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Abstract: Large-scale migration flows are posing immense challenges for governments

around the globe, with drivers ranging from climate change and disasters to wars, violence,

and poverty. In this paper, we introduce multiclass human migration models under user-

optimizing and system-optimizing behavior in which the locations associated with migration

are subject to capacities. We construct alternative variational inequality formulations of

the governing equilibrium/optimality conditions that utilize Lagrange multipliers and then

derive formulae for subsidies that, when applied, guarantee that migrants will locate them-

selves, acting independently and selfishly, in a manner that is also optimal from a societal

perspective. An algorithm is proposed, implemented, and utilized to compute solutions to

numerical examples. Our framework can be applied by governmental authorities to manage

migration flows and population distributions for enhanced societal welfare.

Keywords: human migration networks, variational inequalities, system-optimization, user-

optimization, capacities, subsidies, societal welfare
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1. Introduction

Governments of many nations are increasingly being faced with large-scale human migra-

tion flows not only within their national borders but also across their borders. The drivers of

migratory flows are many, including: wars, conflicts, violence and strife, and poverty, as well

as challenges and disruptions posed by climate change and disasters, both sudden (earth-

quakes, wildfires, hurricanes, tornadoes, floods, tsunamis, landslides, etc.) and slow-onset

(malnutrition and hunger, drought, disease epidemics, insect infestations, etc.). Migrants

from time immemorial have sought a better quality of life for themselves, moving to loca-

tions to better their situations. The UNHCR (2020) reports that 70.8 million humans have

fled their homes worldwide, the highest level of displacement ever recorded. According to

the United Nations (2017), since the new millennium, the number of refugees and asylum

seekers has increased from 16 to 26 million, comprising about 10% of total of the inter-

national migrants. The International Organization for Migration (2019) reports that there

have been significant migration and displacement events during the last two years with such

events resulting in hardship, trauma, and loss of life.

Many recent crises associated with migration have brought enhanced emphasis by both

practitioners as well as academics on how to better address the associated challenges of mi-

gratory flows and the ultimate location of the migrants. Examples of epicenters of only a few

of the migratory crises include: Venezuela (Kennedy (2019)), Central America (Bartenstein

and McDonald (2019)), Libya (Sakuma (2020)), and Syria (United Nations Refugee Agency

(2015)), with countries such as Mexico (Mattiace (2019)), Italy (Jones (2018)), Greece (Kit-

santonis (2019)), and Cyprus (Stevis-Gridneff (2020)) serving as transit points for many

refugees and asylum seekers in the dynamically evolving migration landscape (see also Pa-

padaki et al. (2018)).

In particular, in many reports and studies, the capacity of nations to handle migrants, and

we emphasize here that there are multiple classes of migrants (cf. Karagiannis (2016)), has

risen to the fore as a critical characteristic. Examples of such studies have included even the

United States in terms of migrants from Central America (O’Connor, Batalova, and Bolter

(2019)); Colombia and other countries (Costa Rica and Ecuador) because of the issues in

Venezuela and Nicaragua (Chinchilla et al. (2018)), as well as multiple countries in Europe

as possible destination locations of migrants (Parkinson (2015) and European Commission

(2019)).

In this paper, we develop user-optimized (U-O) and system-optimized (S-O) multiclass

models of human migration under capacities associated with the migrant classes and loca-
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tions. Our work builds on that of Nagurney, Daniele, and Cappello (2020), but with the

generalization of the inclusion of capacities. Such a generalization is especially timely, as

noted above. Moreover, to-date, the majority of research on human migration networks,

from an operations research and mathematical modeling perspective, has focused on the

modeling of migration flows assuming user-optimizing behavior, originating with the work

of Nagurney (1989). In other words, it has been assumed that the migrants act selfishly

and independently; see also Nagurney (1990), Nagurney, Pan, and Zhao (1992a, b), Pan and

Nagurney (1994, 2006), Isac, Bulavsky, and Kalashnikov (2002), Kalashnikov et al. (2008),

Causa, Jadamba, and Raciti (2017), Nagurney and Daniele (2020), Nagurney, Daniele, and

Nagurney (2019), Capello and Daniele (2019), for a spectrum of U-O migration models.

Davis et al. (2013), in turn, utilize a complex network approach for human migration and

utilize an international dataset for their quantitative analysis.

System-optimization in multiclass human migration networks is also important since gov-

ernments may wish to maximize societal welfare and hope that migrants locate accordingly.

However, the latter may be extremely challenging unless proper policies/incentives are put

into place. Indeed, Altemeyer-Bartscher et al. (2016) have argued for an effective cost-

efficient mechanism for the distribution of refugees in the European Union, for example.

Clearly, that would require some form of central control and cooperation/coordination.

Note that there are analogues to U-O and S-O network models, with a long history, in

the transportation science literature (cf. Wardrop (1952), Beckmann, McGuire, and Winsten

(1956), Dafermos and Sparrow (1969), and Boyce, Mahmassani, and Nagurney (2005)). Such

concepts were made explicit, for the first time, in human migration networks, by Nagurney,

Daniele, and Cappello (2020). We emphasize that in the transportation science literature

the concern is total cost minimization in the case of system-optimization and individual

cost minimization in the case of user-optimization, along with route selection, subject to

the conservation of flow equations. In the human migration network context, in contrast,

we are concerned with total utility maximization in the case of S-O and individual utility

maximization in the case of U-O behavior and the selection of locations.

