984), Harker (1985),

Nagurney, Thore, and Pan (1996), and Daniele (2004)). Other variational inequality models

of spatial price equilibrium problems have included product quality (Li, Nagurney, and Yu

(2018)) and commodity perishability (see Nagurney and Aronson (1989), Nagurney (2022),
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Nagurney and Besik (2022), Nagurney, Pour, and Samadi (2024)). As noted in Nagurney,

Li, and Nagurney (2014), spatial price equilibrium models have been widely applied to trade

of agricultural products, including eggs, potatoes, cereal grains, soybeans, and dairy, as well

as to minerals (coal and aluminum) and such commodities have also been subject to tariffs

(cf. also Bradsher and Pierson (2025)). Hence, in our investigation in this paper on tariffs

and rerouting, we utilize a multicommodity spatial price equilibrium framework.

The research reported in this paper is inspired by practice. Tariffs have a long history

and have been considered to be protectionist measures by governments imposing them on

imported products produced in other countries (see Holmes (2025)). They also can be viewed

as a “tax” on the consumers purchasing products that have been subjected to tariffs (see

Bednar (2025)). Furthermore, as is happening now, countries on whose products tariffs are

imposed may respond with retaliatory tariffs leading to trade wars (for some background,

see Nagurney, Besik, and Dong (2019), Boak, Wiseman, and Gillies (2025), Lu (2025)).

Producing countries (and firms therein) have responded to tariffs in additional ways including

through nearshoring; that is, moving production closer, or onshoring (producing within one’s

country), and, sometimes, even rerouting products through third countries. The latter, with

alteration of the origin country through documentation and without substantive addition of

value to the products, is not legal but, nevertheless, may happen and the economic trade-offs

are worth quantifying and exploring. This topic has garnered recent interest and is being

discussed in various studies (see Wen et al. (2025), Freund (2025), Perozo (2025)). However,

as far as we are aware, this is the first rigorous mathematical modeling approach proposed for

the investigation of rerouting of commodities for the purpose of tariff evasion. Such a model

can also serve as the foundation for the exploration of interdiction mechanisms. For our

related work on cybercrime and cybersecurity, see: Nagurney (2015), Nagurney, Daniele,

and Shukla (2017), and Nagurney and Shukla (2017). For research on game theory and

investments in security for high value freight, see Nagurney et al. (2018).

This paper is organized as follows. In Section 2, the multicommodity spatial price equi-

librium model with tariffs and rerouting is proposed, with identification of the equilibrium

conditions, and the variational inequality formulation, which is in path flows, constructed.

Existence results, under reasonable conditions on the underlying economic functions, are

also established. Several numerical examples are presented for illustrative purposes. In Sec-

tion 3, the computational procedure is outlined, along with the closed form expressions for

the multicommodity shipments at each of the two steps of the iterative process, along with

conditions for convergence. In Section 4, we then implement the algorithm and apply it to

compute solutions to expanded numerical examples, focusing on the export of tea. Section
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5 summarizes the results in this paper and also provides suggestions for future research.

2. The Multicommodity Trade Spatial Price Equilibrium Model with Tariffs and

Rerouting

Consider a network consisting of m origin nodes corresponding to distinct countries in

which multiple homogeneous products (commodities) are produced at supply markets and

with n destination nodes corresponding to countries with demand markets at which the prod-

ucts are consumed, with each also denoting a distinct country. There are K commodities,

with a typical commodity denoted by k. Each origin node i is connected to a destination

node j via one or more paths, assumed to be acyclic, with a typical path denoted by p.

Each path represents a trade route and consists of one or more directed links that join nodes

in the network. Intermediate nodes in the network, which are transshipment locations, also

correspond to countries. However, such transshipment countries/nodes can be either those in

which no avoidance of tariffs takes place for a specific commodity or one in which intentional

misrepresentation does take place and, in effect, the commodity is repackaged/relabeled as

having the new country of origin. Let Pij denote the set of paths connecting the pair of ori-

gin/destination country nodes (i, j), with the set of all paths denoted by P . In our modeling

framework, there may be multiple paths joining a pair of country origin/destination nodes.

This feature provides for greater flexibility in modeling and allows for the investigation of

alternative routes. The set P i denotes all the paths from country i to the destination coun-

tries, and the set Pj denotes the set of paths from all origin countries to destination country

j. The network is represented by the graph G = [N,L], where N is the set of nodes in the

network and L is the set of links. A typical link is denoted by a and can be either of two

types: a transportation link or a processing link to evade a tariff. Transportation links can

correspond to different modes of transportation. A depiction of a hypothetical spatial price

network topology is given in Figure 1. As noted in the Introduction, we refer, for the sake

of generality, to links as being “transaction” links.

The additional notation for the trade model is now presented. All vectors are column

vectors. Let Qk
p denote the flow of commodity k on path p and group all such flows into

the vector Q ∈ RKnP
+ , where nP denotes the number of paths in the network. The flow on

a link a of commodity k is denoted by fk
a and all the link flows are grouped into the vector

f ∈ RKnL
+ , where nL is the number of links in the network.

The Conservation of Flow Equations

The conservation of flow equations are now presented. We assume, due to capacity con-
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JĴ

����
PPPPPPq

?

����
������)




















�

@
@
@R����

?����
1 · · · ����

j · · · ����
n

����
�

�
�	����
S
S
S
Sw

����




















�

���������)

@
@
@R

����
�

�
�
�/

�
�

�	

?

PPPPPPq

����
S
S
S
Sw

����
?����

�
�

�
�
�

���

Destination Countries

Figure 1: An Example of a Spatial Price Network Topology with Origin Countries and
Destination Countries

straints, that each commodity path shipment Qk
p is subject to a positive upper bound uk

p for

all commodities k = 1, . . . , K and all paths p ∈ P . We group the upper bounds into the

vector u ∈ RKnP .

