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Abstract: Labor is an essential resource in the functionality of supply chains. The COVID-

19 pandemic has demonstrated the varied impacts of disruptions to supply chains because

of labor issues. Shortages of labor continue even now as economies begin to open up with

progress on vaccinations. Investing in labor productivity is a possible mechanism in moder-

ating shortfalls in labor. This paper constructs a supply chain network optimization model,

whose solution yields optimal product path flows to demand markets, the optimal invest-

ments in link labor productivity, as well as labor hours needed, and the optimal wages of the

workers in production, transportation, storage, and distribution. The model includes a bud-

get constraint on the investments, along with maximum bounds on investments on the supply

chain network links. The theoretical framework, which includes Lagrange analysis, and the

computational approach, are based on the theory of variational inequalities. Managerial

insights are provided obtained via the Lagrange analysis and a series of numerical examples,

which demonstrate that such investments can help both the firm and the consumers.

Keywords: labor, productivity, investments, supply chain networks, optimization, varia-

tional inequalities
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1. Introduction

Labor is a critical resource in every supply chain network activity. Without labor, prod-

ucts cannot be produced, transported, stored, and distributed. The COVID-19 pandemic

has vividly demonstrated the importance of labor resources, with disruptions to labor, due

to illnesses, deaths, the need for social distancing and other mitigation procedures, and even

certain labor-related trade measures, affecting the availability of products around the globe

as well as product prices (see, e.g., Reiley (2020), Rosane (2020), Russell (2020), Nagurney,

Salarpour, and Dong (2022)). Conerly (2021) emphasizes that the supply chain disruptions

that have been pervasive in the pandemic are due, primarily, to labor shortages.

There are many relevant issues associated with labor in supply chains, which have been

exacerbated in the pandemic. With vaccinations increasing and certain economies rebound-

ing, labor issues continue in the pandemic. Many firms and organizations have had difficulty

in attracting workers (cf. Rosenberg (2021), Morath (2021)). And this is not just a United

States phenomenon. Weber (2021) emphasizes that the labor shortage that is impacting

the U.S. is also coming to Europe, where it could prove even more difficult to repair. The

productivity of labor has also decreased in different sectors, with additional studies being

warranted (see Bloom et al. (2020)). Firms are trying to identify the wages that should be

paid, and whether wages can serve as a mechanism to attract labor during shortages and

shortfalls (cf. Sanandanji et al. (2021), Simon (2021)). In the COVID-19 pandemic, major

electronic commerce retailers, such as Amazon, have also experienced labor shortages, due,

in part, to immense demand for online deliveries and are seeking many new employees (Del

Ray (2020)). They are also increasing the wages that they pay (Herrera (2021)).

Hintzmann, Llads-Masllorens, and Ramos (2021) state that many economies had barely

recovered from the last crisis of 2007-2008, which was financial in nature, and then were

walloped by the COVID-29 pandemic. The authors note that industries in the European

Union are suffering, as many have had to shut down or reduce their production as well as to

decrease their labor force, while under severe financial pressure. Furthermore, the companies

have had to find strategies to survive. In their empirical study, that focused on 18 European

countries between 1995 and 2017, the authors are concerned with labor productivity and

industrial policy. They find that, among the variables considered significant, investments
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in advertising and marketing, organizational capital, R&D investment, and design are the

ones that contribute individually the most to productivity growth in European manufactur-

ing, whereas computerized information has a complementary effect with other such assets.

Stundziene and Saboniene (2019) argue that increases in labor productivity is one of the

key drivers of higher welfare in every economy. The goal of their research is to test if the

investment in tangible assets enhances labor productivity in the European manufacturing

sector. Their results show that, with consideration of all European countries, a 1% increase

in gross investment in tangible goods per person employed has a 0.0373% long-run effect on

apparent labor productivity.

Garton (2017) notes that there is a positive cycle between productivity and people with

higher levels of productivity allowing society to reinvest in human capital, and with proper

investments resulting in higher labor productivity. He notes that in the years between 2005

and 2015, labor productivity in the United States, as measured by GDP per labor hour was

less than 1% for 7 of the 10 years, according to the OECD. Furthermore, he believes that

productivity could be improved if we stopped the underinvestment in human capital. Chaney

Cambon (2021) emphasizes that, after a decade of minimal increases in labor productivity,

worker productivity might be about to accelerate, as a consequence of pandemic-induced

technological adoption, which could raise economic growth and wages in coming years while

keeping away inflation pressure. In her article, she highlights a study by McKinsey, wherein

approximately 75% of the respondents at North American and European companies to the

survey conducted in December 2020 expected to speed up investment in new technology in

2020-24, higher than the 55% who said that they increased such investments in 2014-19.

There is a synergistic cycle between productivity and people: Higher levels of productivity

allow society to reinvest in human capital and smart investments result in higher labor

productivity.

Economists have, historically, included labor, along with capital, in the construction of

production functions but their analyses have, typically, not considered supply chains holisti-

cally. It is important to capture the latter since local disruptions can permeate much farther

afield. Furthermore, given the timeliness, it is critical to also identify the possible benefits

of investments in labor productivity. Jorgenson (1991) eloquently argues that investments

in productivity of labor can take many forms from investment in tangible assets, which he
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terms “hardware,” to investment in intangible ones, such as R&D, which he refers to as

“software,” as well as investment in human capital through the acquisition of skills and ed-

ucation. And, in the pandemic, investments in health and safety as to work environments,

can reduce stress and enhance workers’ productivity (see Igoe (2021)).

2. Literature Review and Contributions

In this paper, we propose a network optimization approach for identifying investments

in productivity of labor in any/all supply chain network links. We consider a firm that

seeks to determine its profit-maximizing product path flows from production sites to points

of demand, along with the labor required, the wages that should be paid the workers, and

the optimal investments in labor productivity. The model extends some recent optimization

research on the integration of labor into supply chain networks but with a crucial distinction

- that of the optimal allocation of investments, subject to a budget constraint and bounds

on the link productivity investments. In particular, Nagurney (2021a) constructed a supply

chain network optimization model with labor with a focus on a perishable product, specif-

ically, food. Therein there was a bound on labor availability on each of the links. That

work was, subsequently, adapted and extended in Nagurney (2021b) to consider several dis-

tinct sets of constraints on labor. In the latter paper, both fixed demands for the products,

which are relevant in the case of PPEs, for example, as well as elastic demand functions

were considered. That work was then extended using game theory in the case of elastic

demands to multiple competing firms by Nagurney (2021c). In the supply chain network

optimization model introduced in this paper, in contrast, there are no bounds on labor, but

labor availability is wage-dependent. This is relevant since many companies are now looking

at raising wages in order to attract workers. Furthermore, in contrast to the earlier work,

the firm can invest in labor productivity on its supply chain network, subject to a budget

constraint and also a maximum on the investment allowable on each link. The latter is

important since there may be a maximum that a firm may wish to allocate for productivity

enhancement on a link. Plus, there may be a maximum that may be achievable, regardless

of the investment, because of human limitations. Several classical models in economics that

focus on productivity and growth are highlighted in Stiroh (2001). However, none of these

consider a supply chain network perspective. For a recent survey on COVID-19 and supply
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chains, see Queiroz et al. (2020).

In addition, in this paper, we provide a Lagrange analysis, which yields alternative vari-

ational inequality formulations, along with deeper managerial insights. This is the first time

that such analysis is conducted in a supply chain network optimization model with labor.

