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Abstract

This paper proposes a centralized supply chain network optimization model that maximizes the
total profit obtained by a company that produces and/or outsources production, stores, ships and
sells products to customers using a fleet made up of trucks and, in the last mile, also of drones. The
model includes realistic features of unmanned aerial vehicles (UAVs) in the form of drones with
fundamental limitations such as low battery capacities and short delivery ranges. The constrained
nonlinear optimization problem is formulated as a variational inequality. Existence and uniqueness
results for the solution of the variational inequality are provided along with the results of detailed
numerical simulations that emphasize the advantages of the use of a hybrid fleet from enhanced
profits to reduction in air pollution. Our quantitative results reveal great promise and insights for
the logistics industry in the use of emerging UAV technologies for last mile parcel deliveries as a
practical solution within a holistic supply chain network context.
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1 Introduction

Unmanned aerial vehicles (UAVs), also known as drones, were originally used for military purposes.
Following the rapid technological progress recorded during the 2000s and, thanks to their versatility,
UAVs have also been used in the civilian sector, where they are employed in aerial surveillance, in
aerial cinematographic shots, in operations search and rescue missions, in the monitoring of power
lines and oil pipelines, and in the monitoring of flora and fauna. In 2013, Amazon first announced 30-
minute drone deliveries and the company successfully piloted its so-called ‘Prime Air’ drone delivery
service in Cambridge, UK in December 2016 and in the USA in March 2017. Later, many other
companies, such as Walmart, DHL, UPS, FedEx, Uber Eats, and others, also chose delivery-by-drone
in order to provide faster-than-ever service [21]. Parallel to advances in UAV technologies, customer
expectations of delivery options have risen with the real-time tracking of orders, same-day and free
delivery options, growing service requirements and even greater supply chain complexity. The use of
drones for delivery services, nevertheless, reveals some difficulties. First of all, drones can often only
carry light and low-volume parcels, and usually only one package at a time. Furthermore, they have a
limited battery life, which allows them to go only for short distances. Hence, a hybrid delivery system
combining traditional trucks and drones may reduce traffic issues, costs, including environmental ones,
and, at the same time, address flight range limitations, as the transportation is initially done with
trucks and, in the last mile, the delivery can be done also with drones. Drones can also be launched
from trucks in a hybrid system (see [4], [8]).
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Last mile delivery can be defined as the process of delivering a shipment from a transportation hub
to the final delivery destination. This means that the last phase of the supply chain network has been
reached and the product is almost at the end of its journey. In our model in this paper, we construct
a supply chain network with five sets of nodes consisting of a company at the top, warehouses of
third-party sellers and of the company in the second tier of nodes, followed by fulfillment centers,
and then delivery stations, with customer locations at the bottom tier. Trucks are involved in the
transportation of the products between all the tiers, but, in the final stretch, which is the last mile,
also drones can be used. The transportation takes place on links of the supply chain network that
join the nodes. Obviously, the advantage of using trucks consists mainly in their large load capacity
and in their ability to make long journeys, while the use of drones can reduce traffic congestion and
pollutant emissions in urban areas, reduce fuel and manpower consumption, eliminate the need for
parking, and improve the timeliness of deliveries.

The last leg or link in the supply chain network may be less than a mile in length or it may
be hundreds of miles long: what’s important is that the last mile takes deliveries from the delivery
stations to the end customers. This transportation component is, typically, a complex, expensive
part of the supply chain network. Imagine the hundreds, if not thousands, of deliveries made by a
company each day. The use of drones for last mile delivery has gained significant attention in recent
years due to its potential to improve delivery efficiency and to reduce transportation costs as well
as environmental costs. Many scientists have conducted research on optimizing the last mile with
drones (see [18] for a literature review in which authors selected a collection of recent papers and
classified them as routing, cargo distribution optimization, battery management, data communication
and environmental protection). See [23] for a survey of routing problems with drones, primarily in the
context of parcel delivery.

In [31], the authors studied humanitarian logistics; specifically, they analyzed drone applications
in last mile distribution and proposed an optimization model for the delivery of multiple packages
of light-weight relief items via drones to remote locations within a disaster prone area (see also [13]
and [12] for optimization models for the provision of services with UAVs in disaster management
phases, and of the 5G-network edge in rural areas, respectively). In [10], the authors proved that
using UAVs for last mile logistics is not only cost-effective, but also reduces carbon emissions. They
proposed a mixed-integer linear routing model for UAV last mile parcel deliveries and developed a
genetic algorithm. Some researchers have also studied the optimal location of drone-beehives based
on an economic viability criterion (see, for example, [3] where four different scenarios are analyzed to
estimate the potential benefit obtained by citizens from last mile drone delivery services, through a
modeling framework using high-resolution data on the EU-wide population and land use). Borghetti
et al. in [6] carried out a stated preferences analysis in a real case study in the city of Milan in order to
assess the propensity of users to use drones or not. The authors also performed a financial feasibility
analysis to evaluate the costs and the revenues for a logistics operator in charge of the UAV-based last
mile logistics service.

Many researchers have investigated delivery networks with trucks and drones simultaneously. The
first study considering drone-truck collaboration dates back to 2015. In [26], the authors presented
a Mixed Integer Linear Programming Problem with the aim of minimizing the time at which both
vehicles complete service and return to the depot such that every customer is either served by the truck,
or by the drone that operates in synchronization with the truck. Subsequently, many other authors
have used mixed integer linear programming models and heuristic or exact algorithms to investigate
several variants of the problem of finding the optimal routing for a set of trucks and a set of drones
operating jointly (see, for instance, [1], [7], [9], [15], [34]). In [4], the authors introduce a vehicle
routing problem with flexible drones aiming at minimizing the return time of the very last vehicle
(drone or truck) to the depot after completing its service. In [11], the authors consider how an online
food delivery platform can improve last mile delivery services’ performance using multi-source data.
They propose a data-driven optimization approach that combines machine learning techniques with
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capacitated vehicle routing optimization. In [29], the authors study the Vehicle Routing and Scheduling
Problem with Time-Dependent Costs in which the probability of a successful delivery is taken into
account when planning the vehicle routes. In [32], the authors optimize the partitioning of delivery
locations into small clusters, so that from each focal point per cluster (that is, drone launch location),
where a truck is parked, a drone fleet is launched towards the nearby customer locations. They also
analyzed the route of the truck (through all the launch locations) such that the customer demands are
met by a drone or truck. Authors in [5] proposed a compact Integer Linear Programming formulation
for a variant of the Traveling Salesman Problem where routing decisions are integrated with customer-
to-drone and customer-to-truck assignment decisions and truck-and-drone synchronization constraints.
Another problem where the movements of a single truck and multiple UAVs (launched from the truck)
are synchronized is proposed in [25], where the mathematical model aims to allocate customers to
UAVs and the truck. In the latter, the authors formulated a Mixed-Integer Linear Programming
Problem and developed a routing algorithm with the objective of minimizing customer waiting times
for deliveries.

In this paper, we study a five-tier supply chain network for a company which can buy from third-
party sellers and/or can produce in-house and sells different products which are stored in different
warehouses. Such warehouses are geographically distributed and are connected to fulfillment centers,
which handle order processing, picking, packing and shipping. The products are then transported
to the delivery stations which are physical locations out of which the company conducts its logistics
delivery services. Finally, the products are delivered to the customers at their locations by trucks
and/or drones.

We analyze the entire supply chain network, including the last mile delivery, which can be done by
trucks and/or by using drones. We study the problem from a system point of view; that is, from that of
the company, which coordinates and manages the whole process. We obtain a nonlinear optimization
problem with the aim of maximizing the total profit of the company, given by the difference between
the total revenues and the total costs. The model proposed in this paper seeks to determine the
optimal quantities of products to buy from third-party sellers and/or to self-produce and the optimal
flows for each link of the network. The proposed model is able to establish which nodes of the network
are best to use from an optimization perspective and the same for the links, and whether to make
last mile delivery with drones and/or with trucks. Our supply chain network optimization model
also takes into account the maximum capacity of trucks and drones and the maximum distance that
a drone can reach, due to its battery duration. Furthermore, the model includes an environmental
component in the form of incentives for using drones to reduce congestion and pollution. The numerical
simulations we provide, firstly, suggest that using UAVs at the last mile can significantly improve the
objective function of profit maximization, by reducing the delivery costs. Another consequence of
the use of drones is the reduction of environmental emissions. Some additional supply chain network
configurations also reveal how the proposed model takes into account real drone limitations, such as
their limited capacity and battery life. Finally, a sensitivity analysis demonstrates that the choice of
incentives (by National Institutions) can affect the environmental impacts, since companies alter their
decision-making strategies accordingly.