All commodity path flows must be nonnegative and bounded; that is:

uk
p ≥ Qk

p ≥ 0, k = 1, . . . , K; ∀p ∈ P. (1)

The flow on a link a of commodity k is equal to the sum of the path flows of the commodity

k that use the link; that is:

fk
a =

∑
p∈P

Qk
pδap, k = 1, . . . , K; ∀a ∈ L, (2)

where δap = 1, if link a is contained in path p, and δap = 0, otherwise.

The supply of commodity k produced in country i, ski , is equal to the shipments of the

commodity from the country to all destination countries:

ski =
∑
p∈P i

Qk
p, k = 1, . . . , K; i = 1, . . . ,m. (3)
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The demand for commodity k in country j, dkj , in turn, is equal to the shipments of the

commodity from all origin countries to that country:

dkj =
∑
p∈Pj

Qk
p, k = 1, . . . , K; j = 1, . . . , n. (4)

The supplies of the commodities are grouped into the vector s ∈ RKm
+ and the demands

into the vector d ∈ RKn
+ .

The Tariffs

As mentioned in the Introduction, there are different types of tariffs. In order to be able to

capture rerouting of commodities with the goal of avoiding tariffs, we introduce tariffs on

paths, which can be commodity-specific. Let τ kp denote the unit tariff imposed on commodity

k associated with trade route p and recall that a trade route is between a specific country

origin / destination pair (i, j). Since tariffs are not imposed within a country on commodities

produced and consumed there, if a path p joins origin and destination nodes within the same

country, then τ kp = 0 for all commodities k therein. Tariffs are nonnegative. A tariff will

have a positive value if a country j imposes a tariff on a commodity k originating/produced

in country i and the commodity is transported on a trade route / path that does not include

a link that corresponds to masking the country of origin through repackaging and relabeling.

In fact, for all such paths p ∈ Pij, the tariff τ kp = τ kij, for each commodity k; in other words,

the unit tariff would be the same. For model consistency and formulation of the equilibrium

conditions as a variational inequality problem, path tariffs on trade routes that reroute the

commodity in order to evade a tariff payment are set to zero (except if there is a tariff

on the country on the rerouting path, in which case that tariff would be applied). The

packaging/processing link will be part of a rerouting path, if such an option exists, and will

have an associated cost.

We assume in our model that the tariffs and the multicommodity supply price, demand

price, and unit transaction cost functions that we elaborate upon below are all in a common

currency and that they are all continuous.

The Multicommodity Functions for the Model

The supply price function for commodity k of country i is denoted by πk
i . The supply

price of a commodity k in country i can, in general, depend on the supply of the commodity

in the country, and also on the supplies of the other commodities in the country as well as
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on the supplies of all the commodities in all the other countries; that is:

πk
i = πk

i (s), k = 1, . . . , K; i = 1, . . . ,m. (5a)

We group the supply prices into the vector π ∈ RKm.

In view of the conservation of flow equations (3), we may define new supply price functions

π̃k
i ; k = 1, . . . , K; i = 1, . . . ,m, such that

π̃k
i (Q) ≡ πk

i (s). (5b)

The demand price functions can also be quite general and can depend not only on the

demand for the commodity in the specific country, but also on the demands for the other

commodities in the country plus on the demands for the commodities in other countries;

thus:

ρkj = ρkj (d), k = 1, . . . , K; j = 1, . . . , n, (6a)

where ρkj is the demand price function for commodity k in country j. We group the demand

prices into the vector ρ ∈ RKn.

Through the use of conservation of flow equations (4), we may define demand price

functions ρ̃kj ; k = 1, . . . , K; j = 1, . . . , n, as:

ρ̃kj (Q) ≡ ρkj (d). (6b)

With each commodity k and each link a ∈ L, we associate a unit “transaction” cost cka

where

cka = cka(f), k = 1, . . . , K;∀a ∈ L. (7a)

The unit transaction link cost functions may be of two types. The unit transaction cost

may correspond to a unit transportation cost on a transportation link as the commodity

is transported on a trade route from an origin country to a destination country or it may

correspond to a unit processing cost on a link on a trade route to evade a tariff. Note that

such a processing cost can expect to include a repackaging of the commodity as well as a

relabeling and would occur (more likely) in a country that does not have a tariff imposed on

it by the destination country.

We allow for the general situation that a transaction cost on a link associated with a com-

modity can depend on the entire vector of commodity link flows. Of course, in specific appli-

cations, the supply price, demand price, and unit transaction costs would be parametrized

accordingly.
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Due to the conservation of flow equations (2), we can define link unit transaction cost

functions c̃ka(Q), for all commodities and all links thus:

c̃ka(Q) ≡ cka(f), k = 1, . . . , K;∀a ∈ L. (7b)

The unit transaction cost on a trade route / path p for commodity k, denoted by Ck
p , is

equal to the sum of the unit transaction costs that make up the path; that is:

Ck
p (Q) =

∑
a∈L

c̃ka(Q)δap, k = 1, . . . , K;∀p ∈ P. (8)

We group the unit transaction cost functions on the paths into the vector C ∈ RKnP .

The multicommodity trade spatial price equilibrium conditions under tariffs and rerouting

are now stated.

Definition 1: The Multicommodity Trade Spatial Price Equilibrium Conditions

Under Tariffs and Rerouting

A multicommodity path trade flow pattern Q∗ ∈ K, where K ≡ {Q|0 ≤ Q ≤ u}, is a trade

spatial price equilibrium pattern under tariffs and rerouting if the following conditions hold:

For all pairs of country origin and destination nodes: (i, j); i = 1, . . . ,m; j = 1, . . . , n, and

all paths p ∈ Pij as well as for all commodities k; k = 1, . . . , K:

π̃k
i (Q

∗) + Ck
p (Q

∗) + τ kp


≤ ρ̃kj (Q

∗), if Qk∗
p = uk

p,

= ρ̃kj (Q
∗), if 0 < Qk∗

p < uk
p,

≥ ρ̃kj (Q
∗), if Qk∗

p = 0.