One of the variational inequality formulations is then used for computational purposes, since

the proposed algorithm provides us with closed form iterations of the product path flows and

the Lagrange multiplier associated with the investment budget constraint at each iteration.

For Lagrange analysis on other network-based applications, see: Daniele (2001, 2004, 2006),

Barbagallo, Daniele, and Maugeri (2012), Toyasaki et al. (2014), Caruso and Daniele (2018),

Colajanni et al. (2018), Daniele and Sciacca (2021), and Nagurney and Daniele (2021).

This paper is organized as follows. In Section 3, the supply chain network optimization

model is constructed. The model consists of a single firm interested in determining its profit-

maximizing optimal product path flows to the demand markets, along with the optimal

investments in link productivity. The investments are subject to a budget constraint and

upper bounds on each link. The link productivity factors are generalized from those in

Nagurney (2021a,b,c) to allow for investments, and relate the number of labor hours on a link

to the product output on the link, whether the links are production links, or transportation,

storage, or distribution ones. In the optimization model, labor is also wage-dependent, in

that the higher the wage, the greater the labor availability. The solution of the model

yields the optimal product path and link flows, as well as the optimal link productivity

investments, along with the labor hours needed on each link and the wages to be paid

the workers. We provide the variational inequality formulation of the optimal solution and

then, in Section 4, we conduct Lagrange analysis. The analysis enables the construction of

alternative variational inequality formulations, one of which is on the nonnegative orthant,

and very amenable to solution via the algorithm we outline in Section 5. Section 4 also

makes use of the Lagrange analysis to obtain managerial insights of an economics nature.

Section 5 then provides solutions to a series of numerical examples, for which full results are

reported. Section 6 summarizes the results in this paper and presents the conclusions.
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3. The Labor Productivity Investment Supply Chain Network Model

We now introduce the optimization model for labor productivity investments in supply

chain networks. Many firms in different industrial sectors, including agriculture and manu-

facturing, are dealing with shortfalls in labor and, hence, enhancing labor productivity may

be an avenue for increasing product availability.

The optimization model considers a supply chain network topology, as depicted in Fig-

ure 1, which can be adapted, depending upon the specific application and circumstances

under study. The top node corresponds to the firm, with the subsequent directed links

corresponding to production in the first tier; to transportation in the second tier; storage

at the distribution centers, and, with the bottom tier of links denoting the distribution to

points of demand, which are represented by the bottom nodes: 1, . . . , nR, corresponding to

the demand markets.

The supply chain network in Figure 1 is abstracted as the graph G = [N, L], where

N denotes the set of nodes and L denotes the set of links. A path p in the supply chain

network joins the top-tiered node 1, to a bottom-tiered demand market node. The paths are

acyclic and each path consists of a sequence of links representing the supply chain network

activities of production, transportation, storage, and distribution to a demand market. A

demand market may be a business, an organization, a retailer, or even consumers at their

home. We let Pk denote the set of paths, representing alternative supply chain network

processes, joining the pair of nodes (1, k), with k denoting a typical demand market node.

P then denotes the set of all paths joining node 1 to the demand market nodes. There are

nP paths in the supply chain network and nL links. We denote a typical link in the supply

chain network by a.

The firm is interested in maximizing its profits by identifying its optimal product path

flows plus the investments in labor productivity on the links.

The additional notation for the model is given in Table 1. All vectors are assumed to be

column vectors.

We now provide the constraints and then construct the objective function representing

the profit that the firm wishes to maximize.
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Figure 1: The Supply Chain Network Topology for Optimization of Product Path Flows and
Investments in Labor Productivity
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Table 1: Notation for the Supply Chain Network Models with Labor

Notation Variable Definition
xp the product flow on path p. We group all the path flows into the vector

x ∈ RnP
+ .

fa the product flow on link a. We group all the link flows into the vector
f ∈ RnL

+ .
la the labor available for link a activity, ∀a ∈ L.
dk the demand for the product at demand market k; k = 1, . . . , nR. We

group the demands into the vector d ∈ RnR
+ .

va the investment in labor productivity on link a, ∀a ∈ L. We group all the
investments in links into the vector v ∈ RnL

+ .
wa the (hourly) wage paid for a unit of labor on link a, ∀a ∈ L.

Notation Parameter Definition
γa positive factor relating wage to labor on link a, ∀a ∈ L.

vmax
a the maximum investment possible in labor productivity on link a, ∀a ∈

L.
B the budget of the firm for labor productivity investments.

Notation Function Definition
ĉa(f, va) the total operational cost associated with link a, excluding the labor

cost, ∀a ∈ L.
ρk(d) the demand price for the product at demand market k; k = 1, . . . , nR.

αa + βava the link productivity function relating input of labor to product flow on
link a, ∀a ∈ L. We let πa = αa + βava,∀a ∈ L.

The path flows must be nonnegative, that is,

xp ≥ 0, ∀p ∈ P. (1)

The demand at each demand market must be satisfied by the sum of the product flows

of the firm on paths to each demand market, that is,∑
p∈Pk

xp = dk, k = 1, . . . , nR. (2)

The product flow on each link is equal to the sum of flows on paths that contain that

link:

fa =
∑
p∈P

xpδap, ∀a ∈ L, (3)
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where δap = 1, if link a is contained in path p, and is 0, otherwise.

Furthermore, since the product output on a link is equal to the labor input on the link

times the productivity on the link, which is no longer fixed as in Nagurney (2021a,b,c), but,

rather, is a function of the investment in productivity on the link, we have that:

fa = (αa + βava)la, ∀a ∈ L, (4)

where

0 ≤ va ≤ vmax
a , ∀a ∈ L. (5)

According to (5), the investment on each link in terms of labor productivity must be

nonnegative and cannot exceed the imposed maximum investment desired on a link by the

firm. Having the constraints in (5) is important since there may be a maximum achievable

productivity for a given link. (4), in turn, is an extension of a linear production function (cf.

Mishra (2007)) to include the labor productivity enhancement due to investment. Such an

investment can be for education, improvement in hardware or technology, or even software

as well as investment in health and safety in the pandemic.

Also, we must have that the firm does not exceed the budget that it has allocated for

labor productivity investments. Hence, the following constraint also applies:

∑
a∈L

va ≤ B. (6)

We emphasize the flexibility of the model in that a firm can invest in any or all of its

supply chain network links. The solution of the full supply chain network optimization model

will yield which links the firm should invest in and also at what level.

In addition, we assume that the availability of labor is wage-dependent, so that

la = γawa, ∀a ∈ L. (7)

Note that according to (7), the higher the wage, the greater the labor availability. This is

also reasonable, and higher wages are now being used by many companies to attract workers.
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The firm seeks to maximize its profit, with the profit denoted by U , being the difference

between its revenue and the total cost, with the total cost consisting of the sum of the total

operational costs on all the links and the investments in labor productivity on the links plus

the total wages paid. Hence, the profit is expressed as:

U =
nR∑
k=1

ρk(d)dk −
∑
a∈L

ĉa(f, va)−
∑
a∈L

va −
∑
a∈L

wala. (8)

and the maximization problem is subject to the above constraints.