The paper is organized as follows. In Section 2, we describe the supply chain network and in
Section 3, we introduce the variables, the parameters and the functions that allow us to present
the constrained nonlinear optimization problem. In Section 4, we deduce the associated variational
inequality formulation and provide the related existence and uniqueness results. In Section 5, we
present detailed results of numerical simulations in order to illustrate key aspects of the centralized
supply chain network optimization model and to validate its effectiveness. Finally, Section 6 is devoted
to our conclusions and further research.
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2 The Supply Chain Network Description

We consider a supply chain network as the one depicted in Figure 1, where five different tiers are
present. At the top level node, there is a company (such as Amazon) that can produce the products
and/or store the self-produced products at its warehouse WI+1 located in the second tier of nodes. In
the second tier, there are also I third-party sellers’ warehouses, where the typical one is denoted by i.
We consider L different kinds of products, with the typical one denoted by l. In the third level of nodes
of the supply chain network, there are J fulfillment centers, with the typical one denoted by j; in the
fourth tier, there are S delivery stations, with the typical one denoted by s. Finally, in the bottom tier,
there are K customer locations, with the typical one denoted by k. The different nodes of the supply
chain network are connected by links. Specifically, the links between the company and the third-party
sellers’ warehouses and the company’s warehouse are virtual links (denoted with dashed arrows in
Figure 1), since actually there is no transportation of commodities between the first and the second
tiers of the network. These links could, nevertheless, be associated with some economic activities.
Specifically, we assume that links between the company and the third-party sellers’ warehouses are
associated with the purchasing of products, while the link between the company and its warehouse is
associated with the manufacturing activity. Moreover, we assume that the products produced by the
third-party sellers or the company are sold and sent from the warehouses to the fulfillment centers.
From fulfillment centers the products can be sent both to delivery stations or directly to customers.
Finally, delivery stations ship the products to the customers. Furthermore, trucks are used for long
journeys and heavy goods and, therefore, in the transportation of products between: warehouses and
fulfillment centers, the fulfillment centers and the delivery stations or the fulfillment centers and the
customers. In the “last mile”; that is, the final stretch that connects delivery stations and customer
locations, both trucks or drones can be used. We denote by black arrows the links associated with
trucks and by blue dashed arrows the links associated with drones. As noted in the Introduction, the
use of drones or other types of Unmanned Aerial Vehicles in the “last mile” is justified by the need
to reduce pollution and congestion in urban areas. For this reason, we also introduce an incentive to
use this means of transport.

Furthermore, as related to Amazon as the company, there exist two types of fulfillment. According
to Fulfillment By Amazon (FBA), factories sell their products to Amazon and, when a customer makes
a purchase, Amazon picks, packs and ships the order. On the other hand, Fulfillment By Merchant
(FBM) is when the factory handles the entire shipping process. It uses its own resources and sends the
products directly to the customers. In this paper, we analyze the FBA type of fulfillment. Therefore,
the aim of the company is to maximize the total profit of its supply chain network.

In this paper, we are assuming that, for both the battery life and the drone capacity, each drone
starts at Ds, reaches Ck, and comes back (i.e., doesn’t route). Indeed, there could be more trucks
or drones making the same journey when there is a need to increase the total maximum capacity.
Therefore, we are not focusing on the Vehicle Routing Problem (VRP). Hence, in our framework, it
does not matter if it’s a single truck that, for example, starts from Gj and goes to two or more Ds or
if it is the case of multiple trucks that go to a single Ds.

3 The Optimization Problem

In this section, we focus on the mathematical formulation of the problem. As previously described, the
supply chain network consists of I + 1 warehouses (W1, . . . ,Wi, . . . ,WI ,WI+1), J fulfillment centers
(G1, . . . , Gj , . . . , GJ), S delivery stations (D1, . . . , Ds, . . . , DS) and K customer locations (C1, . . . , Ck,
. . . , CK). Moreover, we take into account L different types of products. In Table 1, we report the
symbols and definition of all the sets.

The aim of the supply chain network optimization problem is to determine:

• the optimal quantities of each product l ∈ L that the company has to buy from third-party
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Company

W1 · · · Wi · · · WI· · · WI+1 Warehouses

Trucks

G1 · · · Gj · · · GJ FulfillmentCenters

Trucks

D1 · · · Ds · · · DS Delivery Stations

Trucks or Drones

C1 · · · Ck · · · CK Customer Locations

Figure 1: Supply chain network topology

Sets Definitions

W = {Wi : i = 1, . . . , I + 1} set of warehouses
G = {Gj : j = 1, . . . , J} set of fulfillment centers
D = {Ds : s = 1, . . . , S} set of delivery stations
C = {Ck : k = 1, . . . ,K} set of customer locations
L = {l : l = 1, . . . , L} index set of products

Table 1: Symbols and definitions of sets

sellers (αl
i, ∀i = 1, . . . , I) and to self-produce (αl

I+1);

• the optimal quantities of each product l ∈ L that the company has to transport from each ware-
house Wi, ∀i = 1, . . . , I+1 to each fulfillment center Gj , ∀j = 1, . . . , J (xlij , ∀l = 1, . . . , L, ∀i =
1, . . . , I + 1, ∀j = 1, . . . , J);

• the optimal quantities of each product l ∈ L that the company has to transport from each
fulfillment center Gj , ∀j = 1, . . . , J to each delivery station Ds, ∀s = 1, . . . , S (yljs, ∀l =
1, . . . , L, ∀j = 1, . . . , J, ∀s = 1, . . . , s) and to each customer location Ck, ∀k = 1, . . . ,K
(zljk, ∀l = 1, . . . , L, ∀j = 1, . . . , J, ∀k = 1, . . . ,K);

• the optimal quantities of each product l ∈ L that the company has to transport from each
delivery station Ds, ∀s = 1, . . . , S to each customer location Ck, ∀k = 1, . . . ,K via trucks
(w1l

sk, ∀l = 1, . . . , L, ∀s = 1, . . . , S, ∀k = 1, . . . ,K) and via drones (w2l
sk, ∀l = 1, . . . , L, ∀s =

1, . . . , S, ∀k = 1, . . . ,K).

Table 2 summarizes all the variables and their definitions.
Table 3 and Table 4 show all the parameters and the cost functions of the model, respectively.
We are interested in optimizing the supply chain network of the company, whose aim is to maximize

its profits. Therefore, the company seeks to maximize the difference between the revenue and the costs.
Hence, the objective function consists of:
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Variables Definitions

αl
i quantity (in kg) of product l produced by a third-party seller,

bought by the company (for the customers) and stored in
the third-party seller’s warehouse Wi, i = 1, . . . , I. While
αl
I+1 represents the quantity (in kg) of product l produced

by the company. We group such quantities into the vector

α ∈ R(I+1)L
+ .

xlij quantity of product l sent by Wi to Gj , i = 1, . . . , I + 1, j =
1, . . . , J (in kg). We group such quantities into the vectors

xij ∈ RL
+ and x ∈ R(I+1)JL

+ .
yljs quantity of product l sent by Gj to Ds, j = 1, . . . , J, s =

1, . . . , S (in kg). We group such quantities into the vectors
yjs ∈ RL

+, yj ∈ RLS
+ and y ∈ RJSL

+ .
zljk quantity of product l sent by Gj to Ck, j = 1, . . . , J, k =

1, . . . ,K (in kg). We group such quantities into the vectors
zjk ∈ RL

+, zj ∈ RLK
+ and z ∈ RJKL

+ .
w1l
sk quantity of product l sent by Ds, to Ck s = 1, . . . , S, k =

1, . . . ,K (in kg) via trucks. We group such quantities into the
vectors w1

sk ∈ RL
+ and w1 ∈ RSKL

+ .
w2l
sk quantity of product l sent by Ds, to Ck s = 1, . . . , S, k =

1, . . . ,K (in kg) via drones. We group such quantities into the
vectors w2

sk ∈ RL
+ and w2 ∈ RSKL

+ .