In addition, in this paper, we provide a quantitative mechanism, in the form of subsidies,

that, when applied, guarantees that the system-optimized solution of our multiclass capac-

itated human migration network problem is also user-optimized. This is very important,

since it enables governments, and policy-making bodies, to achieve optimal societal welfare

in terms of the location of the migrants in the network economy, while the migrants locate

independently in a U-O manner! Our work extends that of Nagurney, Daniele, and Capello

(2020) to the capacitated network economy domain. Furthermore, we provide alternative
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variational inequality formulations of both the new U-O and S-O models, which include

Lagrange multipliers associated with the location capacity constraints as explicit variables.

Their values at the equilibrium/optimal solutions provide valuable economic information for

decision-makers.

This paper is organized as follows. In Section 2, we present the capacitated multiclass

human migration network models, under S-O and under U-O behaviors. Associated with each

location as perceived by a class, is an individual utility function, that, when multiplied by the

population of that class at that location, yields the total utility function for that location

and class. As in our earlier work (cf. Nagurney (1989), to start), the utility associated

with a location and class can, in general, depend upon the vector of populations of all the

classes at all the locations in the network economy. We assume a fixed population of each

class in the network economy and are interested in determining the distributions of the

populations among the locations under S-O and U-O behaviors. For each model, we provide

alternative variational inequality formulations. We also illuminate the role that is played by

the Lagrange multipliers associated with the class capacities on the locations in the network

economy.

In Section 3, we outline the procedure for the calculation of the multiclass subsidies

in order to guarantee, even in the capacitated case, that the system-optimized solution is,

simultaneously, also user-optimized. Hence, once the subsidies are applied, the migrants

will locate themselves individually in the network economy in a manner that is optimal

from a societal perspective. As argued in Nagurney, Daniele, and Cappello (2020), there

are analogues of our subsidies to tolls in transportation science. In the case of congested

transportation networks, the imposition of tolls (see Dafermos and Sparrow (1969), Dafermos

and Sparrow (1971), Dafermos (1973), Lawphongpanich, Hearn, and Smith (2006)), results

in system-optimized flows also being user-optimized. In other words, once the tolls are

imposed, travelers, acting independently, select routes of travel which result in a system

optimum, that minimizes the total cost to the society. In this paper, we construct policies

for human migration networks that maximize societal welfare but in the case of capacities.

In Section 4, we outline the computational algorithm, which we then apply to compute

solutions to numerical examples that illustrate the theoretical results in this paper in a

practical format. We summarize our results and present our conclusions in Section 5.
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2. The Capacitated Multiclass Human Migration Network Models

In this Section, we construct the capacitated multiclass network models of human migra-

tion. We first present the system-optimized model and then the user-optimized one. The

notation follows that in Nagurney, Daniele, and Cappello (2020), where, as mentioned in the

Introduction, no capacities on the populations at the locations were imposed.

We assume that the human migrants have no movement costs associated with migrating

from location to location since we are concerned with the long-term population distribution

behaviors under both principles of system-optimization and user-optimization. The network

representation of the models is given in Figure 1.

There are J classes of migrants, with a typical class denoted by k, and n locations

corresponding to locations that the multiclass populations can migrate to, with a typical

location denoted by i. There are assumed to be no births and no deaths in the network

economy.

In the network representation, locations are associated with links. A link can correspond

to a country or a region within a country and the network economy can capture multiple

countries. If a government is interested in within country migration, exclusively, then the

network economy (network) would correspond to that country.

Table 1 contains the notation for the models. All vectors here are assumed to be column

vectors.

n

n

1

0

?
R 	U

1 2 · · · i · · · n

U1
1 , . . . , UJ

1 U1
n, . . . , UJ

n

Figure 1: The Network Structure of the Multiclass Human Migration Models

According to Table 1, there is a utility function Uk
i associated with each class k; k =

1, . . . , J , and location i; i = 1, . . . , n, which captures how attractive location i is for that

class k. Observe that (see Table 1), the utility, and, hence, the total utility, Ûk
i , associated

with location i and class k, may, in general, depend upon the population distribution of all

the classes at all the locations. The OECD (2019), for example, recognizes that different

locations may be more or less attractive to distinct classes of migrants.
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Table 1: Notation for the Multiclass Human Migration Models

Notation Definition
pk

i the population of class k at location i. We group the {pk
i } elements into

the vector pk ∈ Rn
+. We then further group the pk vectors; k = 1, . . . , J ,

into the vector p ∈ RJn
+ .

capk
i the nonnegative capacity at location i for class k; k = 1, . . . , J ; i =

1, . . . , n.
βk

i the Lagrange multiplier associated with capacity constraint for k at i;
k = 1, . . . , J ; i = 1, . . . , n. We group all these Lagrange multipliers into
the vector β ∈ RJn

+ .
P k the fixed population of class k in the network economy; k = 1, . . . , J .

Uk
i (p) the utility of individuals of class k at location i; i = 1, . . . , n. We group

the utility functions for each k into the vector Uk ∈ Rn and then group
all such vectors for all k into the vector U ∈ RJn.

Ûk
i (p) the total utility of class k at location i; i = 1, . . . , n. The total utility

Ûk
i (p) = Uk

i (p)× pk
i ; k = 1, . . . , J ; i = 1, . . . , n.

We now present the constraints. The population distribution of each class among the

various locations must sum up to the population of that class in the network economy, that

is, for each class k; k = 1, . . . , J :
n∑

i=1

pk
i = P k. (1)

Furthermore, the population of each class at each location must be nonnegative, that is,

pk
i ≥ 0, ∀i;∀k, (2)

and not exceed the capacity:

pk
i ≤ capk

i , ∀i;∀k. (3)

The feasible set K1 ≡ {p| (1), (2), (3) hold}.

