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Abstract: International human migration has transformed economies and societies. The

new millennium, with climate change and its impacts, and increasing conflicts and displace-

ments, has experienced a great increase in international migrants, with associated challenges

faced by governments. In this paper, we advance the modeling, analysis, and solution of

international human migration problems by developing a network model with regulations.

The formalism uses the theory of variational inequalities, coupled with Lagrange analysis,

in order to gain insights as to the impacts of the regulations on utilities of multiple classes

of migrants, and on the equilibrium flows. Our results add to the literature on operations

research for societal impact, inspired by the real world.
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1. Introduction

Humans have engaged in migration since time immemorial. Reasons for human migra-

tion are numerous, from individuals seeking better economic opportunities and enhanced

prosperity for themselves and their families, to those fleeing conflict, violence, and perse-

cution. With climate change and the increasing number and severity of natural disasters,

including hurricanes, floods, tornados, earthquakes, etc., some migrants are seeking locations

of greater expected safety and security. In 2017, the number of international migrants was

an estimated 258 million persons (3.4% of the global population), with the total number

of international migrants increasing by almost 50% since 2000 (United Nations (2017)). As

also reported therein, the number of international migrants is growing faster than the global

population. Moreover, in the same almost two decade period, the number of refugees and

asylum seekers increased from 16 to 26 million, comprising about 10% of the international

migrants.

Vivid depictions of people fleeing their origin locations permeate the news, whether at-

tempting to escape the great strife and suffering in Syria (United Nations Refugee Agency

(2019)); the violence in parts of Central America (Bartenstein and McDonald (2019)), the

economic collapse of Venezuela (Kennedy (2019)), and even flooding in parts of Asia (Dash

and Paul (2017)), as well as droughts in parts of Africa (cf. Linke et al. (2018)). Interest-

ingly, since the onset of the new millennium, the countries experiencing the largest increase

in their diaspora populations are the Syrian Arab Republic (872%), India (108%), and the

Philippines (85%) (cf. United Nations (2017)). At times, refugees will travel in extremely

dangerous conditions to escape the dire circumstances at their origin nodes. For example,

the United Nations Refugee Agency (2015) reported a maritime refugee crisis with, in the

first half of that year, 137,000 refugees crossing the Mediterranean Sea to Europe, via very

risky transport modes, and with many more unsuccessfully attempting such a passage. 800

died in the largest refugee shipwreck on record that April. Clearly, the issue of human mi-

gration is one of multiple dimensions, including economic, political, sociological, and even

environmental aspects.

Governments of various nations, hence, are increasingly being faced with multiple chal-

lenges associated with human migration flows. In response to challenges, they are adopting

different regulations. According to Bertossi (2008), since the 1990s, unprecedented efforts

have been made to control the movement of people across state borders. As argued eloquently

by Helbling and Leblang (2019), migration regulations are core to national sovereignty since

they directly impact the composition of the community that makes up the country. Ac-

cording to the informative report by the United Nations (2013), migration policies in both
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origin and destination countries play an important role in determining the migratory flows.

Moreover, as noted therein, in managing international migration flows, governments usually

focus on different types of migrants, of which the most salient are highly skilled workers,

dependents of migrant workers, irregular migrants, and refugees and asylum seekers (cf.

Karagiannis (2016)).

As an illustration of some of the challenges, in terms of refugees, Sweden, a country

with only 10 million residents, responding to the refugee crisis of 2015, in the past five years,

accepted more than 400,000 asylum-seekers and relatives of previous immigrants (Billner and

Jefferson (2019)). This is the highest per capita number of refugees of all European countries.

Sweden, along with Germany, was the preferred destination for a wave of Syrians, Afghans,

and others who reached Europe in search of protection and better lives. However, as noted

in Skodo (2018), eventually, and, in response to some backlash, the Swedish government

introduced border controls. In mid-2016, with concerns over immigration growing among

the Swedish public, Sweden instituted a highly restrictive asylum and reunification law – a

major policy shift.