Table 2: Symbols and definitions of variables

• the handling costs of the company (C(hand) = c(α, x, y, z, w1, w2));

• the total expense for the purchase of products, CPurPr, from all Wi, i = 1, . . . , I

(
L∑
l=1

I∑
i=1

γliα
l
i

)
and the production cost for products, when they are produced by the company itself (γlI+1α

l
I+1);

• the total transportation cost from each warehouse to each fulfillment center

C(WG) =
I+1∑
i=1

J∑
j=1

cij(xij)

;
from each fulfillment center to each delivery station

C(GD) =
J∑

j=1

S∑
s=1

ĉjs(yjs, zj)

; from each

fulfillment center to each customer location

C(GC) =

J∑
j=1

K∑
k=1

c̄jk(yj , zjk)

; from each delivery

station to each customer location via truck

(
C

(DC)
tr =

S∑
s=1

K∑
k=1

c̃1sk(w
1
sk)

)
; and from each delivery

station to each customer location via drone

(
C

(DC)
dr =

S∑
s=1

K∑
k=1

c̃2sk(w
2
sk)

)
;

• the incentive for sustainable mobility (in order to reduce pollution and congestion) that the
company receives from the National Institution if it uses drones (instead of trucks), in the links

between the delivery stations and the customer locations

(
ISM =

L∑
l=1

S∑
s=1

K∑
k=1

Iskw
2l
sk

)
;
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Parameters Definitions

γli purchase price of product l from Wi, i = 1, . . . , I; while γlI+1

is the production cost for the good l, when it is produced by
the company (in €)

Isk incentive for using drones (to reduce pollution and congestion)
on the link between Ds and Ck

γljk selling price of product l from Gj to Ck, established by the
company (in €)

γlsk selling price of product l from Ds to Ck, established by the
company (in €)

Ql
i maximum quantity (in kg) of product l available at Wi

rlk demand of product l from customer location Ck (in kg)
ntr
i number of trucks available at Wi

W maximum capacity of each truck (in kg)
ndr
s number of drones available at Ds

pd maximum weight that each drone is able to carry (in kg)
pl weight of a unit of product l (in kg)
P dr
l a parameter that is equal to 0 if pl > pd, otherwise (if pl ≤ pd)

it is equal to
K∑
k=1

rlk

d̃sk distance between delivery station Ds and customer location Ck

(in km)
bd drone battery life, that is, the distance allowed taking into

account both outward and return trips (in km)

Bdr
sk a parameter that is equal to 0 if d̃sk > bd, while it is equal to

K∑
k=1

rlk if d̃sk ≤ bd

Table 3: Symbols and definitions of parameters

Functions Definitions

c(α, x, y, z, w1, w2) handling costs of the company, which include managing costs
cij(xij) transportation cost from Wi to Gj

ĉjs(yjs, zj) transportation cost from Gj to Ds

c̄jk(yj , zjk) transportation cost from Gj to Ck

c̃1sk(w
1
sk) transportation cost from Ds to Ck through trucks

c̃2sk(w
2
sk) transportation cost from Ds to Ck through drones

ctri (α,w
2) handling costs of Wi for the trucks; they depend on α and w2

because the size of the truck chosen depends on the quantity
of goods to be transported by trucks

cdrs (w2) handling costs of Ds for the drones, including drone battery
disposal costs

Table 4: Symbols and definitions of functions

• the handling costs of all trucks

(
C(tr) =

I+1∑
i=1

ctri (α,w
2)

)
and of all drones

(
C(dr) =

S∑
s=1

cdrs (w2)

)
;

7



• the total revenues, TR, obtained from the selling of products from each fulfillment center to each

customer

 L∑
l=1

J∑
j=1

K∑
k=1

γljkz
l
jk

; and those obtained from the selling of products from each deliv-

ery station to each customer via trucks and drones

(
L∑
l=1

S∑
s=1

K∑
k=1

γlskw
1l
sk and

L∑
l=1

S∑
s=1

K∑
k=1

γlskw
2l
sk

)
.

Observe that the revenues (γljk and γlsk) take into account the only gains obtained by the company.
We remark that, in reality, not all the third-party sellers’ warehouses need to provide products to

all the fulfillment centers, and not all the fulfillment centers need to be connected to all the delivery
stations or all the customers locations, and not all the delivery stations need to be associated with all
the customer locations. In this paper, since the transportation costs differ according to the origin and
destination of the link, we also take into account this important and real aspect of different distances
that may be involved for transportation between nodes. Of course, one could also associate a very
high cost with a link, which would work essentially like the link being unavailable.

The optimization problem is as follows:

max
α,x,y,z,w1,w2

−c(α, x, y, z, w1, w2)−
L∑
l=1

I+1∑
i=1

γliα
l
i −

I+1∑
i=1

J∑
j=1

cij(xij)−
J∑

j=1

S∑
s=1

ĉjs(yjs, zj)

−
J∑

j=1

K∑
k=1

c̄jk(yj , zjk)−
S∑

s=1

K∑
k=1

c̃1sk(w
1
sk)−

S∑
s=1

K∑
k=1

c̃2sk(w
2
sk) +

L∑
l=1

S∑
s=1

K∑
k=1

Iskw
2l
sk (1)

−
I+1∑
i=1

ctri (α,w
2)−

S∑
s=1

cdrs (w2) +
L∑
l=1

J∑
j=1

K∑
k=1

γljkz
l
jk +

L∑
l=1

S∑
s=1

K∑
k=1

γlskw
1l
sk +

L∑
l=1

S∑
s=1

K∑
k=1

γlskw
2l
sk


αl
i ≤ Ql

i, ∀l = 1, . . . , L, ∀i = 1, . . . , I + 1 (2)
J∑

j=1

xlij ≤ αl
i, ∀l = 1, . . . , L, ∀i = 1, . . . , I + 1 (3)

I+1∑
i=1

xlij ≥
S∑

s=1

yljs +

K∑
k=1

zljk, ∀j = 1, . . . , J, ∀l = 1, . . . , I (4)

J∑
j=1

yljs ≥
K∑
k=1

w1l
sk +

K∑
k=1

w2l
sk, ∀s = 1, . . . , S, ∀l = 1, . . . , L (5)

J∑
j=1

zljk +

S∑
s=1

w1l
sk +

S∑
s=1

w2l
sk = rlk, ∀k = 1, . . . ,K, ∀l = 1, . . . , L (6)

L∑
l=1

J∑
j=1

xlij ≤ W · ntr
i , ∀i = 1, . . . , I + 1 (7)

L∑
l=1

K∑
k=1

w2l
sk ≤ pdn

dr
s , ∀s = 1, . . . , S (8)

w2l
sk ≤ P dr

l , ∀l = 1, . . . , L, ∀s = 1, . . . , S, ∀k = 1, . . . ,K (9)

w2l
sk ≤ Bdr

sk , ∀s = 1, . . . , L, ∀k = 1, . . . ,K, ∀l = 1, . . . , L (10)

αl
i, x

l
ij , y

l
js, z

l
jk, w

1l
sk, w

2l
sk ≥ 0

∀l = 1, . . . , L, ∀i = 1, . . . , I + 1, ∀j = 1, . . . , J, ∀s = 1, . . . , S, ∀k = 1, . . . ,K. (11)
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Constraint (2) ensures that the quantity of each type of product sold by a third-party seller to the
company (or self-produced by the organization) does not exceed the maximum quantity that can be
produced. Constraint (3) establishes that the total amount of product sent from a warehouse to all the
fulfillment centers must be less than or equal to that bought by the correspondent third-party seller
or that self-produced. Constraint (4) affirms that the quantity of product l sent from Gj to all the
delivery stations and the customers must be less than or equal to that received by all the warehouses.
Constraint (5) states that the quantity of product l that Ds receives from all the fulfillment centers
must be greater than or equal to that which it sells to all customers in both ways (trucks and drones).
Constraint (6) establishes that the request from each Ck must be satisfied by all fulfillment centers and
all delivery stations. Constraint (7) states that the sum of weights of all the products that are shipped
from each Wi to all fulfillment centers must not exceed the maximum capacity of the trucks available
at node Wi. Obviously, such a constraint is also guaranteed in the lower levels of the supply chain
network, where smaller quantities of products are transported (since constraint (4) and constraint (5)
hold). Constraint (8) states that the total weight of all the products transported from each Ds to the
customer locations must be less than or equal to the total capacity of the drones available at node
Ds. Moreover, for the drone to be able to carry any product (allocated on it), constraint (9) requires
that the weight of the transported product l (from Ds to Ck) must be less than the capacity of the
drone; otherwise, the drone cannot be used (and the truck is the only allowed transportation mode).
Note that such a constraint forbids that a single heavy product is carried by more than one drone.
Indeed, if a unit of product l weighs more than the maximum capacity allowed by the drone (that is,
if pl > pd), it cannot be transported by drone. Per definition, in this case, the parameter P dr

l = 0
and constraint (9) becomes w2l

sk ≤ 0, which is equivalent to w2l
sk = 0 (since the domain of the variable,

constraint (11), holds). On the contrary, the parameter P dr
l assumes such a large numerical value that

the constraint (9) is always satisfied. Indeed, the variable w2l
sk of the quantity of product l sent from

Ds to Ck must necessarily be less than the sum of the requests for product l from all the customer
locations. Constraint (10) guarantees that, if the distance between a node of the fourth level and a
node of the last level exceeds the duration (in meters) of the drone battery (that is, if d̃sk > bd), the
drone cannot be used (Bdr

sk = 0 ⇒ w2l
sk ≤ 0 ⇔ w2l

sk = 0).

4 The Variational Inequality Formulation

We now provide a variational formulation of problem (1)-(11). Variational inequalities, indeed, are a
very powerful mathematical tool both from a computational point of view as well as from a qualitative
perspective since a solid theory of existence and uniqueness of the solutions has been developed. The
following well-known theorem holds (see [27]).