We now demonstrate that (8) can be expressed solely in terms of product path flows

and link labor productivity investments. Indeed, in view of (3), we can define link total

operational cost c̃a(x, va) ≡ ĉa(f, va), for all links a ∈ L. Also, in view of (2), we can define

demand price function ρ̃k(x) ≡ ρk(d), for all k. Also, using (4) and (7) and then (3), we

deduce that

wala =

(∑
p∈P xpδap

(αa + βava)

)2
1

γa

, ∀a ∈ L. (9)

We now rewrite (8) as:

U(x, v) =
nR∑
k=1

ρ̃k(x)
∑

p∈Pk

xp −
∑
a∈L

c̃a(x, va)−
∑
a∈L

va −
∑
a∈L

(∑
p∈P xpδap

(αa + βava)

)2
1

γa

. (10)

The firm’s goal is to maximize (10) subject to the nonnegativity constraints (1), the

budget constraint (6), and the bounds on the investments on the links (5) (since we have

embedded constraints (2), (3), (4), and (7) into the objective function). We define the fea-

sible set K1 ≡ {(x, v)| (1), (5), and (6) hold}. Observe that the feasible set K1 is convex.

Also, we assume that the profit function U(x, v) is continuously differentiable and concave.

Then, it follows that an optimal solution to the above network optimization problem coin-

cides with the solution of the following variational inequality problem (cf. Kinderlehrer and

Stampacchia (1980) and Nagurney (1999)): determine (x∗, v∗) ∈ K1 such that

−
∑
p∈P

∂U(x∗, v∗)

∂xp

× (xp − x∗p)−
∑
a∈L

∂U(x∗, v∗)

∂va

× (va − v∗a) ≥ 0, ∀(x, v) ∈ K1, (11a)

or, equivalently, by expanding out (11a), determine (x∗, v∗) ∈ K1, such that

nR∑
k=1

∑
p∈Pk

∂C̃p(x
∗, v∗)

∂xp

+
∑
a∈L

2

γa

∑
q∈P x∗qδaq

(αa + βav∗a)(αa + βav∗a)
δap − ρ̃k(x

∗)−
nR∑
l=1

∂ρl(x
∗)

∂xp

∑
q∈Pl

x∗q

×[xp − x∗p
]
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+
∑
a∈L

∂c̃a(x
∗, v∗a)

∂va

+ 1− 2(αa + βav
∗
a)
−3βa

γa

(
∑
p∈P

x∗pδap)
2

× [va − v∗a] ≥ 0, ∀(x, v) ∈ K1,

(11b)

where

∂C̃p(x, v)

∂xp

≡
∑
a∈L

∑
b∈L

∂ĉb(f, vb)

∂fa

δap, ∀p ∈ P, and
∂ρ̃l(x)

∂xp

≡ ∂ρl(d)

∂dk

,∀p ∈ Pk,∀k. (12)

A solution (x∗, v∗) ∈ K1 is guaranteed to the above variational inequalities since the

feasible set is compact and the underlying functions, under our imposed assumptions, are

continuous.

4. Lagrange Analysis and Alternative Variational Inequality Formulations

We now turn to Lagrange analysis, which enables us to construct alternative variational

inequality formulations, one of which we will use for computational purposes in the next

Section. Lagrange analysis also provides us with deeper insights.

By setting

V (x, v)

=
nR∑
k=1

∑
p∈Pk

∂C̃p(x
∗, v∗)

∂xp

+
∑
a∈L

2

γa

∑
q∈P x∗qδaq

(αa + βav∗a)(αa + βav∗a)
δap − ρ̃k(x

∗)−
nR∑
l=1

∂ρl(x
∗)

∂xp

∑
q∈Pl

x∗q


×
[
xp − x∗p

]
+
∑
a∈L

∂c̃a(x
∗, v∗a)

∂va

+ 1− 2(αa + βav
∗
a)
−3βa

γa

(
∑
p∈P

x∗pδap)
2

× [va − v∗a] , (13)

variational inequality (11b) can be rewritten as the following minimization problem:

min
K1

V (x, v) = V (x∗, v∗) = 0. (14)

Given the previous assumptions, all the functions in (14) are convex and continuously

differentiable.

The constraints are reformulated as below in order to construct the Lagrange function,

with the associated Lagrange multipliers stated immediately afterwards.

g =
∑
a∈L

va −B ≤ 0, η,

11



h1
a = −va ≤ 0, λ1

a,∀a,

h2
a = va − vmax

a ≤ 0, λ2
a,∀a,

ep = −xp ≤ 0, µp,∀p. (15)

We now construct the Lagrange function L(x, v, η, λ1, λ2, µ), where λ1 and λ2 are, respec-

tively, the vectors of all the λ1
as and λ2

as, and µ is the vector of all the µps, as follows:

L(x, v, η, λ1, λ2, µ)

=
nR∑
k=1

∑
p∈Pk

∂C̃p(x
∗, v∗)

∂xp

+
∑
a∈L

2

γa

∑
q∈P x∗qδaq

(αa + βav∗a)(αa + βav∗a)
δap − ρ̃k(x

∗)−
nR∑
l=1

∂ρl(x
∗)

∂xp

∑
q∈Pl

x∗q


×
[
xp − x∗p

]
+
∑
a∈L

∂c̃a(x
∗, v∗a)

∂va

+ 1− 2(αa + βav
∗
a)
−3βa

γa

(
∑
p∈P

x∗pδap)
2

× [va − v∗a]

+gη +
∑
a∈L

h1
aλ

1
a +

∑
a∈L

h2
aλ

2
a +

∑
p∈P

epµp, (17)

∀x ∈ RnP
+ ,∀v ∈ RnL

+ ,∀η ≥ 0,∀λ1 ∈ RnL
+ ,∀λ2 ∈ RnL

+ ,∀µ ∈ RnP
+ .

Since the feasible set K1 is convex and the Slater condition is satisfied, if (x∗, v∗) is a

minimal point of (14), there exist η∗ ≥ 0, λ1∗ ∈ RnL
+ , λ2∗ ∈ RnL

+ , µ∗ ∈ RnP
+ , such that the

vector (x∗, v∗, η∗, λ1∗, λ2∗, µ∗) is a saddle point of the Lagrange function (17):

L(x∗, v∗, η, λ1, λ2, µ) ≤ L(x∗, v∗, η∗, λ1∗, λ2∗, µ∗) ≤ L(x, v, η∗, λ1∗, λ2∗, µ∗) (18)

and

g∗η∗ = 0,

h1∗
a λ1∗

a = 0, ∀a ∈ L,

h2∗
a λ2∗

a = 0, ∀a ∈ L,

e∗pµ
∗
p = 0, ∀p ∈ P. (19)

From the right-hand side of (18) it follows that x∗ ∈ RnP
+ and v∗ ∈ RnL

+ is a minimal point

of L(x, v, η∗, λ1∗, λ2∗, µ∗) in the whole space and therefore, we have that, for all paths p ∈ P :

∂L(x∗, v∗, η∗, λ1∗, λ2∗, µ∗)

∂xp
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=

∂C̃p(x
∗, v∗)

∂xp

+
∑
a∈L

2

γa

∑
q∈P x∗qδaq

(αa + βav∗a)(αa + βav∗a)
δap − ρ̃k(x

∗)−
nR∑
l=1

∂ρl(x
∗)

∂xp

∑
q∈Pl

x∗q

− µ∗p = 0.

(20)

and for all links a ∈ L:
∂L(x∗, v∗, η∗, λ1∗, λ2∗, µ∗)

∂va

=

∂c̃a(x
∗, v∗a)

∂va

+ 1− 2(αa + βav
∗
a)
−3βa

γa

(
∑
p∈P

x∗pδap)
2

+ η∗ − λ1∗
a + λ2∗

a = 0, (21)

together with conditions (19).

