
Medical Nuclear Supply Chain Design:

A Tractable Network Model and Computational Approach

Anna Nagurney∗

Department of Finance and Operations Management

Isenberg School of Management

University of Massachusetts, Amherst, Massachusetts 01003; email: nagurney@isenberg.umass.edu

and

School of Business, Economics and Law

University of Gothenburg, Gothenburg, Sweden

Ladimer S. Nagurney

Department of Electrical and Computer Engineering

University of Hartford, West Hartford, Connecticut 06117; email: nagurney@hartford.edu

revised May 2012 and June 2012

International Journal of Production Economics 140(2) (2012) pp 865-874.

Abstract: In this paper, we develop a tractable network model and computational approach

for the design of medical nuclear supply chains. Our focus is on the molybdenum supply

chain, which is the most commonly used radioisotope for medical imaging utilized in cardiac

and cancer diagnostics. This topic is of special relevance to healthcare given the medical

nuclear product’s widespread use as well as the aging of the nuclear reactors where it is

produced. The generalized network model, for which we derive formulae for the arc and

path multipliers that capture the underlying physics of radioisotope decay, includes total

operational cost minimization, and the minimization of cost associated with nuclear waste

discarding, coupled with capacity investment costs. Its solution yields the optimal link

capacities as well as the optimal product flows so that demand at the medical facilities

is satisfied. We illustrate the framework with a case study. The framework provides the

foundation for further empirical research and the basis for the modeling and analysis of

supply chain networks for other very time-sensitive medical products.

Keywords: Supply chains, Nuclear medicine, Healthcare, Supply chain network design,

Optimization, Variational inequalities, Generalized networks, Molybdenum, Time-sensitive

products, Radioactive decay
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1. Introduction

Medical nuclear supply chains are essential supply chains in healthcare and provide the

conduits for products used in nuclear medical imaging, which is routinely utilized by physi-

cians for diagnostic analysis. For example, each day, 41,000 nuclear medical procedures are

performed in the United States using Technetium-99m, a radioisotope obtained from the

decay of Molybdenum-99. Such supply chains have unique features and characteristics due

to the products’ time-sensitivity along with their hazardous nature. In this paper, we take

on the challenge of developing a model for supply chain network design of medical nuclear

products, which captures some of the salient issues surrounding such supply chains today,

from their complexity, to the economic aspects, the underlying physics of radioactive decay,

and the inclusion of waste management. We focus on Molybdenum-99 due to its importance

in medical diagnostics, its time-sensitive nature, and the fact that there are only a handful

of production and processing facilities for this radioisotope globally.

In order to appropriately ground our framework, we first describe the underlying features

of medical nuclear supply chains, and provide the necessary background for their under-

standing. For example, to create an image for medical diagnostic purposes, a radioactive

isotope is bound to a pharmaceutical that is injected into the patient and travels to the site

or organ of interest. The gamma rays emitted by the radioactive decay of the isotope are

then used to create an image of that site or organ (Berger, Goldsmith, and Lewis (2004)).

Technetium, 99mTc, which is a decay product of Molybdenum-99, 99Mo, is the most com-

monly used medical radioisotope, accounting for over 80% of the radioisotope injections and

representing over 30 million procedures worldwide each year. Over 100,000 hospitals in the

world use radioisotopes. (World Nuclear Association (2011)). In 2008, over 18.5 million

doses of 99mTc were injected in the US with 2/3 of them used for cardiac exams, with the

other uses including bone scans, functional brain imaging, sentinel-node identification, im-

munoscintigraphy, blood pool labeling, pyrophosphates for identifying heart damage, and

sulfure colloids for spleen scans (Lantheur Medical Imaging, Inc (2009)). Through this most

widely used medical radioisotope, health professionals can enable the earlier and more accu-

rate detection of cardiac problems as well as cancer, the two most common causes of death

(see Kochanek et al. (2011)). It is estimated that the global market for medical isotopes is

3.7 billion US$ per year (Kahn (2008)).
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The production cycle of 99mTc, typically, begins with the fission of Highly Enriched

Uranium, HEU, to produce 99Mo, with a half-life of 66.7 hours. The 99Mo, in turn, decays

to 99mTc, whose half-life is approximately 6 hours. The relatively short half-life of 99mTc,

as compared to metabolism and human activity, makes it a suitable isotope for imaging.

In addition, the gamma rays that are emitted due to the 99mTc decay have roughly the

same wavelength as common X-rays allowing detection by detectors similar to those used for

medical x-rays.

The production of 99Mo occurs at only nine reactors in the world, with one in Canada, five

in Europe, one in Australia, one in South Africa, and one in Argentina (see OECD (2010a)).

The reactors irradiate targets, aluminum blocks or foil containing Uranium-235, 235U , to

produce multiple fissions products, including 99Mo. The irradiated targets containing the
99Mo are then shipped to processing facilities where the 99Mo is extracted and purified.

The extracted 99Mo is further transported to generator manufacturing facilities. There,

generators, which are containers of 99Mo in a chemical form that allows easy extraction of
99mTc are produced. The generators, which are relatively radioactively safe, are then shipped

to the hospitals and medical imaging facilities where the 99mTc is eluted by a saline solution

and the pharmaceutical injections prepared and administered. Since the decay of a single

atom of 99Mo produces a single atom of 99mTc, the activity of the generator is determined

by the quantity of the 99Mo present.