On the other hand, certain governments, including Canada and Australia, have been in-

terested in acquiring highly skilled workers and have adopted highly-skilled migration policy

regimes (Kerr et al. (2017)), with others, including the European Union, involved in studies

to identify the best processes (see, e.g., Casarico and Uebelmesser (2018)). Some countries,

including the United States, nevertheless, put a ceiling on the volume of immigrants from a

given country (see American Immigration Council (2016)). Furthermore, there is now dis-

cussion that the US may be reducing the number of refugees allowed to enter the country (cf.

Sullivan (2019)). As one might expect, due to different needs, pressures, etc., immigration

laws and rules in the United States have changed through history (see Cohn (2015)).

Given that the United Nations (2013) identifies international migration as a global phe-

nomenon that is growing in complexity, scope, and impact, it is quite relevant to revisit the

modeling of international human migration networks in the context of different regulations.

That is the goal of this paper.

2. Literature Review with a Focus on Networks and Migration

In this Section, we provide an overview of the relevant literature on human migration,

with a focus on networks. For a critical review of a variety of theoretical frameworks for

human migration models, which also reference foundational network equilibrium models, see

Rahmati and Tularam (2017).
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Nagurney (1989) introduced a multiclass migration equilibrium model, which did not

include migration/movement costs, and was isomorphic to a traffic network equilibrium with

special structure (see also Nagurney (1999)). In that model, there was a fixed population

of each class of migrant and migrants distributed themselves among the locations according

to maximal utilities associated with the locations. The utility functions were assumed to be

concave and a function of the populations at the locations. The model was then extended

to include flow-dependent migration costs and an expanded set of equilibrium conditions in

Nagurney (1990). Subsequently, Nagurney, Pan, and Zhao (1992a), building on the latter

work, proposed a multiclass human migration model, which was then further generalized

to include class transformations in Nagurney, Pan, and Zhao (1992b). Note that a class

of migrant was assumed to perceive utility associated with a location for migration in an

individual way. The utility functions were functions of the populations of the different classes

at the locations. Pan and Nagurney (1994), in turn, considered chain migration (unlike the

earlier work) and introduced a multi-stage (but single class) Markov chain model. The

authors established a connection between a sequence of variational inequalities and a non-

homogeneous Markov chain. They also proved that, under certain assumptions, the stability

of the one-step transition matrix guarantees the stability of the n-step transition matrix.

In all of the above papers, the specific governing equilibrium conditions were formulated as

finite-dimensional variational inequality problems. Pan and Nagurney (2006) utilized the

methodology of evolution variational inequalities for the first time to model the dynamic

adjustment of a socio-economic process in the context of human migration. The question of

convergence of algorithms in this framework, which is infinite-dimensional, was also addressed

(see also Daniele (2006)).

Interestingly, many of the network equilibrium models of human migration, as highlighted

above, have also found application to the migration of animals in ecology with a focus on fish

and maritime ecosystems (see Mullon and Nagurney (2012), Mullon (2014), Mariani et al.

(2016)). Therein, utility functions as well as cost of migration, inspired by the above human

migration models, are seminal constructs. Roy and Roy (2016) analyze the dynamics and

the equilibria of a predator-prey fishery model that includes prey refuge and migration and

harvesting. They also present stability results. Belen and Weber (2019) study the modelling

and the limiting behaviors of stochastic information and stochastic prey-predators.

Kalashnikov et al. (2008) constructed a human migration model with a conjectural vari-

ations equilibrium (CVE). In contrast to previous research (see, e.g., Isac, Bulavsky, and

Kalashnikov (2002)), they considered an extension in which the conjectural variations coeffi-

cients may not only be constants, but are (continuously differentiable) functions of the total
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population at the destination and of the group’s fraction in it. They also conducted numeri-

cal experiments based on population data in locations in Mexico. Capello and Daniele (2019)

developed a Nash equilibrium model of human migration with features of conjectural varia-

tions. The utility and migration cost functions for a given class depend on the populations

and flows, respectively, of that class. The authors also provided a numerical example with

sensitivity analysis focusing on the flow of migrants from Africa through the Mediterranean

sea to Italy in 2018.

Causa, Jadamba, and Raciti (2017), in turn, extended the model of Nagurney (1990) to

include uncertainty in the utility functions, the migration cost functions, and the populations.

However, none of the earlier models noted above include regulations, as we do here.