4.1 Alternative Variational Inequality Formulations

The variational inequalities that we now present are defined on the nonnegative orthant,

which enables the resolution of our proposed computational procedure into steps yielding

closed form expressions in the variables.

Theorem: Alternative Variational Inequality Formulations

Conditions (19), (20), and (21) represent an alternative form of variational inequality (11b)

given by: determine x∗ ∈ RnP
+ , v∗ ∈ RnL

+ , η∗ ≥ 0, λ1∗ ∈ RnL
+ , λ2∗ ∈ RnL

+ , µ∗ ∈ RnP
+ , such that

∑
p∈P

∂C̃p(x
∗, v∗)

∂xp

+
∑
a∈L

2

γa

∑
q∈P x∗qδaq

(αa + βav∗a)(αa + βav∗a)
δap − ρ̃k(x

∗)−
nR∑
l=1

∂ρl(x
∗)

∂xp

∑
q∈Pl

x∗q − µ∗p

×[xp − x∗p
]

+
∑
a∈L

∂c̃a(x
∗, v∗a)

∂va

+ 1− 2(αa + βav
∗
a)
−3βa

γa

(
∑
p∈P

x∗pδap)
2 + η∗ − λ1∗

a + λ2∗
a

× [va − v∗a]

+

[
B −

∑
a∈L

v∗a

]
×[η − η∗]+

∑
a∈L

v∗a×
[
λ1

a − λ1∗
a

]
+
∑
a∈L

[vmax
a − v∗a]×

[
λ2

a − λ2∗
a

]
+
∑
p∈P

x∗p×
[
µp − µ∗p

]
≥ 0,

∀x ∈ RnP
+ , v ∈ RnL

+ ,∀η ≥ 0, λ1 ∈ RnL
+ , λ2 ∈ RnL

+ , µ ∈ RnP
+ , (22)

or, more simply, determine x∗ ∈ RnP
+ , v∗a, where 0 ≤ v∗a ≤ vmax

a ,∀a, and η∗ ≥ 0, such that

∑
p∈P

∂C̃p(x
∗, v∗)

∂xp

+
∑
a∈L

2

γa

∑
q∈P x∗qδaq

(αa + βav∗a)(αa + βav∗a)
δap − ρ̃k(x

∗)−
nR∑
l=1

∂ρl(x
∗)

∂xp

∑
q∈Pl

x∗q

×[xp − x∗p
]

13



+
∑
a∈L

∂c̃a(x
∗, v∗a)

∂va

+ 1− 2(αa + βav
∗
a)
−3βa

γa

(
∑
p∈P

x∗pδap)
2 + η∗

× [va − v∗a]

+

[
B −

∑
a∈L

v∗a

]
× [η − η∗] ≥ 0,

∀x ∈ RnP
+ ,∀va, where 0 ≤ va ≤ vmax

a ,∀a,∀η ≥ 0. (23)

Proof: It follows directly from (19), (20), (21) that for x∗ ∈ RnP
+ , v∗ ∈ RnL

+ , η∗ ≥ 0, λ1∗ ∈
RnL

+ , λ2∗ ∈ RnL
+ , µ∗ ∈ RnP

+ satisfying those expressions also satisfies variational inequality

(22). We now prove that such vectors also satisfy variational inequality (11b).

Multiplying (20) by (xp − x∗p), we obtain:∂C̃p(x
∗, v∗)

∂xp

+
∑
a∈L

2

γa

∑
q∈P x∗qδaq

(αa + βav∗a)(αa + βav∗a)
δap − ρ̃k(x

∗)−
nR∑
l=1

∂ρl(x
∗)

∂xp

∑
q∈Pl

x∗q

× (xp − x∗p)

= µ∗p × (xp − x∗p), (24)

and, since µ∗pxp ≥ 0, for all p, and µ∗px
∗
p = 0, for all p, summation of the left-hand side of

(24) over all paths p, yields:

∑
p∈P

∂C̃p(x
∗, v∗)

∂xp

+
∑
a∈L

2

γa

∑
q∈P x∗qδaq

(αa + βav∗a)(αa + βav∗a)
δap − ρ̃k(x

∗)−
nR∑
l=1

∂ρl(x
∗)

∂xp

∑
q∈Pl

x∗q


×(xp − x∗p) ≥ 0, ∀x ∈ RnP

+ . (25)

Multiplying (21) by (va − v∗a), in turn, yields:∂c̃a(x
∗, v∗a)

∂va

+ 1− 2(αa + βav
∗
a)
−3βa

γa

(
∑
p∈P

x∗pδap)
2

× (va − v∗a)

= (−η∗ + λ1∗
a − λ2∗

a )× (va − v∗a). (26)

Summation, in turn, over all links a ∈ L of (26), and the use of (19), gives us:

∑
a∈L

∂c̃a(x
∗, v∗a)

∂va

+ 1− 2(αa + βav
∗
a)
−3βa

γa

(
∑
p∈P

x∗pδap)
2

× (va − v∗a)
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= −η∗
∑
a∈L

va + η∗B −
∑
a∈L

λ2∗
a va +

∑
a∈L

λ2∗
a vmax

a +
∑
a∈L

λ1∗
a va −

∑
a∈L

λ1∗
a v∗a. (27)

The first two terms on the right-hand side of (27) result in a nonnegative value, as do the

second two terms. The next to the final term in (27) is also nonnegative, whereas the last

term is equal to zero. Hence, the first conclusion follows.

Furthermore, variational inequality (23) follows from variational inequality (22) since the

feasible set underlying the former captures the nonnegativity assumption on the product path

flows and on the productivity link investments with the latter not exceeding the respective

imposed upper bounds. The proof is complete. 2

4.2 Additional Lagrange Analysis with Interpretations

We now utilize the above Lagrange analysis results to obtain deeper insights. Making use

of (20), we consider the case where the optimal product flow on a path p, p ∈ Pk, is positive;

that is, x∗p > 0, which means that µ∗p = 0. From (20), we then get:∂C̃p(x
∗, v∗)

∂xp

+
∑
a∈L

2

γa

∑
q∈P x∗qδaq

(αa + βav∗a)(αa + βav∗a)
δap = ρ̃k(x

∗) +
nR∑
l=1

∂ρl(x
∗)

∂xp

∑
q∈Pl

x∗q

 . (28)

Equation (28) has the interpretation that the marginal total costs, which include what

we refer to as the marginal total operational cost on a path and the marginal cost associated

with labor on the path (see also (9) and (10)), are precisely equal to the marginal revenue.

This is a good result in terms of economics.

If the optimal product flow on the path is still positive and if there is a link a on which

the optimal investment on the link is neither at its upper bound nor at its lower bound, and

the budget is not exhausted, then we know, from (21), that:∂c̃a(x
∗, v∗)

∂va

+ 1 = 2(αa + βav
∗
a)
−3βa

γa

(
∑
p∈P

x∗pδap)
2

 . (29)

Expression (29) has the interpretation that the marginal cost associated with investing in

the productivity of the link is equal to the marginal return of the investment. On the other
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hand, if the budget is exhausted, then we can conclude that the marginal cost associated with

investing in productivity on the link is greater than the marginal return of the investment

and that is not a good situation. The Lagrange multiplier η∗ is then greater than zero, and

its interpretation as a shadow price reflects how much can be gained in terms of the profit

by increasing the budget by a unit. Of course, if the investment on the link is at its upper

bound, and the budget is exhausted, and the path has positive flow at optimality, then the

marginal investment cost on the link exceeds the marginal return by even a greater amount.