We assume here that
n∑

i=1

capk
i ≥ P k, (4)

for all classes k. In other words, we assume that the network economy has sufficient capacity

to accommodate the population of each class. Hence, the feasible set K1 is nonempty.

Moreover, it is compact.
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2.1 The Capacitated System-Optimization (S-O) Problem

The government (or governments), in the case of system optimization, wishes to maximize

the total utility in the network economy, which reflects the societal welfare, subject to the

constraints. The capacitated system-optimization (S-O) problem is:

Maximize
J∑

k=1

n∑
i=1

Ûk
i (p) =

J∑
k=1

n∑
i=1

Uk
i (p)× pk

i (5)

subject to constraints (1) through (3).

We assume that the total utility functions for all the classes at all the locations are

concave and continuously differentiable. Then, from classical results (cf. Kinderlehrer and

Stampacchia (1980) and Nagurney (1999)), we know that the optimal solution, denoted by

p′, satisfies the variational inequality (VI) problem: determine p′ ∈ K1, such that

−
J∑

k=1

n∑
i=1

[
J∑

l=1

n∑
j=1

∂Û l
j(p

′)

∂pk
i

]
× (pk

i − pk′

i ) ≥ 0, ∀p ∈ K1. (6)

A solution p′ to VI (6) is guaranteed to exist under our imposed assumptions since the

feasible set K1 is compact and the total utility functions are continuously differentiable.

Uniqueness of the solution p′ then follows under the assumption that all the utility functions

are strictly concave.

We now present an alternative variational inequality to the one in (6), which we utilize to

compute the S-O solution in numerical examples. Furthermore, the solution of the alternative

VI allows us to determine the optimal Lagrange multipliers associated with the location class

capacities in the S-O context. The Lagrange multipliers at the optimal solution provide

valuable economic information. We define the feasible set K2 ≡ {(p, β)|(1), (2) hold and β ∈
RJn

+ }.

Alternative Variational Inequality Formulation of the Capacitated S-O Problem

A solution to the S-O problem also satisfies the VI: determine (p′, β′) ∈ K2 such that

−
J∑

k=1

n∑
i=1

[
J∑

l=1

n∑
j=1

∂Û l
j(p

′)

∂pk
i

− βk′

i

]
× (pk

i − pk′

i ) +
J∑

k=1

n∑
i=1

[
capk

i − pk′

i

]
× (βk

i − βk′

i ) ≥ 0,

∀(p, β) ∈ K2. (7)

The above result follows from Bertsekas and Tsitsiklis (1989), page 287. Capacities have

also been applied to links in various supply chain system-optimization problems and varia-
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tional inequality formulations constructed; see, for example, Nagurney (2010) and Nagurney,

Yu, and Qiang (2011).

2.2 The Capacitated User-Optimization (U-O) Problem

We now introduce the capacitated user-optimized version of the above S-O model. The new

model extends the classical one introduced in Nagurney (1989) to include capacities.

The Capacitated Equilibrium Conditions

Mathematically, a multiclass population vector p∗ ∈ K1 is said to be U-O or, equivalently, a

capacitated equilibrium, if for each class k; k = 1, . . .,J ; and all locations i; i = 1, . . . , n:

Uk
i (p∗)


≥ λk, if pk

i
∗

= capk
i ,

= λk, if 0 < pk
i
∗

< capk
i ,

≤ λk, if pk
i
∗

= 0.
(8)

From (8) one can see that locations with no population of a class are those with the lowest

utilities; those locations with a positive population of a class, with the population not at

the capacity for the location and class will have equalized utility for that class and higher

than the unpopulated locations of that class. Moreover, the equalized utility will be equal

to an indicator λk. The indicator λk is, actually, the Lagrange multiplier associated with

constraint (1) for k with the value at the equilibrium. Those locations with a class k at its

capacity have a utility greater than or equal to λk.

A capacitated U-O solution p∗ satisfies the VI: determine p∗ ∈ K1 such that

J∑
k=1

n∑
i=1

−Uk
i (p∗)× (pk

i − pk∗
i ) ≥ 0, ∀p ∈ K1. (9)

We now prove the equivalence of the solution to the Capacitated Equilibrium Conditions

(8) and the VI (9).

Indeed, it is easy to see that, according to (8), for a fixed k and i, the equilibrium

conditions imply that[
λk − Uk

i (p∗)
]
×

[
pk

i − pk∗
i

]
≥ 0, ∀pk

i : 0 ≤ pk
i ≤ capk

i . (10)

Observe that, if pk∗
i = 0, (10) holds true; if pk∗

i = capk
i , then (10) also holds, and (10) also

holds if 0 < pk∗
i < capk

i .
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Summing now (10) over all k and all i, yields:

J∑
k=1

n∑
i=1

[
λk − Uk

i (p∗)
]
×

[
pk

i − pk∗
i

]
≥ 0, ∀p ∈ K1. (11)

But, because of (1), (11) simplifies to precisely (9).

Furthermore, we now show that if p∗ satisfies VI (9), then the p∗ also satisfies the Capac-

itated Equilibrium Conditions (8).