Theorem 4.1 Let X∗ be a solution to the optimization problem:

min f(X)

subject to: X ∈ K, (12)

where f is a continuously differentiable function and K is a closed (not empty) convex set. Then, X∗

is a solution to the variational inequality problem V I(F,K):

Find X∗ ∈ K such that: ⟨F (X∗), X −X∗⟩ ≥ 0, ∀X ∈ K, (13)

where F (X) ≡ ∇f(X) is the gradient of f(·), K ⊂ RN is the feasible set, and ⟨·, ·⟩ denotes the inner
product in the Euclidean space RN

+ . Moreover, if f(X) is a convex function and X∗ is a solution to
V I(F,K), then X∗ is a solution to the optimization problem (12).

Let all the involved cost functions be continuously differentiable and convex. The following result
allows us to obtain the variational formulation of the proposed model (see, for instance, [28]).
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Theorem 4.2 A vector (α∗, x∗, y∗, z∗, w1∗, w2∗) ∈ K is an optimal solution to the problem (1)-(11) if
and only if such a vector is a solution to the variational inequality:
Find (α∗, x∗, y∗, z∗, w1∗, w2∗) ∈ K such that:

I+1∑
i=1

L∑
l=1

[
∂c(α∗, x∗, y∗, z∗, w1∗, w2∗)

∂αl
i

+ γli +
∂ctri (α

∗, w2∗)

∂αl
i

]
× (αl

i − αl∗
i )

+

I+1∑
i=1

J∑
j=1

L∑
l=1

[
∂c(α∗, x∗, y∗, z∗, w1∗, w2∗)

∂xlij
+

∂cij(x
∗
ij)

∂xlij

]
× (xlij − xl∗ij)

+

J∑
j=1

S∑
s=1

L∑
l=1

[
∂c(α∗, x∗, y∗, z∗, w1∗, w2∗)

∂yljs
+

∂ĉjs(y
∗
js, z

∗
j )

∂yljs
+

∂cjk(y
∗
j , z

∗
jk)

∂yljs

]
× (yljs − yl∗js)

+
J∑

j=1

K∑
k=1

L∑
l=1

[
∂c(α∗, x∗, y∗, z∗, w1∗, w2∗)

∂zljk
+

∂ĉjs(y
∗
js, z

∗
j )

∂zljk
+

∂cjk(y
∗
j , z

∗
jk)

∂zljk
− γljk

]
× (zljk − zl∗jk)

+

S∑
s=1

K∑
k=1

L∑
l=1

[
∂c(α∗, x∗, y∗, z∗, w1∗, w2∗)

∂w1l
sk

+
∂c̃1sk(w

1l∗
sk )

∂w1l
sk

− γlsk

]
× (w1l

sk − w1l∗
sk )

+
S∑

s=1

K∑
k=1

L∑
l=1

[
∂c(α∗, x∗, y∗, z∗, w1∗, w2∗)

∂w2l
sk

+
∂c̃2sk(w

2l∗
sk )

∂w2l
sk

− Isk

+
∂ctri (α

∗, w2∗)

∂w2l
sk

+
∂c̃drs (w2∗)

∂w2l
sk

− γlsk

]
× (w2l

sk − w2l∗
sk ) ≥ 0

∀(α, x, y, z, w1, w2) ∈ K, (14)

where

K :=
{
(α, x, y, z, w1, w2) ∈ RL[(I+1)+J(I+1)+JS+JK+2SK]

+ : (2)-(10) hold
}
. (15)

Proof Since the cost functions are continuously differentiable and convex, the function f in (1) is
continuously differentiable and convex.
Let N = L[(I + 1) + J(I + 1) + JS + JK + 2SK] be the dimension of the vectors belonging to the
feasible set. We define the N -dimensional vector X = (α, x, y, z, w1, w2) and the N -dimensional vector
F (X) ≡ ∇f(X) = (F 1(X), F 2(X), F 3(X), F 4(X), F 5(X), F 6(X)), where the (i, l)-th component, F 1

il,
of F 1(X) is given by

F 1
il =

∂c(α, x, y, z, w1, w2)

∂αl
i

+ γli +
∂ctri (α,w

2)

∂αl
i

,

the (i, j, l)-th component, F 2
ijl, of F

2(X) is given by

F 2
ijl =

∂c(α, x, y, z, w1, w2)

∂xlij
+

∂cij(xij)

∂xlij
,

the (j, s, l)-th component, F 3
jsl, of F

3(X) is given by

F 3
jsl =

∂c(α, x, y, z, w1, w2)

∂yljs
+

∂ĉjs(yjs, zj)

∂yljs
+

∂cjk(yj , zjk)

∂yljs
,

the (j, k, l)-th component, F 4
jkl, of F

4(X) is given by

F 4
jkl =

∂c(α, x, y, z, w1, w2)

∂zljk
+

∂ĉjs(yjs, zj)

∂zljk
+

∂cjk(yj , zjk)

∂zljk
− γljk,
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the (s, k, l)-th component, F 5
skl, of F

5(X) is given by

F 5
skl =

∂c(α, x, y, z, w1, w2)

∂w1l
sk

+
∂c̃1sk(w

1l
sk)

∂w1l
sk

− γlsk,

and, finally, the (s, k, l)-th component, F 6
skl, of F

6(X) is given by

F 6
skl =

∂c(α, x, y, z, w1, w2)

∂w2l
sk

+
∂c̃2sk(w

2l
sk)

∂w2l
sk

− Isk +
∂ctri (α,w

2)

∂w2l
sk

+
∂c̃drs (w2)

∂w2l
sk

− γlsk.

The feasible set K is defined as K and variational inequality problem (14) is put into standard form
(13).
Moreover, the feasible set K, given the constraints (2)-(11), is clearly convex and closed. Therefore,
Theorem 4.1 has been established. 2

Following the classical theory of variational inequalities (see, for instance, [27]), we have the fol-
lowing existence result:

Theorem 4.3 (Existence) If K is a compact and convex and F is a continuous function on K, then
variational inequality problem V I(F,K) (13) admits at least a solution X∗.

Moreover, we have the following uniqueness result:

Theorem 4.4 (Uniqueness) Under the assumptions of Theorem 4.3, if the function F (X) in (13)
is strictly monotone on K, that is:

⟨(F (X1)− F (X2))
T , X1 −X2⟩ > 0, ∀X1, X2 ∈ K, X1 ̸= X2,

then variational inequality (13) or, equivalently, variational inequality (14), admits a unique solution.

Theorem 4.5 Variational inequality problem (14) admits at least one solution.

Proof As already discussed in the proof of Theorem 4.2, the function f is continuously differentiable
and convex. Therefore, the function F ≡ ∇f(X) is continuous on K. Moreover, we observed that the
feasible set K is convex and closed. Compactness follows by observing that:

• all the variables are non-negative (see constraint (11));

• from constraint (2) we obtain that αl
i < +∞, ∀i = 1, . . . , I + 1, ∀l = 1, . . . , L;

• from constraint (3), the previous deduction, and constraint (7) we obtain that xlij < +∞, ∀i =
1, . . . , I + 1, ∀j = 1, . . . , J, ∀l = 1, . . . , L;

• from constraint (4) and the previous deduction we have that yljs < +∞, ∀j = 1, . . . , J, ∀s =
1, . . . , S, ∀l = 1, . . . , L;

• from constraint (4), the previous deductions, and constraint (6) it follows that zljk < +∞, ∀j =
1, . . . , J, ∀k = 1, . . . ,K, ∀l = 1, . . . , L;

• from constraint (5) and the previous deductions, constraint (6), and constraints (8)-(10) we have
that both w1l

sk, w
2l
sk < +∞, ∀s = 1, . . . , S, ∀k = 1, . . . ,K, ∀l = 1, . . . , L.

Therefore, the feasible set K is a closed and bounded set and, hence, we can affirm that the feasible
set K is also a compact set. The hypotheses of Theorem 4.3 are all satisfied and the thesis follows. 2
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5 Numerical Simulations

In this section, we first illustrate the supply chain network topology and the parameters used for the
numerical simulations. Then, we detail the performed simulations and emphasize the advantages of
using UAVs as revealed through the results. Furthermore, we propose some additional configurations
to show the potential of the mathematical model, which is able to capture some important real-world
aspects such as the limited drone capacity and battery duration. Finally, we provide results from a
sensitivity analysis to further emphasize the environmental impacts of drone usage.

5.1 Simulation Setting

The network topology of the considered supply chain is depicted in Figure 2. The supply chain network
consists of a company, two warehouses (a third-party seller’s warehouse and the company’s warehouse),
one fulfillment center, two delivery stations and three customer locations. We take into account such

Company

W1 W2 Warehouses

Trucks

G1 FulfillmentCenter

Trucks

D1 D2 Delivery Stations

Trucks or Drones

C1 C2 C3 Customer Locations

Figure 2: Supply chain network topology for the numerical simulations

a supply chain network, and consider a single product, in order to gain a better understanding of the
results obtained. Moreover, large geographical areas can be divided into smaller areas and associated
supply chain networks.