Going back to (20), for completeness, we see that if, on the other hand, the optimal

product flow on a path p is zero; that is, x∗p = 0, then the marginal total costs on the path

exceed the marginal revenue on the path, so it makes no sense, from a profit-standpoint, to

use that path for product flow. We recall that a path consists of: production, transportation,

storage, and distribution in our basic framework, The framework, as noted earlier, can be

adapted from a supply chain topological standpoint, as need be, and can even incorporate the

option of electronic commerce (or direct sales) as investigated in the context of food supply

chains by Nagurney (2021a). We demonstrate this feature through numerical examples in

the next section.

Also, from (21), one can see that, if the investment on a link a is zero; that is, v∗a = 0,

and the budget is not exhausted then the marginal costs associated with investing in the

productivity on the link exceeds the marginal return of investing in the link productivity.

5. Computational Procedure and Numerical Examples

All of the above variational inequalities can be put into standard variational inequality

form (cf. Nagurney (1999)), where the finite-dimensional variational inequality problem

VI(F,K), is to determine a vector X∗ ∈ K ⊂ RN , such that

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (30)

where F is a given continuous function from K to RN , K is a given closed, convex set, and

〈·, ·〉 denotes the inner product in N -dimensional Euclidean space.

However, we will be solving variational inequality (23), since the algorithm that we pro-

pose will resolve the problem into a series of subproblems in the variables, for which we
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give explicit formulae. Hence, for completeness, we now put variational inequality (23)

into standard form (30). We define the vector X ≡ (x, v, η) and the vector F (X) ≡
(F 1(X), F 2(X), F 3(X)) where the p-th component of F 1(X), F 1

p (X), is:

F 1
p (X) =

∂C̃p(x, v)

∂xp

+
∑
a∈L

2

γa

∑
q∈P xqδaq

(αa + βava)(αa + βava)
δap − ρ̃k(x)−

nR∑
l=1

∂ρl(x)

∂xp

∑
q∈Pl

xq

 ;

the a-th component of F 2(X) =
[

∂c̃a(x,v)
∂va

+ 1− 2(αa + βava)
−3 βa

γa
(
∑

p∈P xpδap)
2 + η

]
, and the

single component of F 3(X) = [B −∑
a∈L va]. N = nP + nL + 1 and K = {(x, v, η)|x ∈

RnP
+ , 0 ≤ va ≤ vmax

a ,∀a, η ≥ 0}.

5.1 Computational Procedure

The steps of the modified projection method, due to Korpelevich (1977), are stated below,

with τ denoting an iteration counter. The algorithm is guaranteed to converge to a solution

of variational inequality (30) if F (X) is monotone and Lipschitz continuous, and a solution

exists.

Recall that the function F (X) is said to be monotone, if

〈F (X1)− F (X2), X1 −X2〉 ≥ 0, ∀X1, X2 ∈ K, (31)

and the function F (X) is Lipschitz continuous, if there exists a constant L̄ > 0, known as

the Lipschitz constant, such that

‖F (X1)− F (X2)‖ ≤ L̄‖X1 −X2‖, ∀X1, X2 ∈ K. (32)

The Modified Projection Method

Step 0: Initialization

Initialize with X0 ∈ K. Set the iteration counter τ := 1 and let ζ be a scalar such that

0 < ζ ≤ 1
L̄
, where L̄ is the Lipschitz constant.
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Step 1: Computation

Compute X̄τ by solving the variational inequality subproblem:

〈X̄τ + ζF (Xτ−1)−Xτ−1, X − X̄τ 〉 ≥ 0, ∀X ∈ K. (33)

Step 2: Adaptation

Compute Xτ by solving the variational inequality subproblem:

〈Xτ + ζF (X̄τ )−Xτ−1, X −Xτ 〉 ≥ 0, ∀X ∈ K. (34)

Step 3: Convergence Verification

If |Xτ −Xτ−1| ≤ ε, with ε > 0, a pre-specified tolerance, then stop; otherwise, set τ := τ +1

and go to Step 1.

The explicit formulae for all the variables for our model for Step 1 above are now provided.

The analogues of Step 2 easily follow.

Explicit Formulae at Iteration τ for the Product Path Flows in Step 1

Specifically, we have the following closed form expressions for the path flows in Step 1 in the

solution of variational inequality (23):

x̄τ
p = max{0, xτ−1

p + ζ(ρ̃k(x
τ−1) +

nR∑
l=1

∂ρ̃l(x
τ−1)

∂xp

∑
q∈Pl

xτ−1
q − ∂C̃p(x

τ−1, vτ−1)

∂xp

−
∑
a∈L

2

γa

∑
q∈P xτ−1

q δaq

(αa + βava)(αa + βava)
δap)}, ∀p ∈ Pk; k = 1, . . . , nR. (35)

Explicit Formulae at Iteration τ for the Link Productivity Investments Flows in

Step 1

Also, we have the following closed form expressions for the link productivity investments in

Step 1 in the solution of variational inequality (23):

v̄τ
a = max{0, min{vτ−1

a +ζ(2(αa+βav
τ−1
a )−3βa

γa

(
∑
p∈P

xτ−1
p δap)

2−∂c̃a(x
τ−1, vτ−1

a )

∂va

−1−ητ−1, vmax
a },
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∀a ∈ L. (36)

Explicit Formula at Iteration τ for the Lagrange Multiplier in Step 1

Finally, we have the following closed form expression for the Lagrange multiplier in Step 1

at an iteration τ :

η̄τ = max{0, {ητ−1 + ζ(
∑
a∈L

vτ−1
a δap −B)}. (37)

It is straightforward to adapt the above closed form expressions for the special case of

the model without link investment upper bounds and/or without a budget constraint.

5.2 Numerical Examples

The modified projection method was implemented in FORTRAN and a Linux system at

the University of Massachusetts Amherst used for computing solutions to the subsequent

numerical examples. The computational procedure was initialized as follows. All the link

investments and the Lagrange multiplier associated with the budget constraint were set to

0.00. The initial demand at each market was set to 40 with the demand equally distributed

among the paths terminating in each demand market. The convergence tolerance was 10−7;

that is, the algorithm was considered to have converged when the absolute value of the

difference between each of the variables at two successive iterations differed by no more

than this value. The parameter ζ was set to .01 for each of the numerical examples. The

numerical examples are used as a “proof of concept” and are not focused on a specific

application but, nevertheless, yield broader insights. Specific applications, with particular

features, and parameterized accordingly, can be readily solved using the algorithm.

5.2.1 Examples 1, 2, and 3

The supply chain network topology for Examples 1, 2, and 3 is given in Figure 2. The firm

has two production sites, one distribution center for storage, and sells its product at two

demand markets. Example 1 assumes that there is no investment possible (and, hence, there

is no investment budget and no bounds on the link productivity investments. Example 2

then has the identical data to the data in Example 2 but with the investments added and the
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beta values as given under Example 2 below. Example 3, in turn, has the identical data to

the data in Example 2 but with the addition of bounds on the link productivity investments

as well as a budget.
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Figure 2: Supply Chain Network Topology for Examples 1, 2, and 3

Example 1 – No Investment Parameters Beta, No Budget Constraint, and No

Bounds on Link Productivity Investments

The total operational link cost functions (since we do not consider investments until the next

examples) are:

ĉa(f) = 2f 2
a , ĉb(f) = 2f 2

b , ĉc(f) = .5f 2
c , ĉd(f) = .5f 2

d ,

ĉe(f) = f 2
e + 2fe, ĉf (f) = .5f 2

f , ĉg(f) = .5f 2
g .