In (9), we set pl
i = pl∗

i for all l 6= k, which yields:

n∑
i=1

−Uk
i (p∗)× (pk

i − pk∗
i ) ≥ 0, ∀pk

i : 0 ≤ pk
i ≤ capk

i ;
n∑

i=1

pk
i = P k. (12)

If there are two locations, say, r and s with positive populations not at their capacities,

set for a sufficiently small ε > 0:

pk
r = pk∗

s − ε; pk
s = pk∗

r + ε

and all other pk
i s equal to pk∗

i . Clearly, such a population distribution is also feasible. Sub-

stitution into (12) yields, after algebraic simplification:

(−Uk
r (p∗) + Uk

s (p∗))× (pk∗
s − pk∗

r − ε) ≥ 0. (13)

Similarly, by constructing another feasible population pattern:

pk
r = pk∗

s + ε, pk
s = pk∗

r − ε,

with all other pk
i = pk∗

i , and substitution into (12) yields

(Uk
r (p∗)− Uk

s (p∗))× (pk∗
s − pk∗

r − ε) ≥ 0. (14)

(13) and (14) can only hold true if

Uk
r (p∗) = Uk

s (p∗)

which we call λk. Hence, the second condition in (8) has been established.

On the other hand, suppose that pk∗
i ≥ 0 for all i, but pk∗

r > 0 and pk∗
s = 0. For a

sufficiently small ε > 0, construct pk
r = pk∗

r − ε and pk
s = pk∗

s + ε, with all other pk
i s equal to

pk∗
i and substitute these values into (12). After, algebraic simplification, we obtain:

(Uk
r (p∗)− Uk

s (p∗))ε ≥ 0,
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hence,

Uk
r (p∗) ≥ Uk

s (p∗)

and the third condition in (8) is verified.

Now, in order to verify that a solution to VI (9) also satisfies the top condition in (8), if

for some location r: pk∗
r = capk

r , then we construct a feasible distribution pattern such that:

pk
r = pk∗

r − ε, pk
s = pk∗

s + ε,

with ε > 0 sufficiently small and all other pk
i = pk∗

i . Substitution into (12), after algebraic

simplification yields:

Uk
r (p∗) ≥ Uk

s (p∗)

and the conclusion follows. With the above arguments, we have shown that a capacitated

equilibrium p∗ is equivalent to the solution of the VI (9).

We now provide an alternative VI formulation of the capacitated equilibrium conditions.

This result is immediate by making note of Nagurney (1989) demonstrating that the U-O

human migration model (without capacities) is isomorphic to a traffic network equilibrium

problem (cf. Dafermos and Sparrow (1969) and Dafermos (1980)) and, hence, in the case

of capacities, also isomorphic to a traffic network equilibrium problem with side constraints

(see Larsson and Patriksson (1999)) and with special structure.

Alternative Variational Inequality Formulation of the U-O Problem

The U-O solution satisfies the variational inequality problem: determine (p∗, β∗) ∈ K2 such

that

J∑
k=1

n∑
i=1

[
−Uk

i (p∗) + βk∗
i

]
× (pk

i −pk∗
i 〉+

J∑
k=1

n∑
i=1

[
capk

i − pk∗
i

]
× (βk

i −βk∗
i ) ≥ 0, ∀(p, β) ∈ K2.

(15)

2.3 Illustrative Examples

We first present an uncapacitated example for which we provide U-O and S-O solutions. We

then add capacities to the locations and report the new U-O and S-O solutions. There is a

single class in the network economy and three locations. The total population is: P 1 = 120

and the utility functions at the three locations are:

U1
1 (p) = −p1

1 + 190, U1
2 (p) = −p1

2 + 200, U1
3 (p) = −p1

3 + 210.
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The user-optimized solution is:

p1∗
1 = 30.00, p1∗

2 = 40.00, p1∗
3 = 50.00,

yielding λ1 = 160, since

U1
1 (p∗) = U1

2 (p∗) = U1
3 (p∗) = 160.00.

The S-O solution, on the other hand, is:

p1′

1 = 35.00, p1′

2 = 40.00, p1′

3 = 45.00.

We now impose capacities as follows:

cap1
1 = 60.00, cap1

2 = 60.00, cap1
3 = 30.00,

and solve for the U-O and S-O solutions.

The new U-O solution, satisfying VI (15), is:

p1∗
1 = 40.00, p1∗

2 = 50.00, p1∗
3 = 30.00,

with Lagrange multipliers associated with the capacities of:

β1∗
1 = 0.00, β1∗

2 = 0.00, β1∗
3 = 30.00.

The new S-O solution, satisfying VI (7), is:

p1′

1 = 42.50, p1′

2 = 47.50, p1′

3 = 30.00,

with Lagrange multipliers associated with the capacities of:

β1′

1 = 0.00, β1′

2 = 0.00, β1′

3 = 45.00.

Observe that the S-O solution is distinct from the U-O solution in both the uncapacitated

and the capacitated versions.

Remark

We now show how the optimal Lagrange multipliers can be utilized. For example, if one

modifies the utility functions by reducing each of them by the value of the optimal Lagrange

multiplier associated with the location and the class then the same user-optimizing solution
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is obtained as the one for the problem with the corresponding capacities. Indeed, proceeding

as above, we modify the utility functions as:

Ũ1
1 (p) = −p1

1 + 190− 0 = −p1
1 + 190,

Ũ1
2 (p) = −p1

2 + 200− 0 = −p1
2 + 200,

Ũ1
3 (p) = −p1

3 + 210− 30 = −p1
3 + 180,

and observe that the capacitated U-O solution: p1∗
1 = 40.00, p1∗

2 = 50.00, p1∗
3 = 30.00 remains

optimal.

Similarly, one can modify the utility functions in the same manner, but by using the

optimal Lagrange multipliers for the S-O problem, to obtain the same S-O solution as for

the problem with the capacities.

Hence, government decision-makers, in order to limit the population of certain (or all)

classes at certain (or all) locations can accomplish this through regulations corresponding to

the capacities or by modifying the utility functions accordingly to yield the same result.

Now, we describe how subsidies (which may be viewed as a positive intervention) can,

once imposed, make the capacitated S-O solution also a capacitated U-O one.