Other OR-based research that is focused on refugees is that of Kjamili and Weber (2019),

who, in their novel work on social entrepreneurship in developing and emerging countries,

highlight Migport, which began as a mobile app serving as a meeting point between locals

and refugees. Problems of refugees could then be identified by giving them a chance to

talk about themselves to ensure social integration with given solutions based on a database

of 100 thousand people. Pedamallu et al. (2012), in turn, constructed a system dynamics

model based on primary education data obtained in a survey conducted in Turkey in order to

address the challenges the schools located in migrant neighborhoods are faced with. Trapp

et al. (2018) integrated machine learning and integer optimization into a software tool that

assists a resettlement agency in the United States with matching refugees to their initial

placements. The authors take what can be viewed as a system-optimization approach to

refugee resettlement, whereas our framework is on the international human migration aspects

of refugees from a user-optimization perspective, with the inclusion of regulations. Another

stream of literature is that on human trafficking but that is out of the scope of our research

(cf. Konrad et al. (2017) and Bhaumik, Roy, and Weber (2019)) since here we are interested

in different classes of migrants selecting their destinations individually and independently,

under regulations.

For a broad literature review on humanitarian supply chain management and refugees,

but not on migration, see Seifert, Kunz, and Gold (2018). The authors note the relative

scarcity of the literature on this topic.

Clearly, the outlook for further study and analysis of international human migration

networks holds great promise because of its timeliness.
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2.1 Our Contributions

The above highlighted human migration models are sufficiently general to be applicable

to migration within a nation or across boundaries of nations. However, they do not include

features relevant specifically to international human migration networks in an age of reg-

ulations. We address this research gap in this paper. In particular, in this paper, we use

as the baseline the multiclass human migration network model of Nagurney, Pan, and Zhao

(1992a), since it has been the inspiration for other models. We first propose alternative con-

servation of flow equations and a different underlying network structure. We then introduce

additional constraints to capture distinct types of regulations associated with international

human migration networks. We provide alternative variational inequality formulations. Al-

ternative variational inequality formulations allow for different algorithms to be applied. We

also conduct Lagrange analysis. The Lagrange analysis for the model, with accompanying

interpretations, adds to the literature on operations research with societal impact in the

context of a plethora of applications such as organ donation management (cf. Caruso and

Daniele (2018)), supply chain network competition for blood services (Nagurney and Dutta

(2019)), disaster relief (see Nagurney, Salarpour, and Daniele (2019)), and cybersecurity

(cf. Colajanni et al. (2019)). The proposed algorithm is applied to a series of numerical

examples, and insights provided.

The paper is organized as follows. In Section 3, the models without and with regula-

tions are developed. In Section 4, we then provide Lagrange theory for the international

human migration network model under regulations, along with analysis and interpretation.

In Section 5, we propose an algorithm, with accompanying convergence results, which is then

applied to a series of numerical examples. The algorithm solves an alternative variational

inequality and yields closed form expressions, at each iteration, for the migration flows and

the Lagrange multipliers. We summarize our results and present our conclusions in Section

6.

3. The International Human Migration Models

In this Section, we extend the model of Nagurney, Pan, and Zhao (1992a) to the in-

ternational arena by including a spectrum of constraints, with a focus on regulations. We

also propose equivalent conservation of flow equations, which yield an alternative network

structure of the multiclass human migration problem, that enables alternative algorithmic

schemes. We first present the model without regulations and then the one with.

The common notation for both international human migration network models is reported
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in Table 1 and their network structure depicted in Figure 1. Observe from the network in

Figure 1 that a volume of population of a class may also decide not to migrate, but to remain

in its origin country/location.
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Figure 1: The Network Structure of International Human Migration

We assume a closed economy in which there are n countries under consideration, with a

typical origin country denoted by i and a typical destination one denoted by j. There are