In the previous section, we assumed that all the cost functions are continuously differentiable and
convex. Hence, we assume that the typical cost function c, depending on the variable (or variables
vector) x, has the following general quadratic expression:

c(x) = β1 · x2 + β2 · x, (16)

where β1 > 0 and β2 ≥ 0. The choice of such an expression and parameters is motivated by observing
that all the assumptions are verified and these functions are well-suited to reality. Specifically, it is
clear that, since all the parameters are greater than or equal to zero, the cost functions are always
non-negative and are increasing functions. Moreover, by noting that β1 > 0, we can affirm that the
costs are convex. Finally, since there is not a constant coefficient, when x = 0, we obtain that c(0) = 0,
in accordance with reality.
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Therefore, the handling cost of the company has the following expression:

c(α, x, y, w1, w2) = β
(han)
1 · (2α, x, y, w1, w2)2 + β

(han)
2 · (2α, x, y, w1, w2),

where (2α, x, y, w1, w2) represents the sum of all variables, with a double weight for the variables
α1 and α2 which we are assuming to have a greater contribution to handling costs than the other
variables.

In these simulations, we assume that the transportation costs from the fulfillment center to the
delivery stations only depend on the transported amount of the product (that is, yjs): ĉjs(yjs, zj) =
ĉjs(yjs). Analogously, we assume that cjk(yj , zjk) = cjk(zjk). On the other hand, the handling costs
of Wi for the trucks depend on α and w2 as follows:

ctri (α,w
2) = β

(tr)
1 ·

α1 + α2 − ω

(∑
s,k

w2
sk

)2

+ β
(tr)
2 ·

α1 + α2 − ω

(∑
s,k

w2
sk

) .

Indeed, the handling costs for the trucks take into account the transported quantities via trucks
(through all the links of the network, from the first level to the last one), while the amount of products
transported via UAVs must be subtracted (with a weight of ω = 0.5, because it refers only to the last
mile).

All other cost functions follow the generic expression described in (16). We emphasize that any
type of expression that satisfies the assumptions that the functions are continuously differentiable and
convex could be used and it need not be of a quadratic form.

Cost functions Description β1 β2
c(α, x, y, z, w1, w2) Handling 0.5 0.5

cij(xij)
Transp. from W1 to G1 0.2 0.2
Transp. from W2 to G1 0.1 0.1

ĉjs(yjs, zj)
Transp. from G1 to D1 0.1 0.1
Transp. from G1 to D2 0.1 0.1

cjk(yj , zjk)
Transp. from G1 to C1 50 50
Transp. from G1 to C2 1 1
Transp. from G1 to C3 50 50

c̃1sk(w
1
sk)

Transp. from D1 to C1 (trucks) 2 2
Transp. from D1 to C2 (trucks) 8 8
Transp. from D1 to C3 (trucks) 8 8
Transp. from D2 to C1 (trucks) 8 8
Transp. from D2 to C2 (trucks) 9 9
Transp. from D2 to C3 (trucks) 2 2

c̃2sk(w
2
sk)

Transp. from D1 to C1 (UAVs) 1 1
Transp. from D1 to C2 (UAVs) 4 4
Transp. from D1 to C3 (UAVs) 4 4
Transp. from D2 to C1 (UAVs) 4 4
Transp. from D2 to C2 (UAVs) 4.5 4.5
Transp. from D2 to C3 (UAVs) 1 1

ctri (α,w
2) Trucks handling (∀i = 1, 2) 0.3 0.3

cdrs (w2) UAVs handling (∀s = 1, 2) 0.1 0.1

Table 5: Parameters of the cost functions numerical simulations

In Table 5, we report all the used β1 and β2 parameters, for each cost function. Note that we are
assuming that there are no links between the fulfillment center G1 to the customer locations C1 and
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C3. Indeed, at the costs associated with the links from G1 to C1 and C3, we set some very high values.
We suppose, in contrast, that the second customer location, C2, is very close to the fulfillment center.
Furthermore, observe that the more expensive links are those of the last mile, between the delivery
stations and the customer locations. More specifically, we assume that the drones are cheaper than
the trucks and that the trucks in the last mile are the most expensive. These choices are motivated by
reality. Moreover, we are assuming that the cheapest shipping method is chosen; for example, Amazon
could use its own trucks or those of third parties.

Parameters Values

Purchase price γ1 = 3
Production cost γ2 = 4
Incentive for UAVs Isk = 2, ∀s = 1, 2, ∀k = 1, 2, 3
Selling price from Gj γjk = 149, ∀j = 1, ∀k = 1, 2, 3
Selling price from Ds γsk = 150, ∀s = 1, 2, ∀k = 1, 2, 3
Maximum quantity at W1 Q1 = 20
Maximum quantity at W2 Q2 = 10
Demand from Ck rk = 10, ∀k = 1, 2, 3
Number of trucks at W1 ntr

1 = 4
Number of trucks at W2 ntr

2 = 5
Maximum capacity of trucks W = 6
Number of UAVs at D1 ndr

1 = 5
Number of UAVs at D2 ndr

2 = 5
Maximum weight (UAV) pd = 4
Parameter on the weights P dr = 30
Parameter on distances Bdr

sk = 30, ∀s = 1, 2, ∀k = 1, 2, 3

Table 6: Parameter values for numerical simulations

Table 6 displays all the values of the parameters used in the simulations. Observe that, as in
reality, the maximum capacity (weight) of each truck is greater than that of each drone. We have
that the selling price proposed by the fulfillment center is slightly lower than the prices proposed
by the delivery stations (but the fulfillment centers are usually more difficult to reach, because they
are further away). In these simulations, we are assuming that there are neither weight nor distance
limitations; namely, the weight of the product is less than the maximum weight that each drone is
able to carry (P dr = 30) and the distance between each delivery station and each customer location
is less than the distance allowed by the drone battery life (Bdr

sk = 30, ∀s = 1, 2, ∀k = 1, 2, 3). In the
additional configurations (see Section 5.3) we modify these parameters.

5.2 Performed Simulations and Results

We perform two main numerical simulations, which focus on:

S1: a UAV-based last mile network; that is, a supply chain using UAVs for the last mile;

S2: a supply chain without using UAVs.

Therefore, we execute the simulations having the same supply chain network topology, functions
and parameters as previously described, and which differ only in the presence (S1) or absence (S2) of
drones in the last mile.

The optimal results for both the simulations S1 and S2 are computed by solving the variational
inequality given in the previous section via the Euler Method (see [17]). We implemented the algorithm
in Matlab on an LG laptop with a 12th Gen Intel(R) Core(TM) i7-1260P, 16 GB RAM. The optimal
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solutions are obtained in less than one second. Simulation S1 consists of 21 variables, while S2 consists
of 15 variables.

The optimal solutions are reported in Table 7.

Variables
Optimal solutions
S1 S2

αl∗
i

i = 1 20 20
i = 2 10 10

xl∗ij
i = 1, j = 1 20 20
i = 2, j = 1 10 10

yl∗js
j = 1, s = 1 11.38 10
j = 1, s = 2 11.21 10

zl∗jk

j = 1, k = 1 0 0
j = 1, k = 2 7.41 10
j = 1, k = 3 0 0

w1l∗
sk

s = 1, k = 1 0 0
s = 1, k = 2 0 0
s = 1, k = 3 0 10
s = 2, k = 1 0 10
s = 2, k = 2 0 0
s = 2, k = 3 0 0

w2l∗
sk

s = 1, k = 1 7.98 −
s = 1, k = 2 1.39 −
s = 1, k = 3 1.92 −
s = 2, k = 1 1.93 −
s = 2, k = 2 1.20 −
s = 2, k = 3 7.99 −

Table 7: Optimal solutions of the simulations

The total objective function values for each simulation are:

f (S1)(α∗, x∗, y∗, z∗, w1∗, w2∗) = 2850.6;

f (S2)(α∗, x∗, y∗, z∗, w1∗, w2∗) = 1137.

In Table 8, we report the partial contribution of the terms of the objective functions.

5.2.1 Analysis of results

The optimal solutions of simulation S1 clearly show that 20 units of product (α1∗
1 = 20) are bought

by Amazon (or a general company) from a third-party seller, while 10 products are self-produced
(α1∗

2 = 10). These quantities of products are sent from the warehouses to the fulfillment center
(x1∗11 = 20, x1∗21 = 10), from which they are then distributed to both the delivery stations (y1∗11 = 11.38
and y1∗12 = 11.21). Moreover, a certain amount of product (z1∗12 = 7.41) is also directly sent from
the fulfillment center to the second customer location, C2 (the one near the fulfillment center). We
highlight that from all the delivery stations no products are sent to any customer location via trucks;
indeed, we obtain that w11∗

sk = 0, ∀s = 1, 2, ∀k = 1, 2, 3. Hence, all the products are sent via drones
(w21∗

sk ⪈ 0, ∀s = 1, 2, ∀k = 1, 2, 3). Therefore, we can easily observe that using drones is more optimal
than using trucks.