3. Subsidies to Guarantee the Capacitated S-O Solution is Also a Capacitated

U-O Solution

In Nagurney, Daniele, and Cappello (2020) a procedure was introduced for the calculation

of subsidies that, once applied to the locations with a positive population of a class under S-O,

guaranteed that migrants operating under the U-O behavioral principle would select locations

that were also optimal from a societal standpoint; that is, they were system-optimized.

Here we show that the same general construct is also applicable to capacitated problems

of human migration.

The procedure is as follows. We first solve for the capacitated system-optimized solution

p′ satisfying VI (7), or, equivalently, VI (6). For each class k, we denote those locations

with a positive population by k1, . . . , knk
, where nk is the number of locations in the network

economy with a positive population of class k. We also introduce notation for subsidies

associated with the different locations for each class denoted by class k by: (subsidy)k1 ,

(subsidy)k2 , ..., (subsidy)knk
. We then enumerate those location in a list as follows:

Uk
k1

(p′) + subsidyk
k1

= µk,
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Uk
k2

(p′) + subsidyk
k2

= µk, (16)

and so on until

Uk
knk

(p′) + subsidyk
knk

= µk.

Note that µk is the incurred utility for class k after the subsidies are distributed for the class

at the locations with positive populations of that class. Also, we can number those locations

for that class with zero populations of that class (if there are any) as follows:

Uk
knk+1

(p′) + subsidyk
knk+1

≤ µk,

and so on until

Uk
kn

(p′) + subsidyk
kn
≤ µk. (17)

Expressions (16) and (17) reveal that the appropriate governmental authority chooses the

µk for each class k, and then the subsidy for each location for that class is determined by

straightforward subtraction.

In order to select an appropriate µk, as noted in Nagurney, Daniele, and Cappello (2020)

for the uncapacitated case, the µks can be set as: maxkl;l=1,...,nk
Uk

kl
(p′). All thus calculated

are nonnegative and, furthermore, all migrants enjoy the maximal utility for each class at all

the populated locations. Also, for the subsidies associated with locations with no populations

of a class k (see (17)), we set those subsidies zero.

Returning to the above simple example, we note that µ1 = 180.00, and the above subsidy

formulae simplify to:

U1
1 (p′) + subsidy1

1 = µ1,

U1
2 (p′) + subsidy1

2 = µ1,

U1
3 (p′) + subsidy1

3 = µ1,

or

147.50 + subsidy1
1 = 180.00,

152.50 + subsidy1
2 = 180.00,

180.00 + subsidy1
3 = 180.00,

which yields:

subsidy1
1 = 32.50, subsidy1

2 = 27.50, subsidy1
3 = 0.00.

Observe that an application of the above subsidies modifies the utility functions as follows:

Ũ1
1 (p) = −p1

1 + 190 + 32.50, Ũ1
2 (p) = −p1

2 + 200 + 27.50, Ũ1
3 (p) = −p1

3 + 210 + 0.
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Clearly, the S-O solution

p1′

1 = 42.50, p1′

2 = 47.50, p1′

3 = 30.00,

is at the same time U-O, since the utilities are equalized (and maximal) under this S-O

pattern and, hence, migrants will select locations, although acting selfishly and individually,

accordingly, because of the subsidies.

The above subsidies may be viewed as investments by government(s). As for the budgets,

if an individual government experiences a budgetary shortfall, additional financing may be

provided by a supra authority such as the World Bank, the United Nations, or if in Europe,

the European Union. Altemeyer-Bartscher et al. (2016) have argued for closer cooperation

among countries regarding migration crises and also advocated for an economic approach

as to distribution of the migrants. Here, we provide a quantitative approach with explicit

formulae for implementation.

As noted earlier, climate change as well as disasters may act as drivers of human migra-

tions. Robinson, Dilkina, and Moreno-Cruz (2020), for example, provide a machine learning

approach to migration in the United States under sea level rise but emphasize that their

approach is not yet ready for policy making. They, as Bier, Zhou, and Du (2019), consider

sea level rise due to climate change, and migration within a country - the United States.

The latter authors observe that offering a subsidy (e.g., a partial buyout) can be effective if

the government has a significantly lower discount rate than residents. However, they assume

homogeneous residents, whereas we consider multiclass ones and we also allow for multiple

countries and not just regions within a country. For edited volumes on dynamics of disas-

ters, see Kotsireas, Nagurney, and Pardalos (2016, 2018). Once a disaster or disasters strike,

one would modify the fixed populations of the various classes in the economy, as need be,

along with the utility functions and rerun the model(s), along with the subsidies. In the

case of disasters, we can expect that populations will decrease and so would utility functions

associated with locations that have been negatively impacted.

4. The Algorithm and Numerical Examples

We apply the Euler method of Dupuis and Nagurney (1993) for the solution of the ca-

pacitated network models of human migration. As discussed therein (see also Nagurney and

Zhang (1996)), the Euler method is induced by a general iterative scheme, and was inspired

by the theory of projected dynamical systems, whose set of stationary points coincides with

the set of solutions to an appropriate variational inequality problem. The Euler method, in

fact, can be viewed as a time-discretization of the underlying continuous time trajectories of
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the projected dynamical system until a solution is achieved. It has been applied to numerous

network problems, including supply chain ones (see Nagurney (2006)).

4.1 The Algorithm

For purposes of standardizing the mechanism, we utilize similar notation to that in Nagur-

ney, Daniele, and Cappello (2020) and put variational inequality (7) into standard form

(Nagurney (1999)): determine X∗∗ ∈ K ⊂ RN such that:

〈F (X∗∗), X −X∗∗〉 ≥ 0, ∀X ∈ K, (18)

where 〈·, ·〉 denotes the inner product in N -dimensional Euclidean space. F (X) is a given

continuous function such that F (X) : X → K ⊂ RN . K is a closed and convex set.