(9)

According to equilibrium conditions (9), if there is a positive flow of a commodity between

a pair of origin and destination countries on a path and the flow is not at its upper bound,

then the supply price of the commodity at the origin country of the commodity plus the

path unit transaction cost plus the tariff between the two countries on the specific path is

equal to the demand price of the commodity at the destination country. On the other hand,

the equilibrium commodity shipment between a pair of origin and destination countries will

be equal to zero if the supply price of the commodity at the origin country plus the path

unit transaction cost on the path (trade route) for the commodity plus the tariff on the

commodity on the path is greater than or equal to the demand price consumers are willing

to pay for the commodity at the destination country. If the equilibrium commodity shipment

on a path is equal to its upper bound, then the commodity supply price at the origin country
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plus the path unit transaction cost on the path plus the tariff on the path for the commodity

is less than or equal to the demand price for the commodity at the destination country.

The equilibrium conditions (9) capture, in a novel way, the possibility of evading a tariff.

The consumers are responsive to the demand price that they pay for the commodity and,

since the commodities are homogeneous, they are indifferent as to the country of origin. The

demand market price has to cover the costs of production, transportation, and, in the case

of evasion of the tariff, the repackaging/relabeling cost. In the above equilibrium conditions

such costs are encumbered, although the commodity that is rerouted on a path to evade a

tariff will have a “new” country of origin after labeling, and that path’s tariff is set to zero

(unless it is also tariffed).

Theorem 1: Variational Inequality Formulation of the Multicommodity Trade

Spatial Price Equilibrium Conditions Under Tariffs and Rerouting

A multicommodity path trade flow pattern Q∗ ∈ K is a multicommodity trade spatial price

network equilibrium pattern under tariffs and rerouting, according to Definition 1, if and

only if it satisfies the variational inequality:

K∑
k=1

m∑
i=1

n∑
j=1

∑
p∈Pij

[
π̃k
i (Q

∗) + Ck
p (Q

∗) + τ kp − ρ̃kj (Q
∗)
]
×
[
Qk

p −Qk∗
p

]
≥ 0, ∀Q ∈ K. (10)

Proof:

First, we establish necessity; that is, we show that if Q∗ ∈ K satisfies equilibrium condi-

tions (9) then it also satisfies variational inequality (10).

Note that, according to equilibrium conditions (9), for a fixed commodity k, a fixed

country pair (i, j), and path p ∈ Pij, one must have that:[
π̃k
i (Q

∗) + Ck
p (Q

∗) + τ kp − ρ̃kj (Q
∗)
]
×
[
Qk

p −Qk∗
p

]
≥ 0, (11)

for any Qk
p such that 0 ≤ Qk

p ≤ uk
p.

Indeed, if Qk∗
p = uk

p, then, according to (9),[
π̃k
i (Q

∗) + Ck
p (Q

∗) + τ kp − ρ̃kj (Q
∗)
]
≤ 0. (12)

Since Qk
p ≤ uk

p, we also know that (Qk
p −Qk∗

p ) ≤ 0 and, therefore, (11) holds.

On the other hand, if 0 < Qk∗
p < uk

p, then, according to (9):[
π̃k
i (Q

∗) + Ck
p (Q

∗) + τ kp − ρ̃kj (Q
∗)
]
= 0, (13)
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and, consequently, (11) also holds.

Finally, if Qk∗
p = 0, then, according to equilibrium conditions (9):[

π̃k
i (Q

∗) + Ck
p (Q

∗) + τ kp − ρ̃kj (Q
∗)
]
≥ 0, (14)

and (11) also holds, since Qk
p ≥ Qk∗

p .

Since (11) holds for any commodity k, and any path p, summation of (11) over all com-

modities k, all paths p ∈ Pij, and over all country pairs (i, j), yields:

K∑
k=1

m∑
i=1

n∑
j=1

∑
p∈Pij

[
π̃k
i (Q

∗) + Ck
p (Q

∗)− ρ̃kj (Q
∗)
]
×
[
Qk

p −Qk∗
p

]
≥ 0, ∀Q ∈ K, (15)

which is variational inequality (10). Necessity has been established.

We now turn to proving sufficiency. In particular, we show that, if Q∗ ∈ K satisfies

variational inequality (10), then it also satisfies equilibrium conditions (9).

Let Qg
q = Qg∗

q , for all commodities g, g ̸= k, and for all paths q ∈ Phl, for all hl except

for path p ∈ Pij and substitute the resultants into (10). Then, (10) simplifies to:[
π̃k
i (Q

∗) + Ck
p (Q

∗) + τ kp − ρ̃kj (Q
∗)
]
×
[
Qk

p −Qk∗
p

]
≥ 0, (16)

for all 0 ≤ Qk
p ≤ uk

p. The equilibrium conditions (9) then follow for commodity k, this path

p ∈ Pij, and, hence, for all commodities k, and for all paths in Pij plus for all paths in all

other country origin/destination pairs. The proof is complete. 2

Variational inequality (10) can be put into standard form (cf. Nagurney (1999)), VI(F,K),

where one seeks to determine a vector X∗ ∈ K ⊂ RN , such that

⟨F (X∗), X −X∗⟩ ≥ 0, ∀X ∈ K, (17)

where F is a given continuous function from K to RN , K is a given closed, convex set, and

⟨·, ·⟩ denotes the inner product in N -dimensional Euclidean space.