The obtained objective function to maximize clearly shows that the company earns a profit because
it assumes a positive value (consisting of the difference between the overall revenue and the costs).
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Terms of the
S1 S2

objective function

−C(hand) -1023.7 -987

−CPurPr -100 -100

−C(WG) -95 -95

−C(GD) -27.76 -22

−C(GC) -62.39 -110

−C
(DC)
tr 0 -1760

−C
(DC)
dr -213.41 −

ISM 44.79 −
−C(tr) -111.72 -279

−C(dr) -52.38 −
TR 4492.6 4490

f (α∗, x∗, y∗, z∗, w1∗, w2∗) 2850.6 1137

Table 8: Contributions of the terms of the objective functions

Indeed, the positive terms are the total revenue (obtained by the selling of products to the customers)
and the incentive for sustainable mobility (that is, the use of UAVs, instead of trucks, in order to
reduce pollution and congestion), and these represent the greater part of the objective function. This
aspect guarantees that the company obtains a profit in the selling of products. The handling cost is
the term with the highest value. Among the transportation costs, the one from the delivery stations
to the customer locations via drones is the greatest one, while, obviously, the transportation cost via
trucks (from each Ds to each Ck) is null, because no trucks are used for the last mile. Note that,
despite no trucks being used in the last mile, there are still handling costs of trucks, since they are
used in the higher levels of the supply chain network.

The optimal solutions of the second simulation S2 show that α1∗
1 = 20 units of product are bought

by Amazon from a third-party seller, while α1∗
2 = 10 products are self-produced, and these quantities

of products are sent from the warehouses to the fulfillment center (x1∗11 = 20, x1∗21 = 10), as in the first
simulation, S1. Unlike the first simulation, however, y1∗11 = 10 products are sent from the fulfillment
center G1 to the first delivery station D1; an equivalent amount of products (y1∗12 = 10) is sent to the
second delivery station D2 and directly to the second customer location C2 (zl∗jk = 10). The first and
third customer locations, instead, receive the requested products from the second and first delivery
stations, respectively (w11∗

21 = 10 and w11∗
13 = 10), using the allowed means of transport, which is by

truck.
Also, in this simulation, the company obtains a profit; indeed, the objective function (the difference

between the revenues and the costs) assumes a positive value (see Table 8). In contrast to the first
simulation, in which drones can be used, in this second simulation, where only trucks could be used,
the most relevant objective function term is the one related to the transportation costs of the last mile,
from each delivery station to each customer location, via trucks. Obviously, there are no transportation
costs via UAVs, nor incentives for sustainable mobility and handling costs of drones.

5.2.2 Comparison of results

We now compare the results of the two simulations. By observing the obtained optimal solutions
(see Table 7), we can affirm that the solutions are very similar (see Figure 3), except for the last
mile shipments (see Figure 4). Indeed, the means of transport allowed in the last mile essentially
represent the diversification between the two simulations. Specifically, in the first simulation, when
the model chooses the optimal means of transportation between trucks and drones, the drones are
chosen, because they are more convenient. In contrast, in the second simulation, we assume that there
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Figure 5: Objective function terms: handling costs of the company (C(hand)), total expense for the
purchase and the production cost (CPurPr), handling costs of all trucks (C(tr)) and of all UAVs (C(dr)).

are no drones, and, hence, only trucks can be used for the last mile. Furthermore, in S1, the demand
at the first customer location is satisfied by the delivery stations (more from the first one), as well as
the demand at the third customer location (which is mostly satisfied by the second delivery station).
On the contrary, the demand at the second customer location is mainly (and directly) satisfied by the
fulfillment center. In contrast, in S2, the demand at the first customer location is satisfied by only the
second delivery station; the demand at the second customer location by only the fulfillment center,
directly; and the third customer location by only the first delivery station.

From Figure 5 (and Table 8), we can observe that the handling costs of the company and the total
expense for the purchase and the production of products in S1 and S2 are comparable. In contrast,
the handling costs of all trucks for the second simulation are greater than those for the first one. The
latter is motivated by the use of drones in the last mile for S1, which reduces the handling costs of
trucks. Clearly, in simulation S2, there are no handling costs of drones since no drones can be used.

If we pay attention to the transportation costs (see Figure 6), we note that, in both the simulations,
the highest ones are those related to the last mile, as expected (since we are assuming that the last
mile links are the most expensive). In particular, we observe that the transportation cost from delivery
stations to customer locations via trucks is null in S1 because the products are transported via drones,
while they are very high in S2. Obviously, all the costs reported in Figure 5 and Figure 6 have a
negative sign in the objective function.

Finally, from Figure 7, we can see that only in the first simulation does the company receive the
incentive for sustainable mobility (since the drones are used); the total revenues (due to the products
selling) of the two simulations are comparable; the objective function value of the first simulation
is higher than that of the second simulation. Specifically, the difference between the two objective
function values is:

∆f = f (S1)(α∗, x∗, y∗, z∗, w1∗, w2∗)− f (S2)(α∗, x∗, y∗, z∗, w1∗, w2∗) = 2850.6− 1137 = 1713.6. (17)

The positive value of the difference between the two objective functions, ∆f , in (17), means that the
first simulation yields a greater objective function value. Furthermore, if a company is evaluating
whether to invest in UAVs or not, i.e., whether buying new drones and using them for the last mile is
advisable or not, it can use the proposed model, according to which if the investment for drones is less
than the value obtained by expression (17), then buying new drones is more suitable. Furthermore,
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we also calculate the percentage convenience of using UAVs as follows:

PC =

∣∣∣∣∣f (S1)(α∗, x∗, y∗, z∗, w1∗, w2∗)− f (S2)(α∗, x∗, y∗, z∗, w1∗, w2∗)

f (S1)(α∗, x∗, y∗, z∗, w1∗, w2∗)

∣∣∣∣∣ · 100% =

=

∣∣∣∣∣ ∆f

f (S1)(α∗, x∗, y∗, z∗, w1∗, w2∗)

∣∣∣∣∣ · 100% =

∣∣∣∣∣1713.62850.6

∣∣∣∣∣ · 100% = 60.11%. (18)

Expression (18) means that using drones improves the company’s profit by more than 60%.
We now investigate on the environmental benefits obtained using drones. More specifically, we an-

alyze the CO2 emissions, or the more general GHG emissions for the delivery activities, in simulations
S1 and S2 and compare them. It is known (see, for example, [22]) that the GHG emissions depend on
the transported weight and volume of products (as well as the number of delivered products), on the
type of used vehicles (that is, their sizes and their fuel factors) and on the travel distance. The two
main equivalent approaches to the measure of GHG emissions from freight transport operations are
based on energy consumption and on the level of transport activity, respectively (see [24], [16], [20],
[33]). Therefore, we can estimate E, the total GHG emission CO2 equivalent emissions (expressed as
grams), as follows:

E =
K∑
k=1

 J∑
j=1

F
(E)
jk ·

(
L∑
l=1

plz
l∗
jk

)
· djk +

S∑
s=1

F
(E)
sk ·

(
L∑
l=1

plw
1l∗
sk

)
· dsk

 , (19)

where, F
(E)
jk (expressed as grams of CO2e per kg-m: g/kgm) represents the emission factor for the link

from node j to node k (which depends on the type of used truck) and djk (m) is the distance between

node j and node k. Analogously, F
(E)
sk and dsk are the emission factor and the distance from s to k,

respectively ([2]). Although the emission factor value is widely studied by many researchers ([19]), it is
not the focus here. Hence, for this purpose, we use the EcoTransit World Model online environmental
assessment tool (see [14] and [30] for a detailed description of the model and the calculator). By
selecting the transport mode (truck) and vehicle type (size, fuel type, etc.), and inserting the distance
(the origin/destination coordinates) and the total amount of products (in kilograms) transported for
each link (that is, our optimal solutions), we obtain that the total GHG emission of simulation S1 is
E(S1) = 3.2g, while that of S2 is E(S2) = 27.3g. Observe that in simulation S1 we have a little amount
of emissions, since a percentage of product requested by k = 2 is directly satisfied from the fulfillment
center, by trucks. In simulation S2, instead, we have a greater value of emissions, since all deliveries
are made by trucks. Therefore, we calculate that 24.1g of GHG emissions might be eliminated through
the use of drones yielding a reduction of 88.3The results show that the use of UAVs can significantly
minimize the transportation costs and can also reduce the environmental emissions with incentives.

Therefore, the results show that the use of UAVs can significantly improve delivery efficiency and
minimize the transportation costs. We also highlight that using drones the environmental emissions
are significantly reduced.