We define the vector X ≡ (p, β) and the vector F (X) with elements: F 1
k,i(p, β) ≡∑J

l=1

∑n
j=1−

∂Û l
j(p)

∂pk
i

and F 2
k,i(p, β)≡capk

i − pk
i ; k = 1, . . . , J ; i = 1, . . . , n. We define the

feasible set as K ≡ K2 and N = 2Jn. Thus, VI (7) can be put into the standard form (18)

with X∗∗ = (p′, β′). Similarly, VI (15) can also be put into standard form with X and K as

above and with the components of its F (X) given by −Uk
i (p, β), capk

i −βk
i ; ∀k, ∀i, and with

X∗∗ = (p∗, β∗).

At iteration τ , the statement of the Euler method is:

Xτ+1 = PK(Xτ − aτF (Xτ )), (19)

where PK is the projection on the feasible set K and F is the function that enters the

variational inequality problem (18).

Dupuis and Nagurney (1993) proved that, for convergence of the general iterative scheme,

which induces the Euler method, the sequence {aτ} must satisfy:
∑∞

τ=0 aτ = ∞, aτ > 0,

aτ → 0, as τ → ∞. Specific conditions for convergence of the Euler method within many

network-based models can be found in Nagurney and Zhang (1996) and in Nagurney (2006)

and the references therein.

The Euler method nicely exploits the special network structure of the models as depicted

in Figure 1 and allows for closed form expressions at each iteration for the computation of

the Lagrange multipliers associated with the capacity constraints. We solve the network

subproblems of special structure, which are separable quadratic programming problems,

using the exact equilibration algorithm (cf. Dafermos and Sparrow (1969) and Nagurney

(1999)). This algorithm yields the exact solution at each iteration for the populations.
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4.2 Numerical Examples

The algorithm was implemented in FORTRAN and a Unix system at the University of

Massachusetts Amherst used for the computations. The series {aτ} in the algorithm was

set to: 1, 1
2
, 1

2
, 1

3
, 1

3
, 1

3
, . . . with the convergence tolerance ε equal to 10−5. In other words, the

algorithm was considered to have converged when the absolute value of each of the computed

population values for each class at two successive iterations was less than or equal to .00001.

For continuity, and cross comparison purposes, the data for the uncapacitated examples

was taken from Nagurney, Daniele, and Cappello (2020) and to these we added capacities.

For completeness, we report both the uncapacitated (solved in the paper above) and the

capacitated versions, reported for the first time here.

In our numerical examples, the network economy consists of two classes of migrants and

five locations.

Utility Function and Fixed Population Data

The fixed populations in the network economy of the two classes are, respectively:

P 1 = 1, 000.00 P 2 = 2, 000.00.

The utility functions and the total utility functions for class 1 are:

U1
1 (p) = −2p1

1 − .2p2
1 + 2, 000, Û1

1 (p) = −2(p1
1)

2 − .2p2
1p

1
1 + 2, 000p1

1,

U1
2 (p) = −3p1

2 − .1p2
2 + 1, 500, Û1

2 (p) = −3(p1
2)

2 − .1p2
2p

1
2 + 1, 500p1

2,

U1
3 (p) = −p1

3 − .3p2
3 + 3, 000, Û1

3 (p) = −(p1
3)

2 − .3p2
3p

1
3 + 3, 000p1

3,

U1
4 (p) = −p1

4 − .2p2
4 + 2, 500, Û1

4 (p) = −(p1
4)

2 − .2p2
4p

1
4 + 2, 500p1

4,

U1
5 (p) = −2p1

5 − .3p2
5 + 4, 000, Û1

5 (p) = −2(p1
5)

2 − .3p2
5p

1
5 + 4, 000p1

5.

The utility functions and the total utility functions for class 2 are:

U2
1 (p) = −p2

1 − .4p1
1 + 4, 000, Û2

1 (p) = −(p2
1)

2 − .4p1
1p

2
1 + 4, 000p2

1,

U2
2 (p) = −2p2

2 − .6p1
2 + 3, 000, Û2

2 (p) = −2(p2
2)

2 − .6p1
2p

2
2 + 3, 000p2

2,

U2
3 (p) = −p2

3 − .2p1
3 + 5, 000, Û2

3 (p) = −(p2
3)

2 − .2p1
3p

2
3 + 5, 000p2

3,

U2
4 (p) = −2p2

4 − .3p1
4 + 4, 000, Û2

4 (p) = −2(p2
4)

2 − .3p1
4p

2
4 + 4, 000p2

4,

U2
5 (p) = −p2

5 − .4p1
5 + 3, 000, Û2

5 (p) = −(p2
5)

2 − .4p1
5p

2
5 + 3, 000p2

5.
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We first recall the uncapacitated U-O and S-O solutions obtained in Nagurney, Daniele,

and Cappello (2020) and then report the capacitated solutions based on the new models

constructed here. We also report the calculated subsidies in the more general capacitated

case introduced in this paper. We provide two sets of examples.

4.2.1 Numerical Example Set 1

The uncapacitated U-O solution for the numerical example with the above data is:

Class 1 Uncapacitated U-O Population Distribution

p1∗
1 = 0.00, p1∗

2 = 0.00, p1∗
3 = 167.31, p1∗

4 = 41.68, p1∗
5 = 791.01.

Class 2 Uncapacitated U-O Population Distribution

p2∗
1 = 415.89, p2∗

2 = 0.00, p2∗
3 = 1, 382.41, p2∗

4 = 201.69, p2∗
5 = 0.00.