The demand price functions are:

ρ1(d) = −5d1 + 800, ρ2(d) = −5d2 + 850.

The alpha link parameters are:

αa = 55, αb = 50, αc = 35, αd = 35, αe = 60, αf = 38, αg = 36,

20



the beta link parameters are:

βa = 0, βb = 0, βc = 0, βd = 0, βe = 0, βf = 0, βg = 0,

and the gamma link parameters are:

γa = .1, γb = .1, γc = .09, γd = .07, γe = .08 γf = .06, γg = .08.

The paths are defined as: path p1 = (a, c, e, f), path p2 = (b, d, e, f), path p3 = (a, c, e, g),

and path p4 = (b, d, e, g).

The modified projection method yields the following equilibrium product path flow pat-

tern:

x∗p1
= 19.39, x∗p2

= 19.36, x∗p3
= 21.66, x∗p4

= 21.63.

The equilibrium link flows and labor values are reported in Table 2, whereas the equilib-

rium productivity investments and hourly wages are reported in Table 3.

The demand price at the first demand market is 606.27 and at the second demand market

the price is: 633.52, with the corresponding equilibrium demands of: 38.75 and 43.30.

The firm earns a profit of: 33,816.98.

Example 2 – Positive Investment Parameters Beta, No Budget Constraint, and

No Bounds on Link Productivity Investments

Example 2 has the same data as Example 1, but now we include investments (but no bounds).

The total operational costs are as in Example 1 in terms of the link flow dependence, but

they are now extended to have an investment component as follows:

ĉa(f, va) = 2f 2
a+.05v2

a, ĉb(f, vb) = 2f 2
b +.1v2

b , ĉc(f, vc) = .5f 2
c +.05v2

c , ĉd(f, vd) = .5f 2
d +.05v2

d,

ĉe(f, ve) = f 2
e + 2fe + .1v2

e , ĉf (f, vf ) = .5f 2
f + .1v2

f , ĉg(f, vg) = .5f 2
g + .1v2

g .

The βs are no longer equal to zero, as they were in Example 1, but are, now, as given

below:

βa = 10, βb = 10, βc = 20, βd = 20, βe = 10, βf = 10, βg = 10.
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The link productivity functions (cf. Table 1) are, thus, of the form πa = αa + βava, for all

links a ∈ L with the alpha terms as in Example 1.

The modified projection method yields the following equilibrium product path flow pat-

tern:

x∗p1
= 19.38, x∗p2

= 19.36, x∗p3
= 21.66, x∗p4

= 21.63.

The equilibrium link flows and labor values for Example 2 are reported in Table 2, whereas

the equilibrium productivity investments and hourly wages are reported in Table 3.

The demand price at the first demand market is 606.28 and at the second demand market

the price is: 633.54, with the corresponding equilibrium demands of: 38.74 and 43.29.

The firm earns a profit of: 33,868.11. The total investment outlay of the firm is: 17.72.

Note that there is a good return on investment, since the profit in Example 1 is 33,816.98,

whereas now the profit is: 33,868.11.

We also, for completeness, report the values of the link productivity functions at the

equilibrium:

πa = 67.00, πb = 64.03, πc = 84.36, πd = 90.88, πe = 98.37, πf = 67.90, πg = 66.32.

Note that since the βs are all equal to zero in Example 1, the πas there are not investment-

dependent and collapse to the corresponding α on the link.

The labor hours needed on each link decrease, as compared to the respective result in

Example 1, and the wage on each link also decreases.

Example 2 demonstrates the benefits for the firm of investing in link productivity. Note

that the total operational link cost does depend on the investment on the link since there may

be, for example, some maintenance and other related costs associated with the investment

encumbered.
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Example 3 – Positive Investment Parameters Beta, Budget Constraint, and

Bounds on Link Productivity Investments

The data for Example 3 are as that in Example 2 with the budget B = 15 and vmax
a =

. . . = vmax
g = 3. The path flows remain essentially as in Example 2 since the demand price

functions are not functions of the investments. The equilibrium link flows and labor values

are reported in Table 2 with the equilibrium link productivity investments and the hourly

wages reported in Table 3. Wages are now higher, in order to attract labor since more is

needed due to a decrease in productivity as compared to that in Example 2. The investment

on link e is at the upper bound. The total investment outlay is now 15, so the budget is

exhausted with the Lagrange multiplier being positive and with a value of η∗ = .29.

The link productivity functions evaluated at the computed equilibrium link investments

are now:

πa = 62.70, πb = 60.69, πc = 79.14, πd = 85.41, πe = 90.00, πf = 64.93, πg = 63.41.

The profit of the firm is: 33,867.59. Under the imposed budget constraint and the

maximum bounds on investment links, the profit of the firm decreases from 33,868.11 in

Example 2 to 33,867.59 in Example 3.
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Notation Equilibrium Value
Example 1 Example 2 Example 3

f ∗a 41.05 41.04 41.05
f ∗b 40.99 41.00 41.01
f ∗c 41.05 41.04 41.05
f ∗d 40.99 41.00 41.01
f ∗e 82.04 82.04 82.06
f ∗f 38.75 38.74 38.75

f ∗g 43.30 43.29 43.30

l∗a 0.75 0.61 0.65
l∗b 0.82 0.64 0.68
l∗c 1.17 0.49 0.52
l∗d 1.17 0.45 0.48
l∗e 1.37 0.83 0.91
l∗f 1.02 0.57 0.60

l∗g 1.20 0.65 0.68

Table 2: Equilibrium Link Flows and Labor Values for Examples 1, 2, 3

Notation Equilibrium Value
Example 1 Example 2 Example 3

v∗a – 1.20 0.77
v∗b – 1.40 1.07
v∗c – 2.47 2.21
v∗d – 2.79 2.52
v∗e – 3.84 3.00
v∗f – 2.99 2.69

v∗g – 3.03 2.74

w∗
a 7.46 6.13 6.55

w∗
b 8.20 6.40 6.76

w∗
c 13.03 5.41 5.76

w∗
d 16.73 6.44 6.86

w∗
e 17.09 10.42 11.40

w∗
f 16.99 9.51 9.95

w∗
g 15.03 8.16 8.54

Table 3: Equilibrium Link Productivity Investments and Hourly Wages for Examples 1, 2,
and 3

24



5.2.2: Examples 4, 5, and 6

In the second series of examples we consider a supply chain network topology as depicted

in Figure 3. There is now an additional production site available to the firm, but it still has

a single distribution center and serves two demand markets. These examples follow a similar

pattern to that of Examples 1, 2, and 3. Example 1 considers no investments so the βs are

all zero. Example 7 then allows for investment but has no budget and no upper bounds

on the link productivity investments and, finally, Example 9 introduces both a budget and

investment bounds on the links.
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Figure 3: Supply Chain Network Topology for Examples 4, 5, and 6

Example 4: No Investment Parameters Beta, No Budget Constraint, and No

Bounds on Link Productivity Investments

Example 4 has the identical data to that in Example 1 but with the additional data for links

h and i as follows:

ĉh(f, vh) = f 2
h + .05v2

h, ĉi(f, vi) = .5f 2
i + .05v2

i ,

αh = 45, αi = 30, γh = .1, γi = .08,
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and

βh = 0, βi = 0,

since in this example, as we did in Example 1, we consider the case that there are no

investments in link productivity.

We also have two new paths: path p5 = (h, i, e, f), and path p6 = (h, i, e, g).