Since 99Mo decays with a 66.7 hour half-life, approximately 99.9% of the atoms decay

in 27.5 days, making its production, transportation, and processing all extremely time-

sensitive. In fact, the production of 99Mo is quantified in Six-day curies end of processing

denoting the activity of the sample 6 days after it was irradiated to highlight this (see OECD

(2010a)). In addition to the time-sensitivity, the irradiated targets are highly radioactive,

significantly constraining transportation options between the reactor and the processing

facilities to only trucks that can transport the heavily shielded transportation containers.

While the extracted 99Mo continues to be constrained by its decay, its shielding requirements

are reduced, allowing for transportation by modes other than trucks, including by air (cf. de

Lange (2010)).

Although the maximum possible production from current reactors in 2010 was well over
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twice the current demand, it has been predicted that, with a 5% annual growth rate for

imaging, the demand will exceed the supply by the end of the decade. However, this assumes

that all reactors are capable of irradiating the necessary targets at all times. Due to routine

maintenance, unexpected maintenance, and shutdowns due to safety concerns, the actual

supply has been much closer to the demand. In 2009, in fact, the demand exceeded the

supply and created a worldwide shortage of 99Mo. Furthermore, several of the reactors

are reaching the end of their lifetimes, since they are 40 to over 50 years old (cf. OECD

(2010a), Seeverens (2010)). Between 2000 and 2010, there were six unexpected shutdowns

of reactors used for medical imaging products due to safety concerns (Ponsard (2010)) with

the Canadian one shut down in May 2009 due to a leak in the reactor with its return to

service more than a year later in August 2010.

It is also important to note that the number of processors that supply the global market

is only four, and that they are located in Canada, Belgium, The Netherlands, and South

Africa. Australia and Argentina produce bulk 99Mo for their domestic markets but are

expected to export small amounts in the future. Amazingly, there are parts of the world in

which there are no processing facilities for 99Mo, including the Unites States, parts of South

America, and Japan. Such limitations in processing capabilities limit the ability to produce

the medical radioisotopes from regional reactors since long-distance transportation of the

product raises safety and security risks, and also results in greater decay of the product.

The number of generator manufacturers, in turn, with substantial processing capabilities, is

under a dozen (OECD (2010a)).

Furthermore, in 2016, the Canadian reactor is scheduled for complete shutdown, raising

critical questions for supply chain network design, since its processing facility will also need

to be shut down (OECD (2010a)).

This paper is organized as follows. In Section 2, we develop the multitiered supply chain

network design model for Molybdenum, 99Mo. The framework may be used, with minor

modification, for other radioisotopes. We describe the various tiers of the supply chain

network, beginning with the nuclear reactors, moving on to the processors, then on to the

generator manufacturing facilities, and, finally, to the hospitals and medical facilities, where

the medical radioisotopes are injected into the patients. The supply chain network is quite
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complex since it consists of multiple activities of production, transportation, and processing,

coupled with the physics of the radioisotope and its decay, along with regulatory restrictions

as to transportation, due to the hazardous nature of the medical nuclear product.

We model the supply chain network design problem as an optimization problem on a

generalized network. We identify the specific losses on the links/arcs through the use of the

time decay of the radioisotope. We consider total cost minimization associated with the

operational costs, along with the waste management costs, since we are dealing with nuclear

products. Medical nuclear waste management issues have not received much attention in

recent reports (cf. OECD (2010a)). The model captures the investment in capacities through

the construction of new links. Its solution provides the optimal investments along with

the optimal levels of production, transportation, and processing, given the demands at the

various hospitals and medical imaging facilities. We use a variational inequality formulation

since such a formulation results in an elegant computational procedure. Moreover, the

theory of variational inequalities has been applied to a plethora of supply chain modeling,

analysis, and design problems (see Zhang (2006), Nagurney (2006, 2010), Qiang, Nagurney,

and Dong (2009), Liu and Nagurney (2011), and Cruz and Liu (2011)). Furthermore, it

provides a rigorous mathematical and computational framework to enable the exploration

of alternative economic behaviors among the medical nuclear supply chain stakeholders,

including competition (see Nagurney (2006)).

Such a modeling approach is in concert with recent studies that have focused on the

security and reliability of medical nuclear supply chains that also emphasize that governments

ultimately have the responsibility for establishing an environment conducive to investment

in such supply chains (cf. OECD (2010a)). However, to the best of our knowledge, our

model is the first mathematical one to include the operational, engineering, economic, and

physics aspects of medical nuclear products. Indeed, the model is sufficiently general to

capture the economic aspects of medical nuclear supply chain network design, which is an

important issue since it has been recognized that usually governments run the reactors, which

are research reactors, and the prices associated with the radioisotope may fail to capture the

associated costs and, as a consequence, the pricing may be below marginal costs resulting in

market failure; see OECD (2010a) and Seeverens (2010). For references to other generalized

nonlinear network models and applications, see Nagurney and Aronson (1989), Nagurney,
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Masoumi, and Yu (2012), and the references therein. Nagurney and Masoumi (2012) recently

developed a supply chain network design model for a sustainable blood banking system but

the demands therein were uncertain. In our model and applications the demands are fixed

since the associated medical procedures need to be scheduled.

In Section 3, we propose a computational approach for the new model, along with the

accompanying theory, which resolves the supply chain network design problem into subprob-

lems that can be solved explicitly and exactly at each iteration. In Section 4, we present a

case study. In Section 5, we summarize our findings, present our conclusions, and provide

suggestions for future research.