5.3 Additional Configurations

We also examined other configurations of the UAV-based last mile supply chain network (S1), as
follows:

S1.1: with a large number of drones in each delivery station (ndr
s = 5, ∀s = 1, 2) and without weight

and distance limitations (P dr = 30 and Bdr
sk = 30, ∀s = 1, 2, ∀k = 1, 2, 3);

S1.2: with a large number of drones in each delivery station (ndr
s = 5, ∀s = 1, 2) and without weight

limitations (P dr = 30) but with some distance limitations (Bdr
12 = Bdr

21 = 30, Bdr
11 = Bdr

13 = Bdr
22 =

Bdr
23 = 0);
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S1.3: without weight and distance limitations (P dr = 30 and Bdr
sk = 30, ∀s = 1, 2, ∀k = 1, 2, 3) but

with a limited number of drones in some delivery stations (ndr
1 = 5, ndr

2 = 2);

S1.4: with a limited number of drones in some delivery station (ndr
1 = 4, ndr

2 = 2), without weight
limitations (P dr = 30) and with some distance limitations ( Bdr

12 = Bdr
13 = Bdr

21 = Bdr
23 = 30, while

Bdr
11 = Bdr

22 = 0);

S1.5: with a large number of drones in each delivery station (ndr
s = 5, ∀s = 1, 2), without distance

limitations (Bdr
sk = 30, ∀s = 1, 2, ∀k = 1, 2, 3), but with weight limitations (P dr = 0);

S1.6: with a large number of drones in each delivery station (ndr
s = 5, ∀s = 1, 2), and with weight and

distance limitations (P dr = 0 and Bdr
sk = 0, ∀s = 1, 2, ∀k = 1, 2, 3).

We summarize the main parameters of these additional configurations in Table 9. For these new

Simulations ndr
1 ndr

2 P dr Bdr
11 Bdr

12 Bdr
13 Bdr

21 Bdr
22 Bdr

23k

S1.1 5 5 30 30 30 30 30 30 30

S1.2 5 5 30 0 30 0 30 0 0

S1.3 5 2 30 30 30 30 30 30 30

S1.4 4 2 30 0 30 30 30 0 30

S1.5 5 5 0 30 30 30 30 30 30

S1.6 5 5 0 0 0 0 0 0 0

Table 9: Main parameters of the additional configurations

simulations, we assume that the transportation cost from the fulfillment center to the second customer
location is the same as thhose to C1 and C3 (with β1 = β2 = 50; that is, C2 is very far from G1).
We also choose the following parameters for the transportation costs from Ds to Ck, via trucks (see
Table 10). As described in the previous simulations, we set the parameters of the transportation costs

Cost functions Description β1 = β2

c̃1sk(w
1
sk)

Transp. from D1 to C1 (trucks) 2
Transp. from D1 to C2 (trucks) 3
Transp. from D1 to C3 (trucks) 4
Transp. from D2 to C1 (trucks) 4
Transp. from D2 to C2 (trucks) 3
Transp. from D2 to C3 (trucks) 2

Table 10: Parameters for the cost functions for the additional configurations.

from Ds to Ck via drones as half of those shown in Table 10. All the other parameters are chosen as
previously described in Section 5.1.

The optimal solutions are reported in Table 11. Comparing the results of the six configurations,
we can observe that the quantities of products bought or produced by the company (α∗

i ) remain
unchanged, as well as the quantities sent by the warehouses to the fulfillment center (x∗ij). For all the
configurations, there is no product directly sent by the fulfillment center to the customer locations
(z∗jk = 0, for j = 1, ∀k = 1, 2, 3). This is motivated by the very large distance between G1 and
Ck, ∀k = 1, 2, 3. In configuration S1.1 no trucks are used for the last mile because trucks are more
expensive than drones.

In configuration S1.2, we are assuming that, due to the limited battery duration, a drone starting
from the delivery station D1 cannot arrive (and come back) at the first and third customer locations
and a drone starting from D2 cannot reach either C2 or C3. Hence, UAVs are only used to transport
products from D1 to C2 and from D2 to C1, while trucks are used for the other deliveries.
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S1.1 S1.2 S1.3 S1.4 S1.5 S1.6

α∗
1 20.00 20.00 20.00 20.00 20.00 20.00

α∗
2 10.00 10.00 10.00 10.00 10.00 10.00

x∗11 20.00 20.00 20.00 20.00 20.00 20.00

x∗21 10.00 10.00 10.00 10.00 10.00 10.00

y∗11 15.00 14.38 20.05 18.26 15.00 15.00

y∗12 15.00 15.62 9.95 11.74 15.00 15.00

z∗11 0.00 0.00 0.00 0.00 0.00 0.00

z∗12 0.00 0.00 0.00 0.00 0.00 0.00

z∗13 0.00 0.00 0.00 0.00 0.00 0.00

w1∗
11 0.00 1.82 0.33 3.20 6.83 6.83

w1∗
12 0.00 0.66 0.28 0.71 5.00 5.00

w1∗
13 0.00 3.19 0.08 0.24 3.17 3.17

w1∗
21 0.00 0.63 0.17 1.51 3.17 3.17

w1∗
22 0.00 0.62 0.62 0.92 5.00 5.00

w1∗
23 0.00 6.81 1.16 1.30 6.83 6.83

w2∗
11 6.62 0.00 8.15 0.00 0.00 0.00

w2∗
12 5.00 8.72 6.41 8.37 0.00 0.00

w2∗
13 3.38 0.00 4.80 5.75 0.00 0.00

w2∗
21 3.38 7.56 1.35 5.29 0.00 0.00

w2∗
22 5.00 0.00 2.69 0.00 0.00 0.00

w2∗
23 6.62 0.00 3.96 2.71 0.00 0.00

Table 11: Optimal solutions of the additional configurations

Configuration S1.3 is characterized by a lower number of drones in delivery station D2 (ndr
2 = 2,

instead of 5 drones as used for the previous configurations. The maximum amount of product that
can be delivered via drones from a delivery station, Ds, is given by ndr

s · pd (see constraint (8)). The
maximum amount of product that can be delivered from D2 is, thus, given by ndr

2 ·pd = 8 and it is fully
utilized; indeed, we have that w2∗

21 +w2∗
22 +w2∗

23 = 1.35 + 2.69 + 3.96 = 8.00. Observe that the product
delivered in configuration S1.3 by the first delivery station is greater than those in configurations S1.1
and S1.2 (see the optimal variables y∗11 and w∗

1k in Table 11).
In configuration S1.4, we suppose both a lower number of drones in delivery stations (ndr

1 = 4 and
ndr
2 = 2) and the limitations due to the battery duration (a drone cannot reach C1 from D1 and C2

from D2). Therefore, we find out that the products are mainly delivered by the first delivery station,
using drones, but also that trucks have to be used (because of the limited usage of UAVs).

Finally, observe that the optimal solutions of configurations S1.5 and S1.6 are the same. Indeed,
both these configurations have a weight limitation (P dr = 0); that is, the weight of a unit of product
is greater than the maximum weight that each drone is able to carry. Therefore, since constraint (9)
holds, whether there is a limitation due to battery or not, no drones can be used and only trucks are
allowed.

These results show that the proposed model can effectively take into account very important
aspects, such as the number of drones available, their capacity (the maximum weight they are able
to carry, each drone individually and in total) and also the maximum distance that each drone can
travel (which is limited by its battery life).

5.4 Sensitivity analysis on the incentive values

We now provide a sensitivity analysis on the incentive values, Isk, for using UAVs to reduce pollution
and congestion on the links between each delivery station, Ds, and each customer location, Ck, ∀s =
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1, . . . , S and ∀k = 1, . . . ,K. Clearly, by varying the values of these parameters, the term of the
objective function related to the incentive for sustainable mobility, ISM , undergoes a modification
and, therefore, the optimal solutions can change.

We test seven different new simulations (SA1, SA2, SA3, SA4, SA5, SA6 and SA7), varying the
incentive values, Isk, ∀s = 1, 2, ∀k = 1, 2, 3, in an increasing manner, as shown in Table 12.

SA1 SA2 SA3 SA4 SA5 SA6 SA7

Isk 0 1 2 4 8 16 32

Table 12: Incentive value for each sensitivity analysis configuration

All the other parameters are set as shown in Section 5.1, that is, as in simulation S1, and with no
direct links between the fulfillment center and the customer locations.