We define X ≡ Q, with K as previously defined, and N = KnP . Also, F (X) consists of

the elements F k
p (X) ≡

[
π̃k
i (Q) + Ck

p (Q) + τ kp − ρ̃kj (Q)
]
, ∀k, ∀i, j, ∀p ∈ Pij. It follows that

variational inequality (10) can be put into standard form (17).

We now establish the existence of a solution to variational inequality (10).
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Theorem 2: Existence

There exists a solution to variational inequality (10), with the solution corresponding to an

equilibrium according to Definition 1.

Proof:

Given that the feasible set K is closed and bounded, i.e., compact, the existence of a

solution to (10) is guaranteed by the standard theory of variational inequalities (cf. Kinder-

lehrer and Stampacchia (1980) and Nagurney (1999)) since we have assumed that the supply

price functions, the demand price functions, and the unit link transaction cost functions and,

therefore, the path unit transaction cost functions are all continuous. 2

2.1 Illustrative Examples

We now present several examples for illustrative purposes.

Illustrative Example 1

We first consider an example without tariffs. There is a single commodity - that of tea, and,

therefore, we suppress the superscript in the notation. As depicted in Figure 2, the origin

country node 1 is China, a big producer of tea, and the destination country node 2 is the

(western) United States. In order to construct these examples, we use data that is available

online. The function data is for a ton of the commodity and the commodity shipments

are also in tons, as is the supply and the demand. There is no capacity in the commodity

shipment on path p1 = (a). The path corresponds to maritime transportation from a port

in China to (western) United States.
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The supply price function is:

π1(s1) = .3s1 + 450

and the demand price function is:

ρ2(d2) = −d2 + 15, 500.

The unit transaction cost on path p1, Cp1 , is:

Cp1(Qp1) = .1Qp1 + 3, 150 = c̃a(Qp1) = ca(fa) = .1fa + 3, 150.

Assuming that, in equilibrium, Q∗
p1

> 0, according to equilibrium conditions (9), we must

have the following equation holding, after we have made use of converting both the supply

and the demand to the commodity path flow:

π̃1(Q
∗
p1
) + Cp1(Q

∗
p1
) = ρ̃2(Q

∗
p1
) = .3Q∗

p1
+ 450 + .1Q∗

p1
+ 3, 150 = −Q∗

p1
+ 15, 500. (18)

Solution of the equation in (18), yields Q∗
p1

= 8, 500 tons of tea, which is approximately

the value exported from China to the United States in 2023 (see Bolton (2024)). Hence,

also, s∗1 = d∗2 = 8, 500. With this equilibrium solution, the supply price for a ton of tea (we

do not distinguish types nor quality levels here), π1(s
∗
1) is 3, 000, the unit transaction cost,

which, here is mainly the transportation cost per ton, Cp1(Q
∗
p1
), is 4, 000, and the demand

price ρ2(d
∗
2) is 7, 000. These prices and costs are commensurate with those in practice.

With the above data, one can easily calculate the minimum path tariff τp1 such that

there would be zero trade in tea between China and the United States. Indeed, given that

the sum of the fixed cost associated with production plus that of transaction is equal to

450 + 3, 150 = 3, 600 and that the demand price function intercept is equal to: 15, 500, we

conclude that the minimum such tariff would have a value of 15, 500 − 3, 600 = 11, 900,

with the associated equilibrium commodity shipment being Q∗
p1

= 0.00 and, therefore, also,

s∗1 = d∗2 = 0.00. Note that such a tariff would be approximately 75% of the original demand

price per ton of the tea without a tariff.

Illustrative Example 2

In the second and third illustrative examples, we consider the addition of a competitor to

China, in terms of tea production and trade - that of Vietnam, as depicted in Figure 3. There

is a single path connecting Vietnam to the (western) United States, path p2, consisting of
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Figure 3: Network for Illustrative Examples 2 and 3

link b, which corresponds to a maritime link. In Illustrative Example 2 there is no assigned

tariff, whereas in Illustrative Example 3 there is a tariff on tea from China to the United

States.

Illustrative Example 2 has the same data as that in Illustrative Example 1 except that

we add the data for Vietnam, which is as follows:

π3(s3) = .25s3 + 500,

and the unit transaction cost function on path p2 is:

Cp2(Qp2) = .1Qp2 + 2, 900.

There is no capacity on the commodity shipment on path p2.

The demand price function for tea in the United States remains as in Illustrative Example

1. Note that the model that we constructed assumes homogeneous commodities so that

consumers at the destination countries are indifferent as to the country of origin of the

commodity.

Assuming that Q∗
p1

> 0 and Q∗
p2

> 0, since there are no tariffs, equilibrium conditions (9)

reduce to the solution of the following system of equations:

1.4Q∗
p1
+Q∗

p2
= 11, 900

Q∗
p1
+ 1.35Q∗

p2
= 12, 100,

with solution: Q∗
p1

= 4, 455.10 and Q∗
p2

= 5, 662.90. The incurred supply prices at the

equilibrium are: π1(s
∗
1) = 1, 786.50 and π3(s

∗
3) = 1, 915.70. The unit path transaction

costs are: Cp1(Q
∗
p1
) = 3, 595.50 and Cp2(Q

∗
p2
) = 3, 466.30. The demand price ρ2(d

∗
2) is

now: 5, 382.00. With increased competition, the demand price of tea in the United States

14



decreases from 7, 000.00 to 5, 382.00. The supply price for a ton of tea in China has now

also decreased from 3, 000.00 to 1, 786.50. With increased competition, China now exports

a much reduced volume of tea to the United States at 4, 455.10 tons, whereas in Illustrative

Example 1 it exported 8, 500 tons. Vietnam exports a greater amount of tea than China

does in this example.