2. The Medical Nuclear Supply Chain Network Design Model

In this Section, we develop the supply chain network design model for a medical nuclear

product, that of 99Mo, referred to, henceforth, as Mo. The model is general and can be

applied, with appropriate data, to evaluate the design of such supply chains in the cognizant

organization’s nation / region. In Section 4, we illustrate how this framework can be applied

to the Canada - United States and other countries supply chain for this product.

For definiteness, please refer to Figure 1. Figure 1 depicts a possible network topology of

the medical nuclear supply chain. In this network, the top level (origin) node 0 represents

the organization and the bottom level nodes represent the destination nodes. Every other

node in the network denotes a component/facility in the system. A path connecting the

origin node to a destination node, corresponding to a demand point, consists of a sequence

of directed links which correspond to supply chain network activities that ensure that the

nuclear product is produced, processed, and, ultimately, distributed to the hospitals and

medical imaging facilities, where they are administered to the patients. We assume that, in

the initial supply chain network topology, as in Figure 1, which serves as a template upon

which the optimal supply chain network design is constructed, there exists at least one path

joining node 0 with each destination node: H2
1 , . . . , H

2
nH

. This assumption guarantees that

the demand at each demand point will be met.

The solution of the model yields the optimal investments associated with the various links

as well as the optimal flows, at minimum total cost, as we shall demonstrate, and, hence,
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the optimal medical nuclear product supply chain network design.

In the network in Figure 1, we assume that the organization is considering nR possible

reactor sites, which produce the radioisotope. These are usually government research reactors

and constitute the second tier of nodes of the network: R1, R2, . . . , RnR
. The first set of links,

connecting the origin node to the second tier, corresponds to the process of radioisotope

production.

The next set of nodes, located in the third tier, consists of the radioisotope processing cen-

ters. There exist, potentially, nC of these facilities, denoted, respectively, by C1
1 , C

1
2 , . . . , C

1
nC

,

to which the Mo is shipped after being produced at the reactor sites. Thus, the next set of

links connecting tiers two and three of the network topology represents the transportation

of the radioisotope. Transportation at this stage of the radioisotope, which is a hazardous

material, is done exclusively by a single mode of transportation, that is, by truck, using

specialized containers. Note that the single mode of transportation is represented by single

links joining the pairs of nodes. Hence, the processing facilities must be located fairly near

to the reactors since the transportation is done by land. At these processing centers, the

Mo is extracted and purified. This processing is represented by the links emanating from

the nodes: C1
1 , C

1
2 , . . . , C

1
nC

and ending in the nodes: C2
1 , C

2
2 , . . . , C

2
nC

, with the latter set of

nodes being the fourth tier nodes.

The fifth tier of the network is associated with the generator manufacturing facilities, and

these nodes are joined with the fourth tier nodes by links which represent the multiple modes

of transportation that are being considered for transporting the purified Mo to the generator

manufacturing facilities. The number of these potential generator manufacturing facilities

is given by nG. These facilities are denoted by G1
1, . . . , G

1
nG

, respectively, and need not be

located near the processing facilities. The generator manufacturing facilities are further

involved in the processing of the radioisotopes, through the production of the generators

that contain them, and the links that emanate from the generator manufacturing facility

nodes terminate in the sixth tier set of nodes, respectively, denoted by G2
1, . . . , G

2
nG

in Figure

1, which represent the completion of this stage of processing.

From the latter generator nodes, there emanate a variety of possible transportation links

and these links, as the preceding transportation links, correspond to multiple modes of
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transportation, as appropriate, including not only trucking but also air transportation, if

appropriate. These links terminate in the seventh tier of nodes, H1
1 , . . . , H

1
nH

, which represent

the hospitals and the medical facilities that dispense the radioisotope to the patients. There

is still one more stage of processing, however, represented by the final set of links in Figure

1, terminating in nodes: H2
1 , . . . , H

2
nH

, which represent the final patient demand points.

The possible supply chain network topology, as depicted in Figure 1, is represented by

G = [N, L], where N and L denote the sets of nodes and links, respectively. The ultimate

solution of the complete model will yield the optimal capacities on the various links of the

network as well as the optimal flows.

The formalism that we utilize is that of generalized network optimization, where the

organization seeks to minimize the total costs associated with the production, processing, and

transportation activities, along with the total investment corresponding to the construction

of the links from scratch, as well as the total cost of discarding the associated nuclear waste

product associated with the links.

We assume that the demands must be satisfied since we are dealing with a healthcare

product. This assumption is appropriate since the radioisotpe-utilizing procedures tend to

be scheduled in advance.

With each link of the network, we associate a unit operational cost function that reflects

the cost of operating the particular supply chain activity. The links are denoted by a, b, etc.

The unit operational cost on link a is denoted by ca and is a function of flow on that link,

fa. The total operational cost on link a is denoted by ĉa, and is constructed as:

ĉa(fa) = fa × ca(fa), ∀a ∈ L. (1)

The link total cost functions are assumed to be convex and continuously differentiable.

Let wk denote the pair of origin/destination (O/D) nodes (0, H2
k) and let Pwk

denote

the set of paths, which represent the alternative associated possible supply chain network

processes, joining (0, H2
k). P denotes the set of all paths joining node 0 to the destination

nodes, and nP denotes the number of paths.
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Let dk denote the demand for the radioisotope at the demand point H2
k ; k = 1, . . . , nH .