The uncapacitated S-O solution is:

Class 1 Uncapacitated S-O Population Distribution

p1′

1 = 0.00, p1′

2 = 0.00, p1′

3 = 120.43, p1′

4 = 314.39, p1′

5 = 565.19.

Class 2 Uncapacitated S-O Population Distribution

p2′

1 = 606.48, p2′

2 = 53.23, p2′

3 = 1, 076.35, p2′

4 = 263.94, p2′

5 = 0.00.

We now impose the following capacities on the locations for the classes in the above

problem.

cap1
1 = 500.00, cap1

2 = 500.00, cap1
3 = 500.00, cap1

4 = 500.00, cap1
5 = 200.00,

cap1
1 = 500.00, cap1

2 = 500.00, cap1
3 = 400.00, cap1

4 = 500.00, cap1
5 = 500.00.

The capacitated U-O solution is:

Class 1 Capacitated U-O Population Distribution

p1∗
1 = 0.00, p1∗

2 = 0.00, p1∗
3 = 500.00, p1∗

4 = 300.00, p1∗
5 = 200.00.

Class 2 Capacitated U-O Population Distribution

p2∗
1 = 500.00, p2∗

2 = 226.67, p2∗
3 = 400.00, p2∗

4 = 500.00, p2∗
5 = 373.33.
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The optimal Lagrange multipliers are:

Class 1 Capacitated U-O Lagrange Multipliers

β1∗
1 = 0.00, β1∗

2 = 0.00, β1∗
3 = 280.00, β1∗

4 = 0.00, β1∗
5 = 1, 388.01.

Class 2 Capacitated U-O Lagrange Multipliers

β2∗
1 = 953.33, β2∗

2 = 0.00, β2∗
3 = 1, 953.33, β2∗

4 = 363.33, β2∗
5 = 0.00.

One can see, from this example, that at all the locations with populations of a class at

the capacity, there is an associated positive Lagrange multiplier. Also, it is clear that the

capacitated U-O solution is quite distinct from the uncapacitated one. For example, all the

locations have a positive population of class 2 under the capacitated solution. Moreover, in

the uncapacitated case, location 5 is most attractive for class 1, whereas location 3 is most

attractive for class 2. In contrast, in the capacitated case, location 3 is now most popular

for class 1, whereas locations 1 and 4 are most popular (and at the capacities) for class 2.

The capacitated S-O solution is:

Class 1 Capacitated S-O Population Distribution

p1′

1 = 88.82, p1′

2 = 0.00, p1′

3 = 242.55, p1′

4 = 468.63, p1′

5 = 200.00.

Class 2 Capacitated S-O Population Distribution

p2′

1 = 500.00, p2′

2 = 244.65, p2′

3 = 400.00, p2′

4 = 436.07, p2′

5 = 419.29.

The optimal Lagrange multipliers are:

Class 1 Capacitated S-O Lagrange Multipliers

β1′

1 = 0.00, β1′

2 = 0.00, β1′

3 = 0.00, β1′

4 = 0.00, β1′

5 = 1, 561.77.

Class 2 Capacitated S-O Lagrange Multipliers

β2′

1 = 925.30, β2′

2 = 0.00, β2′

3 = 2, 057.33, β2′

4 = 0.00, β2′

5 = 0.00.

Under the uncapacitated S-O, location 5 is most attractive for class 1 and location 3 is

for class 2. However, in the capacitated case, location 4 is best for class 1 and location 1 for

class 2, with locations 3 through 5 also quite competitive.
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We now report the calculated subsidies, which are obtained using the described procedure

in Section 3. We note that µ1 = 3, 474.21 and µ2 = 4, 551.50 - these values represent the

highest utility of each class at a location evaluated at the S-O solution, which are obtained

for class 1 at location 5 and for class 2 at location 3. The calculated subsidies are:

Class 1 Subsidies

subsidy1
1 = 1, 751.85, subsidy1

2 = 1, 998.67, subsidy1
3 = 836.76, subsidy1

4 = 1, 530.05,

subsidy1
5 = 0.00.

Class 2 Subsidies

subsidy2
1 = 1, 087.03, subsidy2

2 = 2, 040.79, subsidy2
3 = 0.00, subsidy2

4 = 1, 564.22,

subsidy2
5 = 2, 050.79.

4.2.2 Numerical Example Set 2

The data were as in the first numerical example set except now we considered a sizable

decrease in the populations of each of the two classes due to a disaster. As argued in

Nagurney, Daniele, and Cappello (2020), this could occur in the form of a pandemic, that

is, a healthcare disaster hitting the network economy. We note that the novel coronavirus

outbreak that originated in Wuhan, China (Shih, Denyer, and Taylor (2020)) was officially

declared a pandemic by the World Health Organization on March 11, 2020 (cf. Branswell

and Joseph (2020)). This coronavirus causes the disease known as Covid-19. The data in

this example was as in Numerical Example 1, except that now we assumed that 50% of the

population of each class has perished, that is,

P 1 = 500.00 P 2 = 1, 000.00.

The uncapacitated U-O solution for the numerical example with the above data is:

Class 1 Uncapacitated U-O Population Distribution

p1∗
1 = 0.00, p1∗

2 = 0.00, p1∗
3 = 0.00, p1∗

4 = 0.00, p1∗
5 = 500.00.