Illustrative Example 3

This example has the same data as that in Illustrative Example 2 except that we now

investigate the impact of a tariff placed on Chinese tea by the United States of τp1 = 1, 345.50,

which is 25% of the demand market price without a tariff, as in Illustrative Example 2.

Applying equilibrium conditions (9), under the assumption of both commodity path ship-

ments being positive at the equilibrium, yields the following system of equations:

1.4Q∗
p1
+Q∗

p2
= 10, 554.50

Q∗
p1
+ 1.35Q∗

p2
= 12, 100.00,

with solution: Q∗
p1

= 2, 414.10 and Q∗
p2

= 7, 174.70.

Under the tariff, the shipment of tea from China to the United States, Q∗
p1
, drops precip-

itously from 4, 455.10, as in Illustrative Example 2 without a tariff, to 2, 414.10, under the

tariff.

The incurred supply prices at the equilibrium are: π1(s
∗
1) = 1, 174.10 and π3(s

∗
3) =

2, 293.70. The unit path transaction costs are: Cp1(Q
∗
p1
) = 3, 391.40 and Cp2(Q

∗
p2
) =

3, 617.50. The equilibrium demand price ρ2(d
∗
2) is now: 5, 911.20. The price for tea in

the United States increases for consumers under the tariff. China suffers in terms of the

supply price dropping from 1, 786.50 to 1, 174.10. The tea farmers in Vietnam, on the other

hand, enjoy an increase in supply price for their tea with π3(s
∗
3) now equal to 2, 293.70,

whereas in Illustrative Example 2: π3(s
∗
3) = 1, 915.70 at the equilibrium. Furthermore, Viet-

nam now exports about 1, 500 more tons of their tea to the United States in the case of the

tariff on China’s tea than it did without that tariff.

Illustrative Example 4

This example builds on Illustrative Example 3 to include a route to evade the tariff, as

depicted in Figure 4. Specifically, there is now a new route p3 joining China with the United

States consisting of links: (c, d, e). Link d represents repackaging of the tea in Vietnam,

with relabeling identifying the origin being Vietnam (and not China). Links c and e are

transportation links.
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Figure 4: Network for Illustrative Example 4

The data remain as in Illustrative Example 3 but with the following data for the trans-

portation links c and e and the processing link d. Since fc = fd = fe = Qp3 we can write:

c̃c(Qp3) = .1Qp3 + 500, c̃d(Qp3) = .1Qp3 + 100, c̃e(Qp3) = .1Qp3 + 2, 800,

and, therefore:

Cp3(Qp3) = c̃c(Qp3) + c̃d(Qp3) + c̃e(Qp3) = .3Qp3 + 3, 400.

Assuming, as we have done in the above examples, that the commodity shipments are

all positive in equilibrium, according to equilibrium conditions (9), we now obtain, after

algebraic simplification, the following system of equations:

1.4Q∗
p1
+ 1.3Q∗

p2
+Q∗

p3
= 10, 554.50

Q∗
p1
+ 1.35Q∗

p2
+Q∗

p3
= 12, 100

1.3Q∗
p1
+Q∗

p2
+ 1.6Q∗

p3
= 11, 650.

The solution of the above system yields:

Q∗
p1

= −2, 936.70, Q∗
p2

= 7, 401.10, Q∗
p3

= 5, 038.60.

Clearly, with Q∗
p1

being negative, this is not a feasible solution. We, therefore, can set

Q∗
p1

= 0, and, with substitution into the second and third equations above (since the first

one corresponds to path p1 and is no longer an equality), we obtain:

1.35Q∗
p2
+Q∗

p3
= 12, 100

Q∗
p2
+ 1.6Q∗

p3
= 11, 650,
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with solution:

Q∗
p2

= 6, 646.60, Q∗
p3

= 3, 127.20.

The incurred supply prices at the equilibrium are: π1(s
∗
1) = 1, 388.10 and π3(s

∗
3) =

2, 161.60. The unit path transaction costs are: Cp1(Q
∗
p1
) = 3, 150.00, Cp2(Q

∗
p2
) = 3, 564.70,

and Cp3(Q
∗
p3
) = 4, 338.10. Recall that the path tariff on path p1, τp1 = 1, 345.50. The

equilibrium demand price ρ2(d
∗
2) is now: 5, 726.30.

Through rerouting, China’s export of tea, albeit, illegal, increases from 2,414.10 tons to

3,127.20 tons. The demand price in the United States, in turn, decreases from 5, 911.20 to

5, 726.30. Consumers benefit in terms of a greater volume of tea imported to the United

States than in Illustrative Example 3 and at a lower price. Vietnam now exports more tea

than it did in Illustrative Example 2 but less than in Illustrative Example 3 when China’s

exports of tea encumbered a tariff to the United States. Hence, the illegal rerouting hurts

Vietnam in terms of both the supply market price that farmers get and the amount of tea

exported. This example demonstrates that decision-makers may wish to reduce/eliminate

rerouting (with the goal of evading tariffs) through their country.

3. The Computational Method

In this Section, for completeness and easy reference, we recall the algorithm, the modified

projection method of Korpelevich (1977), that we apply in Section 4 to solve larger-scale

numerical examples. In addition, we present the explicit formulae for the computation of

the multicommodity path flows at each iteration of the algorithm. The modified projection

method has been applied to solve a plethora of equilibrium problems formulated as variational

inequality problems (cf. Nagurney (1999, 2006, 2023)). An advantage of this algorithm

is that it converges under reasonable assumptions on the function F (X) that enters the

variational inequality (17) and it does not require, for example, strong monotonicity of

F (X) for convergence as needed by the projection method of Dafermos (1980). The modified

projection method is guaranteed to converge if the function F (X) that enters the variational

inequality problem (17) is monotone and Lipschitz continuous and that a solution exists.