We associate with every link a in the network, a multiplier αa, which corresponds to the

percentage of decay and additional loss over that link. This multiplier lies in the range (0,1],

for the network activities, where αa = 1 means that 100% of the initial flow on link a reaches

the successor node of that link, reflecting that there is no decay/waste/loss on link a. The

multiplier αa can be modeled as the product of two terms, a radioactive decay multiplier αda

and a processing loss multiplier αla, which we discuss how to obtain below.

Capturing the Underlying Physics Through Link and Path Multipliers

The activity of a radioisotope (in disintegrations per unit time) is proportional to the

quantity of that isotope, i.e.,
dN

dt
∝ N, (2)

where N = N(t) = the quantity of a radioisotope. The quantity of a radioisotope in a time

interval t is then given by

N(t) = N0e
−λt, (3)

where N0 is the quantity present at the beginning of the interval and λ is the decay constant

of the radioisotope (see Berger, Goldsmith, and Lewis (2004)).

Hence, we can represent the radioactive decay multiplier αda for link a as

αda = e−λta , (4)

where ta is the time spent on the link a. The decay constant, λ, in turn, can be conveniently

represented by an experimentally measured value, called the half-life t1/2, where

t1/2 =
ln 2

λ
. (5)

The values of the half-lives of radioisotopes are tabulated in the American Institute of Physics

Handbook (1972). Thus, we can write αda as

αda = e−λta = e
− ln 2 ta

t1/2 = 2
− ta

t1/2 . (6)
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The value of t1/2 for Mo, as noted in the Introduction, is 66.7 hours. If one is interested

in another radioisotope, then the arc multiplier can be computed accordingly using that

radioisotope’s half-life.

The processing loss multiplier αla for link a, in turn, is a factor in the range (0,1] that

quantifies for the losses that occur during processing. Different processing links may have

different values for this parameter. For transportation links, however, there is no loss be-

yond that due to radioactive decay; therefore, αla = 1 for such links. For the top-most

manufacturing links αa = 1.

As mentioned earlier, fa denotes the (initial) flow on link a. Let f ′a denote the final flow

on that link; i.e., the flow that reaches the successor node of the link. Therefore,

f ′a = αafa, ∀a ∈ L. (7)

The organization is also responsible for disposing the waste which is hazardous.

Since αa is constant, and known apriori, a total discarding cost function, ẑa, can be

defined accordingly, which is a function of the flow, fa, and is assumed to be convex and

continuously differentiable and given by:

ẑa = ẑa(fa), ∀a ∈ L. (8)

Note that, in processing/producing an amount of radioisotope fa, one knows from the physics

the amount of hazardous waste and, hence, a discarding function of the form (8) is appro-

priate.

Let xp represent the (initial) flow of Mo on path p joining the origin node with a desti-

nation node. The path flows must be nonnegative, that is,

xp ≥ 0, ∀p ∈ P , (9)

since the nuclear product will be produced, processed, transported, etc., in nonnegative

quantities.

Let µp denote the multiplier corresponding to the loss on path p, which is defined as the
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product of all link multipliers on links comprising that path, that is,

µp ≡
∏
a∈p

αa, ∀p ∈ P . (10)

The demand at demand point Rk, dk, is the sum of all the final flows on paths joining

(0, H2
k):

dk ≡
∑

p∈Pwk

µpxp, k = 1, . . . , nH . (11)

Indeed, although the amount of radioisotope that originates on a path p is xp, the amount

(due to radioactive decay, etc.) that actually arrives at the destination (terminal node) of

this path is xpµp.

The multiplier αap is the product of the multipliers of the links on path p that precede

link a in that path. This multiplier can be expressed as:

αap ≡


δap

∏
a′<a

αa′ , if {a′ < a} 6= Ø,

δap, if {a′ < a} = Ø,

(12)

where {a′ < a} denotes the set of the links preceding link a in path p, and δap is defined as

equal to one if link a is contained in path p; otherwise, it is equal to zero, and Ø denotes

the null set. In other words, αap is equal to the product of all link multipliers preceding link

a in path p. If link a is not contained in path p, then αap is set to zero. The relationship

between the link flow, fa, and the path flows is as follows:

fa =
∑
p∈P

xp αap, ∀a ∈ L. (13)

The organization wishes to determine which facilities should operate and at what level,

with the demand being satisfied, and the total cost being minimized. Let ūa denote the

nonnegative existing capacity on link a,∀a ∈ L. The organization can enhance/reduce the

capacity of link a by ua,∀a ∈ L. The total investment cost of adding capacity ua on link a,

is denoted by π̂a, and is a function of the capacity:

π̂a = π̂a(ua), ∀a ∈ L. (14)
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These functions are also assumed to be convex and continuously differentiable. Such

an assumption is reasonable since the units for the variable ua, a ∈ L are in amounts of

the material being processed on that link, for consistency in our model, and as is common

accounting practice. Note that the amortization of the investment capacity costs on the links

may take place over different time scales. However, the form in (14) is over days, which is

the scale of time for this product’s production, delivery, and ultimate use. At low levels of

material, the investment costs are expected to be high, gradually decreasing until a region

where the investment costs will increase because of additional capacity required. In addition,

the capacity investments are functions of continuous amounts of material being processed.

See also OECD (2010b).

We group the link capacities into the vector u. The path flows and the link flows, in turn,

are grouped into the respective vectors: x and f .