The modified projection method converges to the following equilibrium product path flow

pattern:

x∗p1
= 11.91, x∗p2

= 11.89, x∗p3
= 20.20, x∗p4

= 13.43,

x∗p5
= 13.41, x∗p6

= 21.77.

The original paths have much lower volumes of product flow than they had in Example 1,

with the two new paths having the largest volume of product flow. The profit is: 38,138.79.

The profit increases substantially with the introduction of a new production site, by more

than 4,000.

The demand price at the first demand market is 580.02 and at the second demand mar-

ket the price is: 607.26, with the corresponding equilibrium demands of: 44.00 and 48.55.

Consumers also benefit since the prices at the demand markets decrease. The computed equi-

librium link flows and labor values are given in Table 4 and the equilibrium link productivity

investments and the hourly wages are reported in Table 5.

Example 5 – Positive Investment Parameters Beta, No Budget Constraint, and

No Bounds on Link Productivity Investments

Example 5 has the same data as Example 4 with the beta parameters now being positive

and as in Example 2, with the addition of the following ones on the added two links:

βh = 15, βi = 15.

As in Example 2, there are no bounds on the link productivity investments and no budget.

The modified projection method now converges to the following equilibrium product path

flow pattern:

x∗p1
= 11.88, x∗p2

= 11.87, x∗p3
= 20.24, x∗p4

= 13.40,
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x∗p5
= 13.39, x∗p6

= 21.76.

The additional equilibrium results are reported in Tables 4 and 5.

The firm invests a total amount of: 19.74.

The demand price at the first demand market is: 580.01 and at the second: 607.26 with

equilibrium demands of: 44.00 and 48.55, respectively.

The firm earns a profit of 38,202.74. The firm gains in profit by investing in productivity

in the supply chain links. In Example 4, the profit is 38,138.79, whereas now, with an

investment of only 19.74, the profit has risen to: 38,202.74.

The values of the link productivity functions at the equilibrium, where recall that πa =

αa + βava, ∀a ∈ L, are:

πa = 55.00, πb = 50.26, πc = 62.93, πd = 67.91, πe = 104.32, πf = 72.54, πg = 70.41,

πh = 75.98, πi = 79.26.

Example 6 – Positive Investment Parameters Beta, Budget Constraint, and

Bounds on Link Productivity Investments

Example 6 is constructed from Example 5 and has the same data but with the addition of

the same budget and link investment bounds as in Example 3. Hence, the budget is 15 and

all the vmaxs are equal to 3, including on the two added links.

The modified projection method now converges to the following equilibrium product path

flow pattern:

x∗p1
= 11.88, x∗p2

= 11.88, x∗p3
= 20.25, x∗p4

= 13.40,

x∗p5
= 13.39, x∗p6

= 21.77.

The additional equilibrium results are reported in Tables 4 and 5.

The firm invests a total amount of: 15.00 and the Lagrange multiplier η∗ = .64.
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Notation Equilibrium Value
Example 4 Example 5 Example 6

f ∗a 25.33 25.28 25.29
f ∗b 25.30 25.26 25.27
f ∗c 25.33 25.28 25.29
f ∗d 25.30 25.26 25.27
f ∗e 92.54 92.55 92.58
f ∗f 44.00 44.00 44.02

f ∗g 48.55 48.55 48.56

f ∗h 41.91 42.00 42.02
f ∗i 41.91 42.00 42.02
l∗a 0.46 0.46 0.46
l∗b 0.51 0.50 0.51
l∗c 0.72 0.40 0.46
l∗d 0.72 0.37 0.43
l∗e 1.54 0.89 1.03
l∗f 1.16 0.61 0.66

l∗g 1.35 0.69 0.75

l∗h 0.93 0.55 0.63
l∗i 1.40 0.53 0.60

Table 4: Equilibrium Link Flows and Labor Values for Examples 4, 5, and 6

The demand price at the first demand market is: 579.92 and at the second: 607.18 with

equilibrium demands of: 44.02 and 48.56, respectively.

The firm now earns a profit of: 38,200.93, a decrease, but not a significant one, from the

profit in Example 5.

The values of the link productivity functions at the equilibrium, where recall that πa =

αa + βava, ∀a ∈ L, are:

πa = 55.00, πb = 50.00, πc = 54.67, πd = 59.17, πe = 90.00, πf = 66.38, πg = 64.39,

πh = 66.70, πi = 70.26.

The investment on link a is at the imposed upper bound.
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Notation Equilibrium Value
Example 4 Example 5 Example 6

v∗a – 0.00 0.00
v∗b – 0.03 0.00
v∗c – 1.40 0.98
v∗d – 1.65 1.21
v∗e – 4.43 3.00
v∗f – 3.45 2.84

v∗g – 3.44 2.84

v∗h – 2.07 1.45
v∗i – 3.28 2.68
w∗

a 4.61 4.60 4.60
w∗

b 5.06 5.03 5.05
w∗

c 8.04 4.46 5.14
w∗

d 10.33 5.31 6.10
w∗

e 19.28 11.09 12.86
w∗

f 19.30 10.11 11.05

w∗
g 16.86 8.62 9.43

w∗
h 9.31 5.53 6.30

w∗
i 17.46 6.62 7.48

Table 5: Equilibrium Link Productivity Investments and Hourly Wages for Examples 4, 5,
and 6
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5.2.3: Examples 7, 8, and 9: Introduction of E-Commerce

In our third, and final series of numerical examples, we consider the impact of electronic

commerce. Specifically, to the supply chain network topology in Figure 3 we now add direct

links j and k to demand markets 1 and 2, respectively, from nodes M1 and M3 and consider

numerical examples with the supply chain network topology in Figure 4.

Example 7 - Positive Investment Parameters Beta, No Budget Constraint, and

No Bounds on Link Productivity Investments

From the previous numerical examples, it was clear that allowing for investments in link

productivity could raise profits of the firm. Example 7 serves as the baseline from which we

then construct in this series Examples 8 and 9. Hence, Example 7 (unlike Examples 1 and

4) has positive beta parameters on all of its links.

Example 7 has the identical data to that in Example 5 but with the additional data for

links j and k as follows:

ĉj(f, vj) = 1.5f 2
j + .05v2

j , ĉk(f, vk) = 2f 2
k + .1v2

k,

αj = 55, αk = 60, γj = .1, γk = .1,

and

βj = 20, βk = 20.

We also have two new paths: path p7 = (a, j), and path p6 = (h, k).

There is no budget and no vmax
a on all links a ∈ L.

The modified projection method converges to the following equilibrium product path flow

pattern:

x∗p1
= 0.00, x∗p2

= 11.80, x∗p3
= 8.77, x∗p4

= 0.00,

x∗p5
= 14.09, x∗p6

= 11.06, x∗p7
= 34.93, x∗p8

= 34.88.

The additional equilibrium results are reported in Tables 6 and 7.
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Figure 4: Supply Chain Network Topology for Examples 7, 8, and 9

One can see that the paths with the electronic commerce links have the highest product

path flows and that both paths p1 and p4 are not even used (in contrast to the results in

Example 5) and, hence, have zero flow.

The demand price at the first demand market is: 522.51 and at the second: 549.82 with

equilibrium demands of: 55.50 and 60.04, respectively.

The firm earns a profit of: 47,685.11. The profit is higher than in Example 5 by more

than 8,000. Electronic commerce benefits the firm in terms of profit and consumers, in terms

of demand market prices, which are now lower.