We know that a solution exists for our model because of Theorem 2.

Recall that F is said to be monotone if

⟨F (X1)− F (X2), X1 −X2⟩ ≥ 0, ∀X1, X2 ∈ K. (18)

Furthermore, F is Lipschitz continuous, if there exists an η > 0, known as the Lipschitz

17



constant, such that

∥F (X1)− F (X2)∥ ≤ η∥X1 −X2∥, ∀X1, X2 ∈ K. (19)

It is not unreasonable to assume that the supply price functions π̃(Q) will be monotone

increasing in Q; the demand price functions ρ̃(Q) will be monotone decreasing in Q, and that

the path cost functions C(Q) will be monotone increasing in Q and, also, that these functions

are Lipschitz continuous. Additional discussion of this algorithm, when applied to path-

based network equilibrium problems and spatial price equilibrium problems can be found in

Nagurney et al. (2023). In particular, as noted therein, the modified projection method,

as recognized by Solodov and Tseng (1996) is a “very practical method.” Furthermore, as

is clear below, it is easy to implement for the solution of the multicommodity trade model

with tariffs and rerouting.

In the statement of the algorithm, t denotes an iteration counter.

The Modified Projection Method

Step 0: Initialization

Initialize with X0 ∈ K. Set the iteration counter t = 1 and let β be a scalar such that

0 < β ≤ 1
η
, where η is the Lipschitz constant.

Step 1: Computation

Compute X̄ t by solving the variational inequality subproblem:

⟨X̄ t + βF (X t−1)−X t−1, X − X̄ t⟩ ≥ 0, ∀X ∈ K. (20)

Step 2: Adaptation

Compute X t by solving the variational inequality subproblem:

⟨X t + βF (X̄ t)−X t−1, X −X t⟩ ≥ 0, ∀X ∈ K. (21)

Step 3: Convergence Verification

If |X t −X t−1| ≤ ϵ, with ϵ > 0, a pre-specified tolerance, then stop; otherwise, set t := t+ 1

and go to Step 1.

Due to the simple structure of the feasible set K underlying the multicommodity trade spatial

price equilibrium model with tariffs and rerouting, which consists of box type constraints, as
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was also the case in the model of Nagurney et al. (2023), the solution of each of the subprob-

lems in (20) and (21) can be obtained via closed form expressions for the multicommodity

path flows as follows:

Explicit Formulae at Iteration t for the Multicommodity Path Flows in Step 1

The modified projection method results in the following closed form expressions for (20) for

the multicommodity flows in Step 1 for the solution of variational inequality (10):

Q̄kt
p = max{0,min{uk

p, Q
kt−1
p + β(ρ̃kj (Q

t)− π̃k
i (Q

t)− Ck
p (Q

t)− τ kp )}},

k = 1, . . . , K,∀p ∈ P. (22)

Explicit Formulae at Iteration t for the Multicommodity Path Flows in Step 2

The modified projection method results in the following closed form expressions for (20) for

the multicommodity flows in Step 2 for the solution of variational inequality (10):

Qkt
p = max{0,min{uk

p, Q
kt−1
p + β(ρ̃kj (Q̄

t)− π̃k
i (Q̄

t)− Ck
p (Q̄

t)− τ kp )}},

k = 1, . . . , K,∀p ∈ P. (23)

Note that, from the multicommodity equilibrium path flows, we can easily compute the

multicommodity equilibrium supplies, demands, and also the link flows.

4. Algorithmically Solved Numerical Examples

In this Section, the modified projection method is applied to compute solutions to larger-

scale examples. The algorithm was implemented in FORTRAN and a Linux system at

the University of Massachusetts Amherst was used for the computations. The modified

projection method was deemed to have converged if the absolute difference between each

successive path flow iterate was less than equal to 10−3.

Example 5: Addition of a New Demand Market - Japan

Example 5 has the same data as that in Illustrative Example 4 but now we have an added

demand market - that of Japan, which imports much of its tea from China. In addition,

we assume that tea has become more popular in the US and, therefore, the demand price

function in the US is now: ρ2(d2) = −.1d2 + 15, 500. This change enables us to better

represent impacts of various issues on a product with rising popularity. The network topology
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Figure 5: Network Topology for Examples 5, 6, and 8

for Example 5 is given in Figure 5. In Examples 5 through 8 we do not impose upper bounds

on the commodity shipments.

The unit transaction cost function for link f , which makes up path p4 and joins China

with Japan via maritime transport is as follows:

cf (ff ) = .1ff + 1, 200.

Hence, we have that

Cp4(Qp4) = c̃f (Qp4) = .1Qp4 + 1, 200.

The demand price function for tea (in tons) in Japan is:

ρ6(d) = −.1d6 + 10, 000.00.

The computed commodity equilibrium path flow pattern is:

Q∗
p1

= 5, 865.82, Q∗
p2

= 24, 339.38, Q∗
p3

= 5, 606.88, Q∗
p4

= 9, 816.37.

The equilibrium supplies are:

s∗1 = 21, 289.07, s∗3 = 24, 339.38.

The supply market prices are:

π1(s
∗
1) = 6, 836.72, π3(s

∗
3) = 6, 584.84.

The equilibrium demands are:

d∗2 = 35, 812.03, d∗6 = 9, 816.37.
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The demand market prices are:

ρ2(d
∗
2) = 11, 918.79, ρ6(d

∗
6) = 9, 018.36.

The unit transaction costs on the paths are:

Cp1(Q
∗
p1
) + τp1 = 5, 082.08, Cp2(Q

∗
p2
) = 5, 333.94, Cp3(Q

∗
p3
) = 5, 082.06,

and

Cp4(Q
∗
p4
) = 2, 181.64.