The total cost minimization objective faced by the organization includes the total cost

of operating the various links, the total discarding cost of waste/loss over the links, and the

total cost of the capacities. This optimization problem can be expressed as:

Minimize
∑
a∈L

ĉa(fa) +
∑
a∈L

ẑa(fa) +
∑
a∈L

π̂a(ua) (15)

subject to: constraints (9), (11), and (13), and

fa ≤ ua, ∀a ∈ L, (16)

0 ≤ ua, ∀a ∈ L. (17)

Constraint (16) guarantees that the flow on a link cannot exceed the capacity on that

link. Constraint (17), in turn, guarantees that the flow on a link will not be negative (see

Nagurney (2010)). It is important to recognize that the enhancement in capacities is reflected

in the additional amount of radioactive material that can be processed.

The above optimization problem is in terms of link flows. It can also be expressed, in

view of (13), in terms of path flows:

Minimize
∑
p∈P

(Ĉp(x) + Ẑp(x)) +
∑
a∈L

π̂a(ua) (18)
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subject to: constraints (9), (11), (17), and (16), but with the fa in (16) being replaced by its

expression in (13), with the total operational cost function, Ĉp(x), and the total discarding

cost function, Ẑp(x), corresponding to path p, respectively, derived from Cp(x), and Zp(x)

as follows:

Ĉp(x) = xp × Cp(x), ∀p ∈ Pwk
; k = 1, . . . , nH ,

Ẑp(x) = xp × Zp(x), ∀p ∈ Pwk
; k = 1, . . . , nH . (19)

with the unit cost functions on path p, i.e., Cp(x), Zp(x), and Rp(x), in turn, defined as:

Cp(x) ≡
∑
a∈L

ca(fa)αap, ∀p ∈ Pwk
; k = 1, . . . , nH ,

Zp(x) ≡
∑
a∈L

za(fa)αap, ∀p ∈ Pwk
; k = 1, . . . , nH . (20)

We associate the Lagrange multiplier γa with constraint (16) for each link a, and we

denote the optimal Lagrange multiplier by γ∗a,∀a ∈ L. The Lagrange multipliers may be

interpreted as shadow prices. We group these Lagrange multipliers into the vector γ.

Let K denote the feasible set such that:

K ≡ {(x, u, γ)|x ∈ RnP
+ , (11) and (17) hold, and γ ∈ RnL

+ }. (21)

Before stating the variational inequality formulation of the problem, we recall a lemma

that formalizes the construction of the partial derivatives of the total operational cost and

the total discarding cost with respect to a path flow. This lemma was derived for another

time-sensitive product supply chain in healthcare – that of human blood. However, in that

application the arc and path multipliers have an entirely different meaning than that in the

case of medical nuclear products.

Lemma

The partial derivatives of the total operational cost and the total discarding cost, with respect

to a path flow are, respectively, given by:

∂(
∑

q∈P Ĉq(x))

∂xp

≡
∑
a∈L

∂ĉa(fa)

∂fa

αap, ∀p ∈ Pwk
; k = 1, . . . , nH ,
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∂(
∑

q∈P Ẑq(x))

∂xp

≡
∑
a∈L

∂ẑa(fa)

∂fa

αap, ∀p ∈ Pwk
; k = 1, . . . , nH . (22)

Proof: See Nagurney, Masoumi, and Yu (2012) for the proof.

We now derive the variational inequality formulations of the problem in terms of path

flows and link flows.

Theorem: Variational Inequality Formulations

The optimization problem (18), subject to its constraints, is equivalent to the variational in-

equality problem: determine the vector of optimal path flows, the vector of optimal capacities,

and the vector of optimal Lagrange multipliers (x∗, u∗, γ∗) ∈ K, such that:

nR∑
k=1

∑
p∈Pwk

∂(
∑

q∈P Ĉq(x
∗))

∂xp

+
∂(

∑
q∈P Ẑq(x

∗))

∂xp

+
∑
a∈L

γ∗aαap

× [xp − x∗p]

+
∑
a∈L

[
∂π̂a(u

∗
a)

∂ua

− γ∗a

]
× [ua−u∗a]+

∑
a∈L

u∗a −
∑
p∈P

x∗pαap

× [γa−γ∗a] ≥ 0,∀(x, u, γ) ∈ K. (23)

Variational inequality (23), in turn, can be rewritten in terms of link flows as: determine

the vector of optimal link flows, the vector of the link capacity adjustments, and the vector

of optimal Lagrange multipliers (f ∗, u∗, γ∗) ∈ K1, such that:

∑
a∈L

[
∂ĉa(f

∗
a )

∂fa

+
∂ẑa(f

∗
a )

∂fa

+ γ∗a

]
× [fa − f ∗a ] +

∑
a∈L

[
∂π̂a(u

∗
a)

∂ua

− γ∗a

]
× [ua − u∗a]

+
∑
a∈L

[u∗a − f ∗a ]× [γa − γ∗a] ≥ 0, ∀(f, u, γ) ∈ K1, (24)

where K1 denotes the feasible set:

K1 ≡ {(f, u, γ)|∃x ≥ 0, (11), (13), (17) hold, and γ ≥ 0}. (25)

Proof: First, we prove the result for path flows (cf. (23)).
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The convexity of Ĉp and Ẑp for all paths p holds since ĉa and ẑa were assumed to be

convex for all links a. The convexity of π̂a was also assumed to hold and, as a consequence,

the objective function in (23) is also convex.

Since the objective function (23) is convex and the feasible set K is closed and convex,

the variational inequality (23) follows from the standard theory of variational inequalities

(see Nagurney (1999)).

As for the proof of the variational inequality (24), now that (23) is established, we can

apply the equivalence between partial derivatives of total costs on paths and partial deriva-

tives of total costs on links from Lemma 1. Also, using (13) and (16), we can rewrite the

formulation in terms of link flows rather than path flows. Thus, the second part of Theorem

1, that is, the variational inequality in link flows (24), also holds.