Class 2 Uncapacitated U-O Population Distribution

p2∗
1 = 0.00, p2∗

2 = 0.00, p2∗
3 = 1, 000.00, p2∗

4 = 0.00, p2∗
5 = 0.00.
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The uncapacitated computed S-O solution is:

Class 1 S-O Uncapacitated Population Distribution

p1′

1 = 0.00, p1′

2 = 0.00, p1′

3 = 47.98, p1′

4 = 43.17, p1′

5 = 408.85.

Class 2 S-O Uncapacitated Population Distribution

p2′

1 = 206.96, p2′

2 = 0.00, p2′

3 = 694.96, p2′

4 = 98.08, p2′

5 = 0.00.

As noted in Nagurney, Daniele, and Cappello (2020), in the S-O solution one sees a

greater “spreading out” of the classes among the locations than in the U-O solution.

We kept the same capacities as in the first set. The Euler Method now yielded the

following solution:

The capacitated U-O solution for the numerical example with the above data is:

Class 1 Capacitated U-O Population Distribution

p1∗
1 = 0.00, p1∗

2 = 0.00, p1∗
3 = 300.00, p1∗

4 = 0.00, p1∗
5 = 200.00.

Class 2 Capacitated U-O Population Distribution

p2∗
1 = 0.00, p2∗

2 = 400.00, p2∗
3 = 0.00, p2∗

4 = 400.00, p2∗
5 = 200.00.

The optimal Lagrange multipliers are:

Class 1 Capacitated U-O Lagrange Multipliers

β1∗
1 = 0.00, β1∗

2 = 0.00, β1∗
3 = 0.00, β1∗

4 = 0.00, β1∗
5 = 1, 020.00.

Class 2 Capacitated U-O Lagrange Multipliers

β2∗
1 = 0.00, β2∗

2 = 0.00, β2∗
3 = 940.00, β2∗

4 = 0.00, β2∗
5 = 0.00.

The capacitated computed S-O solution is:

Class 1 S-O Capacitated Population Distribution

p1′

1 = 0.00, p1′

2 = 0.00, p1′

3 = 124.08, p1′

4 = 175.91, p1′

5 = 200.00.
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Class 2 S-O Capacitated Population Distribution

p2′

1 = 414.66, p2′

2 = 0.00, p2′

3 = 400.00, p2′

4 = 185.34, p2′

5 = 0.00.

The optimal Lagrange multipliers are:

Class 1 Capacitated S-O Lagrange Multipliers

β1′

1 = 0.00, β1′

2 = 0.00, β1′

3 = 0.00, β1′

4 = 0.00, β1′

5 = 1, 144.49.

Class 2 Capacitated S-O Lagrange Multipliers

β2′

1 = 0.00, β2′

2 = 0.00, β2′

3 = 967.27, β2′

4 = 0.00, β2′

5 = 0.00.

We now report the subsidies that, when imposed, guarantee that the capacitated S-O

solution obtained above for the second numerical example is also U-O. Here we had that

µ1 = 3, 599.99 and µ2 = 4, 575.18.

Class 1 Subsidies

subsidy1
1 = 1, 682.92, subsidy1

2 = 2, 099.99, subsidy1
3 = 844.07, subsidy1

4 = 1, 312.97,

subsidy1
5 = 0.00.

Class 2 Subsidies

subsidy2
1 = 989.84, subsidy2

2 = 1, 575.18, subsidy2
3 = 0.00, subsidy2

4 = 998.63,

subsidy2
5 = 1, 655.18.

5. Summary and Conclusions

Problems of human migration are issues of global concern and are presenting immense

challenges to governments around the world. Multiple countries are dealing with different

classes of migratory flows and the ensuing difficulties when faced with capacities at loca-

tions under their jurisdictions. Rigorous, appropriate policies may help to better reallocate

migrants across suitable locations.

Historically, many of the mathematical models of human migration have utilized a network

formalism and have assumed user-optimizing behavior, that is, that migrants select locations,

which are best for themselves, as revealed through utility functions that depend on the

21



population distributions among the locations of the different classes of migrants. However,

such behavior may lead to costs to society and even reduced societal welfare.

Hence, in this paper, we build upon the recent work of Nagurney, Daniele, and Cap-

pello (2020), who proposed both system-optimized and user-optimized multiclass migration

network models, and demonstrated how incentives, in the form of subsidies, when applied,

guarantee that the system-optimized solution, which maximizes the total utility in the net-

work economy, becomes, at the same time, user-optimizing. Migrants, thus, under such

subsidies, and acting selfishly and independently, would select locations to migrate to and

locate at that are optimal from the system perspective.

In this paper, we propose a novel extension of that work, in the form of capacities at

different locations associated with the classes of migrants. This brings a greater realism in

capturing challenges faced by various governments who are dealing with refugees, asylum

seekers, etc. For each U-O and S-O model we provide alternative variational inequality formu-

lations of the governing equilibrium/optimality conditions. We then utilize the variational

inequality formulations with Lagrange multipliers associated with the multiclass capacity

constraints to gain deeper insights into appropriate policies. We show that the Lagrange

multipliers can be utilized to modify the utility functions so that the capacities are made

implicit. Moreover, we show how, through the use of appropriately constructed formulae

for subsidies, once applied, the system-optimized solution becomes, at the same time, user-

optimized. This provides a more positive approach to the redistribution of human migrants

and enhances societal welfare.

In addition, in this paper, we provide an effective computational procedure, which exploits

the underlying special network structure of our models. The algorithm is implemented, and

the solutions to a series of numerical examples computed. We report the user-optimized

and the system-optimized solutions, both uncapacitated and capacitated, along with the

subsidies for the latter. Our theoretical framework can be applied in practice under different

scenarios, along with sensitivity analysis, as, for example, in the case of disasters, when

there are population changes and/or modifications to utility functions because of impacted

infrastructure.
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