With another demand market, that of Japan, and the rising popularity of tea in the US,

China dramatically increases its production of tea from 3, 127.20 to 21, 289.07 tons. Vietnam

also increases its production of tea (although it is not trading with Japan in this example),

from 6, 646.60 to 24, 339.38. The supply price also increases not only in China but also in

Vietnam for tea. The amount of commodity shipment of tea on the “illegal” trade route p3

increases from 3, 127.20 to 5, 606.88. The demand market price for tea in the US more than

doubles. The commodity shipment of tea from Vietnam to the US is more than 3 times that

in Example 4. Japan enjoys almost 10, 000 tons of tea from China at a demand market price

of 9, 018.36, which is lower than that in the United States but reasonable, given the shorter

distance of Japan to China as compared to that of the U.S. These results are interesting and

show that, in unveiling an additional demand market, a country can gain.

Example 6: Example 5 with Tariff Removed

Example 6 has the same data as that in Example 5 except that now we remove the tariff on

tea from China to the United States. Nevertheless, we keep the path through Vietnam with

reprocessing to see whether it could be “efficient” even without a tariff imposed on another

trade route.

The modified projection method now yields the following equilibrium commodity path

flow pattern:

Q∗
p1

= 12, 003.98, Q∗
p2

= 23, 517.35, Q∗
p3

= 3, 168.06, Q∗
p4

= 7, 596.79.

The equilibrium supplies are now:

s∗1 = 22, 768.83, s∗3 = 23, 517.35.

The supply market prices are:

π1(s
∗
1) = 7, 280.65, π3(s

∗
3) = 6, 379.34.

21



The equilibrium demands are now:

d∗2 = 38, 689.38, d∗6 = 7, 596.79

and the demand market prices are now:

ρ2(d
∗
2) = 11, 631.06, ρ6(d

∗
6) = 9, 240.32.

The unit transaction costs on the paths are:

Cp1(Q
∗
p1
) = 4, 350.40, Cp2(Q

∗
p2
) = 5, 251.73, Cp3(Q

∗
p3
) = 4, 350.42,

and

Cp4(Q
∗
p4
) = 1, 959.68.

From the results we can see that, as compared to the values in Example 5, the sup-

ply price for tea in China increases from 6, 836.72 to 7, 280.65, but decreases in Vietnam,

from 6, 584.84 to 6, 379.34. The production output (supply) of tea in China increases from

21, 289.07 to 22, 768.83, whereas that in Vietnam decreases, from 24, 339.38 to 23, 517.35;

again, demonstrating effects of competition. The farmers in China, hence, gain with the

removal of the tariff in terms of increased production and a higher supply price. The flow

on path p3 decreases from 5, 606.88 to 3, 168.06; however, it still has a positive flow, suggest-

ing that transporting from China through Vietnam even with some possible encumbrance

of additional transaction cost and even without tariffs on tea from China to the US can

be economically efficient. The demand price for tea in the US decreases from 11, 918.79 to

11, 631.06 but increases in Japan (from 9, 018.36 to 9, 240.32).

Example 7: Example 6 with Tariff Evasion Route Removed

Example 7 has the same data as that in Example 6 except that now we explore the following

scenario: the trade route, p3, is no longer available and, therefore, the network for this

example is that depicted in Figure 5 but with path p3 consisting of links c, d, and e removed.

The modified projection method converges to the following equilibrium solution.

Q∗
p1

= 14, 108.29, Q∗
p2

= 23, 753.69, Q∗
p4

= 8, 235.00.

The equilibrium supplies are now:

s∗1 = 22, 343.29, s∗3 = 23, 753.69.
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The supply market prices are:

π1(s
∗
1) = 7, 152.99, π3(s

∗
3) = 6, 438.42.

The equilibrium demands are now:

d∗2 = 37, 861.98, d∗6 = 8, 235.00

and the demand market prices are now:

ρ2(d
∗
2) = 11, 713.80, ρ6(d

∗
6) = 9, 176.50.

The unit transaction costs on the paths are:

Cp1(Q
∗
p1
) = 4, 560.83, Cp2(Q

∗
p2
) = 5, 275.37,

and

Cp4(Q
∗
p4
) = 2, 023.50.

The production output (supply) of tea in China decreases, as compared to the value

in Example 6, from 22, 768.83 to 22, 343.29 but increases in Vietnam from 23, 517.35 to

23, 753.69. The demand market price of tea increases in the US from 11, 631.06 to 11, 713.80

but decreases in Japan (by a small amount). This example suggests that having additional

routes for trade can be beneficial, which makes sense. This was also noted, in the context

of agricultural trade from Ukraine in wartime in Hassani et al. (2025). Indeed, all path

transaction costs to the US have now increased, as has that from China to Japan.

Example 8: Example 5 with Tariff Added on Tea from Vietnam to the US

With tariffs now dominating the news, especially in terms of the United States imposing

them on goods from other countries (cf. Yousif (2025)), Example 8 has the same data as

that in Example 5, where there was a tariff on path p1 on tea from China to the United States

and also a path for tariff evasion - path p3, except that now, in Example 8, we investigate

the impact of an additional tariff on the tea from Vietnam to the United States on path p2

such that τp2 = 2, 000, which is, approximately, 20% of the demand market price of tea in

the United States at the equilibrium solution for Example 5. Note that, with the evasion

path going through Vietnam, route p3 also encumbers a tariff τp3 = 2, 000.

The modified projection method converges to the following equilibrium solution.
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The computed commodity equilibrium path flow pattern is:

Q∗
p1

= 10, 712.89, Q∗
p2

= 19, 940.26, Q∗
p3

= 556.04, Q∗
p4

= 9, 938.66.