Variational inequality (23) can be put into standard form VI (F,K) (see Nagurney (1999))

as follows: determine X∗ ∈ K such that:

〈F (X∗)T , X −X∗〉 ≥ 0, ∀X ∈ K, (26)

where 〈·, ·〉 denotes the inner product in n-dimensional Euclidean space.

If we define the feasible set K ≡ K, and the column vector X ≡ (x, u, γ), and F (X) ≡
(F1(X), F2(X), F3(X)), where:

F1(X) =

∂(
∑

q∈P Ĉq(x))

∂xp

+
∂(

∑
q∈P Ẑq(x))

∂xp

+
∑
a∈L

γaαap; p ∈ Pwk
; k = 1, . . . , nH

 ,

F2(X) =

[
∂π̂a(ua)

ua

− γa; a ∈ L

]
,

F3(X) =

ua −
∑
p∈P

xpαap; a ∈ L

 , (27)

then variational inequality (23) can be re-expressed in standard form (26).

We will utilize variational inequality (23) in path flows for the proposed computational

approach.

17



3. The Computational Approach

In this section, we propose the computational approach for the solution of our novel

medical nuclear supply chain network design model. Specifically, we propose the modified

projection method, but in path flows, rather than in link flows (see, e.g., Nagurney and

Qiang (2009) Liu and Nagurney (2011), and references therein). This algorithm, in the

context of our new model, yields subproblems, as we show below, that can be solved exactly,

and in closed form, using a variant of the exact equilibration algorithm, adapted to handle

the arc/path multipliers, and by applying explicit formulae for the capacity investments and

for the Lagrange multipliers.

The modified projection is guaranteed to converge if the function F that enters the

variational inequality satisfies monotonicity and Lipschitz continuity (see Nagurney (1999)).

We now recall the modified projection method, where T denotes an iteration counter.

Step 0: Initialization

Set X0 ∈ K. Let T = 1 and let η be a scalar such that 0 < η ≤ 1

L , where L is the Lipschitz

continuity constant.

Step 1: Computation

Compute X̃T by solving the VI subproblem:

〈X̃T + ηF (XT −1)−XT −1, X − X̃T 〉 ≥ 0, ∀X ∈ K. (28)

Step 2: Adaptation

Compute XT by solving the VI subproblem:

〈XT + ηF (X̃T )−XT −1, X −XT 〉 ≥ 0, ∀X ∈ K. (29)

Step 3: Convergence Verification

If max |XT
l − XT −1

l | ≤ ε, for all l, with ε > 0, a prespecified tolerance, then stop; else, set

T =: T + 1, and go to Step 1.
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The VI subproblems in (28) and (29) are quadratic programming problems with special

structure that result in straightforward computations. Explicit formulae for (28) for the

supply chain network problem are now given for the capacity investments and the Lagrange

multipliers. Analogous formulae for (29) can then be easily obtained. Subsequently, we

follow up with how the path flow values for (28) can be determined (a similar approach can

then be used to determine the path flows for (29)).

Explicit Formulae for the Investment Capacities and the Lagrange Multipliers

at Step 1 (cf. (28))

ũTa = max{0, uT −1
a + η(γT −1

a − ∂π̂a(u
T −1
a )

∂ua

)}, ∀a ∈ L; (30)

γ̃Ta = max{0, γT −1
a + η(

∑
p∈P

xT −1
p αap − uT −1

a )}, ∀a ∈ L. (31)

Recall that the feasible set K, in terms of the path flows, requires that the path flows be

nonnegative and that the demand constraint (11) holds for each demand point. The induced

path flow subproblems in (28) and (29), hence, have a special network structure of the form

given in Figure 2.

Specifically, the path flow subproblems that one must solve in Step 1 (see (28)) (we have

suppressed the iteration superscripts below) have the following form for each demand point

k; k = 1, . . . , nH :

Minimize
1

2

∑
p∈Pwk

x2
p +

∑
p∈Pwk

hpxp (32)

subject to:

dk ≡
∑

p∈Pwk

µpxp, (33)

xp ≥ 0, ∀p ∈ Pwk
, (34)

where hp ≡−xT −1
p + η

[
∂(

∑
q∈P Ĉq(xT −1))

∂xp
+

∂(
∑

q∈P Ẑq(xT −1))

∂xp
+

∑
a∈L γT −1

a αap

]
.

We now present an exact equilibration algorithm, adapted to handle the multipliers, which

can be applied to compute the solution to problem (32), for each demand point, subject to
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m

m

H2
wk

0

R 	U

1 2 · · · pnwk

xp1 + hp1
xpnwk

+ hpnwk

dk

Figure 2: Special Network Structure of an Induced Path Flow Subproblem for Each Demand
Point k

constraints (33) and (34). An analogous set of subproblems in path flows can be set up and

solved accordingly for Step 2 (cf. (29)). For further background on such algorithms, see

Nagurney and Qiang (2009) and the references therein.

An Exact Equilibration Algorithm for a Generalized Specially Structured Net-

work

Step 0: Sort

Sort the fixed terms hp; p ∈ Pwk
in nondescending order and relabel the paths/links accord-

ingly. Assume, from this point on, that they are relabeled. Set hpnwk
+1 ≡ ∞, where nwk

denotes the number of paths connecting destination node H2
k with origin node 0. Set r = 1.