The values of the link productivity functions at the equilibrium, where recall that πa =

αa + βava, ∀a ∈ L, are:

πa = 61.25, πb = 50.89, πc = 35.00, πd = 68.93, πe = 74.14, πf = 48.77, πg = 49.85,

πh = 86.81, πi = 50.61, πj = 76.13, πk = 75.06.
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Example 8 – Positive Investment Parameters Beta, Budget Constraint, Bounds

on Link Productivity Investments, and Demand Price Function Changes

In Example 8, we retain the budget of 15, as in earlier examples with a budget, and also we

have that vmax
a = 3 for all links that are not e-commerce links (as in previous examples with

bounds) but we now add the following bounds on the electronic commerce links:

vmax
j = 4, vmax

k = 4.

Also, we now consider the case that consumers at the demand markets are grateful to

for the e-commerce option and are willing to pay higher prices. The demand price function

intercept terms are changed from 800 to 850 for the first demand market and from 850 to

900 for the second demand market.

The modified projection method now converges to the following equilibrium product path

flow pattern:

x∗p1
= 0.00, x∗p2

= 12.57, x∗p3
= 9.37, x∗p4

= 0.00,

x∗p5
= 14.89, x∗p6

= 11.69, x∗p7
= 37.06, x∗p8

= 36.96.

Additional equilibrium results are reported in Tables 6 and 7.

One can see that the paths with the electronic commerce links, as in Example 7, have

the highest product path flows and that both paths p1 and p4 have zero flow, as they did in

Example 7.

The demand price at the first demand market is: 554.97 and at the second: 582.31 with

equilibrium demands of: 59.01 and 63.54, respectively.

The firm earns a profit of: 53,640.90, which is higher than the profit in Example 7. This

shows the potential benefit of having consumers being willing to pay higher prices and firms

can achieve this through marketing, for example.

The values of the link productivity functions at the equilibrium are:

πa = 63.30, πb = 52.40, πc = 35.00, πd = 71.43, πe = 76.29, πf = 50.46, πg = 51.33,
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πh = 90.00, πi = 52.50, πj = 78.88, πk = 77.48.

The total investments are: 13.87. The investment on link h is at the upper bound of 3.

Example 9 – Positive Investment Parameters Beta, Budget Constraint, Bounds

on Link Productivity Investments, and Increase in Production Costs

Example 9 has the same data as Example 8 but we now consider a production disruption

with the total costs on links a and b increasing to the following, respectively:

ĉa(f, va) = 3f 2
a + .05v2

a, ĉb(f, vb) = 3f 2
b + .1v2

b .

The modified projection method now converges to the following equilibrium product path

flow pattern:

x∗p1
= 0.00, x∗p2

= 11.51, x∗p3
= 13.70, x∗p4

= 0.00,

x∗p5
= 10.83, x∗p6

= 13.02, x∗p7
= 31.44, x∗p8

= 37.96.

The additional equilibrium results are reported in Tables 6 and 7.

The demand price at the first demand market is: 566.71 and at the second: 590.97 with

equilibrium demands of: 56.66 and 61.81, respectively.

The firm earns a profit of: 51,863.57. With higher costs at two of the three production

sites, the profit now decreases.

The values of the link productivity functions at the equilibrium, where recall that πa =

αa + βava, ∀a ∈ L, are:

πa = 57.74, πb = 50.00, πc = 35.00, πd = 63.02, πe = 76.70, πf = 50.28, πg = 48.46,

πh = 90.00, πi = 60.58, πj = 71.49, πk = 78.61.

The total investments are: 13.01. The investment on link h remains at the upper bound

of 3.
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Notation Equilibrium Value
Example 7 Example 8 Example 9

f ∗a 34.93 37.06 3‘.44
f ∗b 25.89 27.46 22.35
f ∗c 0.00 0.00 0.00
f ∗d 25.89 27.46 22.35
f ∗e 45.72 48.52 49.07
f ∗f 20.56 21.94 25.22

f ∗g 25.16 26.58 23.85

f ∗h 54.71 58.02 64.67
f ∗i 19.83 21.06 26.72
f ∗j 34.93 37.06 31.44

f ∗k 34.88 36.95 37.96
l∗a 0.57 0.59 0.54
l∗b 0.51 0.52 0.45
l∗c 0.00 0.00 0.00
l∗d 0.38 0.38 0.35
l∗e 0.62 0.64 0.64
l∗f 0.42 0.42 0.46

l∗g 0.50 0.52 0.49

l∗h 0.62 0.64 0.72
l∗i 0.39 0.40 0.44
l∗j 0.46 0.47 0.44

l∗k 0.46 0.48 0.48

Table 6: Equilibrium Link Flows and Labor Values for Examples 7, 8, and 9

34



Notation Equilibrium Value
Example 7 Example 8 Example 9

v∗a 0.62 0.83 0.27
v∗b 0.09 0.24 0.00
v∗c 0.00 0.00 0.00
v∗d 1.70 1.82 1.40
v∗e 1.41 1.63 1.67
v∗f 1.08 1.25 1.63

v∗g 1.39 1.53 1.25

v∗h 2.91 3.00 3.00
v∗i 1.37 1.50 2.04
v∗j 1.06 1.19 0.82

v∗k 0.75 0.87 0.93
w∗

a 5.70 5.85 5.45
w∗

b 5.09 5.24 4.47
w∗

c 0.00 0.00 0.00
w∗

d 5.37 5.49 5.07
w∗

e 7.71 7.95 8.00
w∗

f 7.03 7.25 7.74

w∗
g 6.31 6.47 6.15

w∗
h 6.17 6.45 7.19

w∗
i 4.0 5.02 5.51

w∗
j 4.59 4.70 4.40

w∗
k 4.65 4.77 4.83

Table 7: Equilibrium Link Productivity Investments and Hourly Wages for Examples 7, 8,
and 9
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6. Summary and Conclusions

Disruptions to labor in the COVID-19 pandemic have been deep and widespread, affect-

ing agriculture and manufacturing as well as freight service provision, among many other

economic sectors. And now, with progress on vaccinations, many firms are dealing with

difficulty in attracting labor, as economies start to rebound. The pandemic has also affected

the productivity of labor with investments in productivity being a possible avenue to enable

enhanced output.

In this paper, we construct an optimization model for supply chain networks that includes

labor as a resource, allows for wage-dependent labor, as well as investments in supply chain

link productivity. The investments are subject to a budget constraint and also to a bound

on the investment on each link. The solution of the model yields the optimal product path

flows from the firm to the demand markets, the optimal link productivity investments, as

well as the labor hours needed on the supply chain network links, and the wages that should

be paid to the workers on the links, which consist of production, transportation, storage,

and distribution links.

We provide alternative variational inequality formulations of the optimal solution, and

conduct Lagrange analysis. The proposed algorithmic scheme has nice features for implemen-

tation since it resolves the variational inequality formulation that we utilize into subproblems

which yield closed form expressions in the product path flows and the Lagrange multiplier

associated with the budget constraint. We apply the algorithm to compute solutions to

three sets of numerical examples, including a set with electronic commerce, and report the

full solutions, including the labor hours and the wages that should be paid. We find that

investments of link productivity can enhance profits for the firm, and reduce the product

price at the demand markets for the consumers. Also, adding a production site can enhance

profits as well as taking advantage of electronic commerce. Firms, however, should be careful

in moderating their operational costs since increases can have a big impact on the bottom

line.

This work adds to the still nascent literature on the synthesis of operations research and

economics for addressing fundamental questions and issues surrounding labor and supply

chains.
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