The equilibrium supplies are:

s∗1 = 21, 207.59, s∗3 = 19, 940.26.

The supply market prices are:

π1(s
∗
1) = 6, 812.28, π3(s

∗
3) = 5, 485.06.

The equilibrium demands are:

d∗2 = 31, 209.19, d∗6 = 9, 938.66.

The demand market prices are now:

ρ2(d
∗
2) = 12, 379.08, ρ6(d

∗
6) = 9, 006.13.

The unit transaction costs on the paths are:

Cp1(Q
∗
p1
) + τp1 = 5, 566.81, Cp2(Q

∗
p2
) + τp2 = 6, 894.03, Cp3(Q

∗
p3
) + τp3 = 5, 566.81,

and

Cp4(Q
∗
p4
) = 2, 193.87.

The shipment of tea from Vietnam to the United States now drops from 24, 339.38 tons, as

in Example 5, to 19, 940.26 tons, under the added tariff on tea from Vietnam, with the supply

(production output of tea) dropping accordingly. However, and this is quite interesting, by

“punishing” Vietnam with a tariff, the commodity shipment of tea from China now increases

on its tariffed path, path p1, from 5, 865.82 tons, as in Example 5, to 10, 712.89 tons. The

shipment on the tariff evasion path through Vietnam, path p3, now decreases from 5, 606.88

tons to 556.04 tons, a precipitous drop of about 90%. Nevertheless, China’s production of

tea drops minimally as does its supply price for tea. Japan gains in terms of an increased

volume of tea imported and at a lower price than in Example 5. This example also shows the

importance of a supply market country, such as China, having demand markets in countries

that are not tariffing products from your country. The price of tea in the United States
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from China increases, as compared to that in Example 5, demonstrating, again, the negative

impacts of tariffs on consumers in terms of price increases of commodities.

This example highlights what is happening in the real world now because of a trade

war, with the new US administration imposing massive tariffs. Also, the example illustrates

what may happen as alternative routes to the United States for Chinese goods are “severed”

as reported in Bradsher (2025). In particular, such routes for evasion are getting renewed

attention with even additional tariffs (as we explore here) being placed on transshipment

countries.

The above examples are stylized; nevertheless, they demonstrate the kinds of exercises

that can be conducted in order to ascertain impacts of tariffs, the possibilities of tariff evasion

through rerouting, and also transshipment of commodities through other countries.

5. Summary and Suggestions for Future Research

Mathematical modeling, and the accompanying theory, applications, and algorithms are

essential for the evaluation of policies that affect multicommodity trade through the quan-

tification of prices, on the production and on the consumption sides, and the commodity

shipments between countries. Governments have been increasingly imposing policies, in the

form of tariffs, on commodities produced in different countries leading to what are known as

“trade wars.” Some, in turn, are trying to identify alternative routes in order to evade tariffs

and the associated costs.

In this paper, we add to the literature on the modeling of multicommodity trade in a

spatial equilibrium framework in the presence of tariffs and rerouting, with the latter for

the purpose of evading tariffs. The equilibrium model consists of countries that are supply

markets for commodities as well as countries that are demand markets for them. Each

pair of supply and demand market countries can be connected by one or more paths that

correspond to trade routes. Each trade route, in turn, can consist of one or more links that

can correspond to a mode of transportation or, in the case of a link in a country to evade a

tariff - a processing/relabeling link to mask the country of origin. The equilibrium conditions,

which include the unit path tariffs, are formulated as a variational inequality problem in path

flows and existence results established. We note that evading tariffs through rerouting, with

the purposes of relabeling, is not legal but it is happening. Having a computable framework

enables the investigation of possible interdiction mechanisms by authorities.

We present both illustrative numerical examples as well as algorithmically solved ones,

which expand on the former examples. The application is that of trade of tea from China.
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The solutions reveal the impacts of a tariff on tea from China to the United States, of

rerouting, and also of the addition of a demand market, and a further tariff on Vietnam,

a country for possible transshipment as well as rerouting to evade the original tariff. The

results reinforce, in part, what we have found in the context of agricultural trade from

Ukraine in wartime as in Hassani et al. (2025) and Nagurney et al. (2024a, b) - that having

alternative trade routes is beneficial. The results also reinforce that consumers in the country

imposing a tariff lose in terms of the demand price, which becomes higher, and the volume of

commodity shipment, which becomes lower, as do producers in the country whose product is

tariffed, with the supply market price decreasing. The results reveal the effects of additional

tariffs on transshipment countries, where rerouting may be taking place.

As we mentioned in the Introduction, we believe that this is the first rigorous investigation

of an equilibrium framework that captures tariffs and rerouting for the evasion of tariffs.

There are many opportunities for additional research. First, one can expand the number of

supply countries and demand countries as well as the number of commodities. One could

also investigate the effects of retaliatory tariffs; in other words, after a country A imposes a

tariff on a product or products of country B, country B retaliates by adding (or increasing)

tariffs on products from country A. One can also investigate additional countries through

which rerouting might take place in order to evade tariffs. In addition, it would be very

interesting to study tariffs in the context of multitiered supply chains in which there are

multiple suppliers, as modeled in the book by Nagurney and Li (2016). Tariffs can be imposed

not only on commodities and finished products but, also, on inputs into production processes.

Furthermore, as is the case on automobile manufacturing in North America, components may

criss-cross national boundaries several times as they are incorporated into higher level parts of

a vehicle (cf. Domonoske (2025)). It would also be worthwhile to investigate opportunities

for on-shoring and which products might be profitable to produce in-house. Finally, the

model in this paper is a perfectly competitive one - developing an imperfectly competitive

model, as in the case of an oligopoly, using game theory, and exploring tariffs with rerouting

would also be timely.
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