Step 1: Computation

Compute

λr
k =

∑r
i=1 µpi

hpi
+ dk∑r

i=1 µ2
pi

. (35)

Step 2: Evaluation

If hpr < λr
k ≤ hpr+1 , then stop; set s = r and go to Step 3; otherwise, let r = r+1 and return
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to Step 1.

Step 3: Path Flow Determination

Set

xpi
= λs

k − hpi
, i = 1, . . . , s.

xpi
= 0, i = s + 1, . . . , nwk

. (36)

In summary, the proposed computational procedure, at Steps 1 and 2 (see (28) and (29)),

induces subproblems of special structure, each of which can be solved explicitly and in closed

form. For the induced subproblems in capacities and Lagrange multipliers, we have provided

the formulae (28) and (29), whereas for the induced subproblems in the path flows, we have

provided a variant of the exact equilibration algorithm to handle the multipliers.

The modified projection method is guaranteed to converge to a solution of the medical

nuclear supply chain network design problem provided that the function F (cf. (26) and (27))

is monotone and Lipschitz continuous. Monotonicity follows under our imposed assumptions

and Lipschitz continuity will also hold provided that the marginal total cost and marginal

risk functions have bounded second order partial derivatives.

4. A Case Study

In this section, we describe a case study. In particular, we consider the Molybdenum-

99 supply chain in North America with the focus on the Canadian reactor, the Canadian

processing facility, and the two US generator manufacturing facilities. This reactor is to be

decommissioned around 2016; the same holds for the processing facility.

The existing supply chain is as depicted in Figure 3.

The reactor, known as NRU, is located in Chalk River, Ontario. The processing facility is

located in Ottawa, and is known as AECL-MDS Nordion. Transportation of the irradiated

targets from NRU to AECL - MDS Nordion takes place by truck. There are two generator

manufacturers in the United States (and none in Canada). The two existing generator

manufacturers are located in Billerica, Massachusetts and outside of St. Louis, Missouri.
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Figure 3: The Existing Supply Chain Topology for MO-99 from Canada to the United States,
Canada, and Other Countries

22



In this case study, we utilized the supply chain network in Figure 3 as a template.

We implemented the modified projection method, along with the generalized exact equi-

libration algorithm, as described in Section 3 for the solution of our supply chain network

design problem. The ε in the convergence criterion was 10−6. The algorithm was imple-

mented in FORTRAN and a Unix-based system at the University of Massachusetts was used

for the computations.

The arc multipliers, the total operational cost functions, the total discarding cost func-

tions, and the total capacity investment cost functions, and the optimal link flow and capacity

solutions are reported in Table 1. Links 4, 6, 9,12,13,14, and 16 correspond to transportation

by air, whereas links 5, 10, 11, and 15 correspond to transportation by truck. We calculated

the values of the arc multipliers αda, for all links a = 1, . . . , 20, using data in the OECD

(2010a) report and in the National Research Council (2009) report, which included the ap-

proximate times associated with the various links in the supply chain network in Figure 3.

According to OECD (2010a), we may assume that there is no loss ala on each link a for

a = 1, . . . , 20, except for processing link 3; hence, αla = 1 for all the former links; therefore,

αa = αda for all those links, as reported in Table 1. In the case of link 3, αla = .8 and

αda = .883; therefore, α3 = .706. All capacities and flows are reported in Curies.

Capital and operating cost data were taken from OECD (2010b) and converted to per

Curie processed or generated. As noted by the National Research Council (2009), the US

generator prices are proprietary, but could be estimated from a functional form derived from

publicly available prices for Australian generators coupled with several spot prices for US

made generators.

We assumed three demand points corresponding, respectively, to the collective demands

in the US, in Canada, and in other countries (such as Mexico, and the Caribbean Islands).

We are using 3 demand points, as approximations, in order to be able to report the input

and output data for transparency purposes. The demands were as follows: d1 = 3, 600,

d2 = 1, 800, and d3 = 1, 000 and these denote the demands, in Curies, per week. These

values were obtained by using the daily number of procedures in the US and extrapolating

for the others. The units for the path and link flows are also Curies. We have chosen to

include 3 demand points since, within the US, the shipping times between the generator
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Table 1: Link Multipliers, Total Operational Cost, Total Discarding Cost, and Total Capacity
Investment Cost Functions and Optimal Link Flow and Capacity Solution for Example 1