SA1 SA2 SA3 SA4 SA5 SA6 SA7

α∗
1 20.00 20.00 20.00 20.00 20.00 20.00 20.00

α∗
2 10.00 10.00 10.00 10.00 10.00 10.00 10.00

x∗11 20.00 20.00 20.00 20.00 20.00 20.00 20.00

x∗21 10.00 10.00 10.00 10.00 10.00 10.00 10.00

y∗11 13.57 13.61 13.83 14.10 14.82 15.26 15.26

y∗12 16.43 16.39 16.17 15.90 15.18 14.74 14.74

z∗11 0.00 0.00 0.00 0.00 0.00 0.00 0.00

z∗12 0.00 0.00 0.00 0.00 0.00 0.00 0.00

z∗13 0.00 0.00 0.00 0.00 0.00 0.00 0.00

w1∗
11 1.95 1.76 1.55 0.00 0.00 0.00 0.00

w1∗
12 0.00 0.00 0.00 0.00 0.00 0.00 0.00

w1∗
13 0.00 0.00 0.00 0.00 0.00 0.00 0.00

w1∗
21 0.00 0.00 0.00 0.00 0.00 0.00 0.00

w1∗
22 10.00 9.94 9.61 8.66 7.09 0.00 0.00

w1∗
23 0.00 0.00 0.00 0.00 0.00 0.00 0.00

w2∗
11 8.05 8.24 8.45 9.31 8.97 8.04 8.04

w2∗
12 0.00 0.06 0.39 1.34 2.91 5.30 5.30

w2∗
13 3.57 3.54 3.44 3.45 2.94 1.93 1.93

w2∗
21 0.00 0.00 0.00 0.69 1.03 1.96 1.96

w2∗
22 0.00 0.00 0.00 0.00 0.00 4.70 4.70

w2∗
23 6.43 6.46 6.56 6.55 7.06 8.07 8.07

Table 13: Optimal solutions of the sensitivity analysis simulations

The optimal solutions for each sensitivity analysis configuration are reported in Table 13. We
observe that the quantities of product bought and produced (α∗

i , ∀i = 1, 2) and the quantities of
product sent from the warehouses to the fulfillment center (x∗ij , ∀i = 1, 2, j = 1) are the same in all
the simulations. The optimal quantities sent by the fulfillment center to the delivery stations (y∗js,
∀j = 1, ∀s = 1, 2) are comparable. In terms of greater detail, we note that the quantity sent to
the first delivery station varies increasingly; in contrast, the one sent to the second delivery station
varies decreasingly. No products are directly sent from the fulfillment center to the customer locations
(z∗jk = 0, ∀j = 1, ∀k = 1, 2, 3), since we are assuming a very high cost for these links.

The main differences among the different sensitivity analysis simulations lie in the optimal quan-
tities of product sent via trucks or drones in the last mile (that is, from the delivery stations to the
customer locations). Specifically, trucks are used from the D1 to C1 only when the unit incentive for
using drones is less than or equal to 2 (I11 ≤ 2). While trucks are used from the D2 to C2 only when
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Figure 8: Total amount of product sent via trucks (W (tr)) and via drones (W (dr)) in the sensitivity
analysis simulations

the unit incentive for using drones is less than or equal to 8 (I22 ≤ 8). Therefore, we see that the
demand at the first customer location is satisfied only by drones, if the incentive for using UAVs is
greater than or equal to 4; otherwise, trucks are used. Moreover, the demand at the second customer
location is satisfied only by drones, if the incentive for using UAVs is greater than or equal to 16.
And, the requests from the third customer locations are always satisfied by UAVs.

We denote by

W (tr) =
∑
s=1,2
k=1,2,3

w1∗
sk and W (dr) =

∑
s=1,2
k=1,2,3

w2∗
sk ,

the total amount of product sent via trucks and that sent via drones, respectively.

SA1 SA2 SA3 SA4 SA5 SA6 SA7

Isk 0 1 2 4 8 16 32

W (tr) 11.95 11.70 11.16 8.66 7.09 0.00 0.00

W (dr) 18.05 18.30 18.84 21.34 22.91 30.00 30.00

I(SM) 0.00 18.30 37.68 85.34 183.25 480.00 960.00

Table 14: Sensitivity analysis: amount of product sent via trucks (W (tr)) and via drones (W (dr)) and
incentive for sustainable mobility (I(SM))

In order to analyze in detail the amount of product sent via trucks, W (tr), and that sent via drones,
W (dr), and the incentive for sustainable mobility, I(SM), for each simulation, we report them in Table
14.

Figure 8 shows the amounts of product sent via trucks (see the blue bars) and via drones (see
the red bars), for each simulation. It is clear that, by increasing the incentive for using UAVs, the
amount of product transported via trucks decreases, while that shipped via drones increases. In
particular, observe that varying the unit incentive (Isk, ∀s, k) from 8 to 16, we obtain that an amount
of 7.09 (previously transported via trucks) is now delivered via drones, and that the total incentive
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for sustainable mobility, I(SM), increases by 296.75 (see Table 14, columns SA5 and SA6). Increasing
the unit incentive from 16 to 32 (see Table 14, columns SA6 and SA7), we have a higher incentive
for sustainable mobility (which differs by 480.00), but we obtain no difference in the distribution of
products via trucks and drones. Indeed, no trucks are used in both the two simulations. Hence, we can
conclude that the National Institution that disburses incentives for reducing pollution and congestion,
in this case, has no advantage in increasing the incentives from 16 to 32, while it would get positive
environmental impacts in varying the incentives from 8 to 16.

The results show how the choice of incentives can impact on environmental aspects (such as
congestion and pollution), since companies could change their decision-making strategies, distributing
more products via drones.

6 Conclusions and Suggestions for Future Research

UAVs have become increasingly popular in recent years, with their usage ranging from military oper-
ations to commercial applications such as aerial photography, mapping, and package delivery. With
advancements in technology, drones have become more sophisticated and capable of performing a wide
range of tasks. However, one of the main challenges facing drone technology is their optimal manage-
ment in supply chain networks for product delivery. Flow optimization is a critical aspect of supply
chain management, as it plays a crucial role in improving the efficiency and effectiveness of the whole
delivery process. It involves finding the best possible solution to a given problem, such as the optimal
quantities of products a company has to buy from third party sellers, produce iself, sell and deliver
via trucks and/or drones. UAVs usage can help to reduce the time, energy and resources required
for delivery operations, making them more cost-effective and environmentally sustainable. Therefore,
the implementation of drones in the last mile of a supply chain network can result in significant op-
timization benefits. By utilizing drones for last mile deliveries, companies can reduce delivery times,
increase delivery efficiency and reduce costs associated with traditional delivery methods.

This research paper has explored the use of drones for the last mile in the framework of optimizing
a supply chain network. The proposed nonlinear optimization model is able to take into account some
important key features such as the number of drones which are available, their maximum capacity
(that is, the maximum weight they are able to carry, each drone individually and in total) and the
maximum distance that each drone can reach (which is mostly conditioned by its limited battery
duration). Furthermore, the study has shown that the use of drones can significantly reduce the
delivery cost of the supply chain. Indeed, the analysis of numerical simulations has demonstrated
that implementing a drone delivery system can reduce the cost by up to 60%. A sensitivity analysis
on incentive values is also provided to highlight their impact on optimal solutions, and, hence, on
environmental aspects.

However, despite the potential benefits of drone delivery, there are also several challenges that must
be addressed. These challenges include regulatory issues. There are some restrictions and constraints
to which the use of UAVs is subject, especially in urban areas; there are also technological limitations,
delivery area issues and public acceptance. Therefore, it is crucial that companies work closely with
researchers, regulators and the public to develop, investigate and implement drone delivery solutions
that are safe, reliable and accepted by all stakeholders. In our further research, we aim to introduce
infrastructures that support drone delivery, such as green charging stations and landing pads, as well
as the use of renewable energy and collection points in the supply chain. Collection points could be
modeled as two different location types: the locker locations and the hub pick-up point locations.
The first are locations where parcel lockers (an automated postal box that allows users to self-collect
parcels) are positioned. External parcel lockers could be used at any time (in three days, when the
customer receives his code to open the locker), but they have limited dimensions. Hence, the hub
pick-up points, where there are no dimension limits, could be used, but only during some allowed
delivery time windows. The optimal locations, sizing and numbers, as well as the reverse chain to
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return items (distinguishing the collection points where packaging is also carried out or not) could be
analyzed.

Overall, our research suggests that the optimization of supply chains with drones in the last mile
can result in significant benefits for companies. As such, we recommend that companies continue to
explore the potential of drone delivery as a means of improving their supply chain operations, reducing
their costs, as well as pollution and congestion (from which consumers and society, as a whole, will
obtain benefits). In conclusion, the findings of this research suggest that the use of drones in the last
mile of a supply chain network can be an effective and efficient solution for businesses to improve their
delivery operations and reduce the environmental emissions.

Another challenge in last mile delivery, which could be addressed in a future work, is ensuring
timely delivery. Customers expect their orders to be delivered within a specific timeframe, and delays
or missed deliveries can lead to customer dissatisfaction and lost business. Delivery companies are
under pressure to meet these expectations while also managing the complexity of last mile logistics,
including traffic congestion, unexpected road closures, and other unforeseen events. To address these
challenges, delivery companies are using a range of technologies and strategies to improve the timeliness
of deliveries, but they are also investing in new delivery models that can help improve the timeliness
of deliveries. For example, some companies are experimenting with crowdsourcing delivery, where
independent contractors or gig workers deliver packages using their own vehicles. Such a model can
be particularly effective in urban areas where traffic congestion may slow down traditional delivery
vehicles.
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