Link a αa ĉa(fa) ẑa(fa) π̂a(ua) f ∗a u∗a
1 1.00 2f 2

1 + 25.6f1 0.00 u2
1 + 743u1 15, 034 15,034

2 .969 f 2
2 + 5f2 0.00 .5u2

2 + u2 15, 034 15,034
3 .706 5f 2

3 + 192f3 5f 2
3 + 80f3 .5u2

3 + 289u3 14, 568 14,568
4 .920 2f 2

4 + 4f4 0.00 .5u2
4 + 4u4 4, 254 4,253

5 .901 f 2
5 + f5 0.00 2.5u2

5 + 2u5 1, 286 1,286
6 .915 f 2

6 + 2f6 0.00 .5u2
6 + u6 4, 744 4,744

7 .804 f 2
7 + 166f7 2f 2

7 + 7f7 .5u2
7 + 289u7 5, 072 5,072

8 .804 f 2
8 + 166f8 2f 2

7 + 7f7 .5u2
8 + 279u8 4, 341 4,341

9 .779 2f 2
9 + 4f9 0.00 .5u2

3 + 3u9 0.00 0.00
10 .883 f 2

10 + 1f10 0.00 .5u2
10 + 5u10 2,039 2,039

11 .883 2f 2
11 + 4f11 0.00 .5u2

11 + 3u11 2,039 2,039
12 .688 f 2

12 + 2f12 0.00 .5u2
12 + f12 0.00 0.00

13 .688 2.5f 2
13 + 2f13 0.00 .5f 2

13 + u13 0.00 0.00
14 .779 2f 2

14 + 2f14 0.00 u2
14 + uf14 0.00 0.00

15 .883 f 2
15 + 7f15 0.00 2u2

15 + 5u15 2,037 2,037
16 .688 2f 2

16 + 4f16 0.00 .5u2
16 + u16 0.00 0.00

17 .688 2f 2
17 + 6f17 0.00 u2

17 + u17 1,453 1,453
18 1.00 2f 2

18 + 800f18 4f 2
18 + 80f18 .5u2

18 + 10u18 3,600 3,600
19 1.00 f 2

19 + 600f19 1f 2
19 + 60f19 .5u2

19 + 5u19 1,800 1,800
20 1.00 f 2

20 + 300f20 1f 2
20 + 30f20 .5u2

20 + 2u20 1,000 1,000

manufacturers and the end users are approximately the same (next day delivery by air or

truck) and the number of end users is sufficiently large that an average transportation cost

per mode can be used. A similar assumption is appropriate in the case of Canada, except as

depicted in Figure 3, one generator manufacturer cannot ship to Canada via truck. While

the details of transportation will vary among Mexico and the Caribbean islands, in general,

this information can be represented by a single average transportation time and cost.

As can be seen from the solution in Table 1, links: 9,12,13,14 and 16, all of which are

transportation links in the supply chain need not be “built” since the optimal capacities are
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equal to zero and the flows, hence, are also equal to zero on these links.

Hence, the optimal supply chain network topology is as given in Figure 4. Note that

we have removed all the links in Figure 3 which have zero capacities since they will not be

constructed.

For completeness, we also report the optimal path flow pattern.

For w1 = (0, H2
1 ), two paths had positive flow with the other four paths having zero flow.

Specifically, the path consisting of links:(1,2,3,4,7,10,18) had its path flow equal to 4,031.45,

and the path consisting of the links: (1,2,3,6,8,15,18) had a path flow of: 4,047.68.

For w2 = (0, H2
2 ), two paths had positive flow with three others having zero flow. Specif-

ically, the path consisting of the links (1,2,3,4,7,11,19) had a flow of 2,186.63 and the path

consisting of the links: (1,2,3,5,7,11,19) had a flow of 1,880.68.

For w3 = (0, H2
3 ), only one path had positive flow and the two others had zero flows. The

path comprised of the links: (1,2,3,6,8,17,20) had a flow equal to 2,888.06.

Recall that the flows decrease as they move down the supply chain due to radioactive

decay according to their respective path flow multiplier µp.

The total cost associated with this supply chain network design was: 2,976,125,952.00.

The existing capacity at the Canadian reactor is 33,535, whereas the existing capacity at

the processor is 32,154. Hence, one can infer from the above analysis that both of these are

operating with excess capacity, which has been noted in the literature.

Of course, the above case study is stylized but it demonstrates how data can be acquired

and the relevance of the output results. With the model in Section 2, a cognizant organization

can then investigate the costs associated with new supply chain networks for a radioisotope

used in medical imaging and diagnostics.
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5. Summary and Suggestions for Future Research

In this paper, we developed a rigorous framework for the design of medical nuclear supply

chains. We focused on the most widely used radioisotope, Molybdenum, 99Mo, which is

used in medical diagnostics for cancer and cardiac problems. Medical nuclear supply chains

have numerous challenging features, including the time-sensitivity of the product, which is

subject to radioactive decay, the hazardous nature of production and transportation as well

as waste disposal. In addition, such radioisotopes are produced globally only in a handful of

reactors and the same holds for their processing. Moreover, the nuclear reactors where they

are produced are aging and have been subject to failures creating shortages of this critical

healthcare product.

The specific contributions of the findings in this paper are:

(1). a theoretically sound, based on physics principles, methodology to determine the loss,

due to time-decay, of the radioisotope on the various links of the supply chain network,

through the use of arc multipliers;

(2). a generalized network optimization model that includes the relevant criteria associated

with link construction, coupled with the operational costs and the associated discarding and

waste management costs, subject to demand satisfaction at the patient demand points;

(3). a unified framework that can handle the design of the medical nuclear supply chain net-

work from scratch, with specific relevance to the existing economic and engineering situation,

coupled with the physics underlying the time-decay of the radioisotope, and

(4). an algorithm which resolves the new supply chain network design problem into sub-

problems with elegant features for computation, for which we provide explicit formulae and

a generalized exact equilibration algorithm to handle multipliers.

We note that the contributions in the paper can serve as the foundation for the investi-

gation of other medical nuclear product supply chains. In addition, the framework can serve

as the basis for the exploration of alternative behaviors among the various stakeholders,

including competition. Finally, it can be used to assess the vulnerability of medical nuclear

supply chains and to explore alternative topologies and the associated costs. Since it has
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been recognized that some of such supply chains are presently operating without recovering

the costs at the reactors, resulting in market failure and a lack of incentive investment, plus

that the need for such medical diagnostics is expected to grow with the aging population,

we believe that this paper, in emphasizing a new research agenda, has made a valuable

contribution.

Further research will include additional empirical research.
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