J classes of international migrants, with a typical class denoted by k. It is important to

recognize that a class of migrant may correspond, for example, to a highly skilled, a skilled,

or an unskilled class of worker. It can also correspond to a refugee (or asylum seeker), an

irregular migrant, etc. (cf. Karagiannis (2016)). Our model is sufficiently general to handle

different types of migration/refugee settings since it includes multiple classes of migrant,

each of which perceives the utility associated with a country in an individual way, along

with the migration cost associated with changing countries/locations. Furthermore, as can

be seen from Table 1, the utility associated with a country can depend, in general, on

the vector of populations of different classes. Similarly, the migration costs can depend,

in general, on the vector of international migratory flows. The former is very reasonable

since attractiveness of a country for a specific class one would expect to depend not only on

the population of that class, but also on other classes both in that country and at others,

notably, on ones in proximity. Moreover, the cost associated with international migration

can be expected to depend not only on the international flows of a particular class but also

on those of other classes. The generality of our utility and migration cost functions, hence,

captures competition for jobs, housing, social services, etc., for the former and competition

for transportation and movement/processing resources for the latter (in addition to psychic

costs associated with dislocation).
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Table 1: Common Notation for the International Human Migration Models

Notation Definition
fk

ij the flow of migrants of class k from country i to country j. The {fk
ij}

elements for all i and j and fixed k are grouped into the vector fk ∈ Rnn
+ .

We then further group the fk vectors; k = 1, . . . , J , into the vector
f ∈ RJnn

+ .
pk

i the nonnegative population of migrant class k in country i. We group
the populations of class k; k = 1, . . . , J , into the vector pk ∈ Rn

+. We
then further group all such vectors into the vector p ∈ RJn

+ .
p̄k

i the initial fixed population of class k in country i; i = 1, . . . , n; k =
1, . . . , J .

uk
i (p) the utility perceived by class k in country i; i = 1, . . . , n; k = 1, . . . , J .

ck
ij(f) the cost of international migration, which includes economic, psycholog-

ical, and social costs encumbered by class k in migrating from country i
to country j; i = 1, . . . , n; j = 1, . . . , n; k = 1, . . . , J .

In our models we assume no repeat or chain migration. Also, all vectors are column

vectors.

In Nagurney, Pan, and Zhao (1992a), the following conservation of flow equations were

proposed:

pk
i = p̄k

i +
∑
l 6=i

fk
li −

∑
l 6=i

fk
il , ∀i,∀k, (1)

and ∑
l 6=i

fk
il ≤ p̄k

i , ∀i,∀k, (2)

where fk
il ≥ 0, for all k = 1, . . . , J ; ∀l. Note that, according to (1), the population of a class

in a country is equal to the initial population plus the inflow minus the outflow of that class.

Equation (2), on the other hand, states that the flow out of country i by class k cannot

exceed the initial population of class k at i, since no chain migration is allowed.

Here, we utilize, instead, the following conservation of flow equations, using also the

network structure in Figure 1 as a guideline:

p̄k
i =

∑
l

fk
il , ∀i,∀k, (3)

and

pk
i =

∑
l

fk
li, ∀i,∀k, (4)

with the nonnegativity assumption on the international migratory flows, following (2). Ac-

cording to (3), the fixed population of each class of migrant is equal to the sum of the flow
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remaining in the country of the class and the migration flows to other countries of that class.

Equation (4), on the other hand, states that the final population of a class in a country is

equal to the flow of that class that remains in the country plus the migratory flows of that

class from other countries into the country.

Clearly, using (3) and (4), we obtain:

pk
i − p̄k

i =
∑

l

fk
li −

∑
l

fk
il , ∀i,∀k, (5)

which is equivalent to (1), since fk
ii − fk

ii = 0. Similarly, (3) is equivalent to (2).

We define the feasible set K1 ≡ {(p, f)|f ≥ 0 and (3) and (4) hold}.

2.1 Equilibrium Conditions for the International Human Migration Model with-

out Regulations

We now state the equilibrium conditions for the model without regulations and then

derive the variational inequality (VI) formulation.

As in our previous work, we assume that migrants are rational and that international

migration will continue until no individual has any incentive to move since a unilateral

decision will no longer yield a positive net gain (gain in utility minus migration cost).

Definition 1: International Human Migration Equilibrium without Regulations

A vector of populations and international migration flows (p∗, f∗) ∈ K1 is in equilibrium if it

satisfies the equilibrium conditions: For each class k; k = 1, . . . , J and each pair of countries

i, j; i = 1, . . . , n; j = 1, . . . , n:

uk
i (p

∗) + ck
ij(f

∗)

{
= uk

j (p
∗)− λk∗

i , if fk∗
ij > 0,

≥ uk
j (p

∗)− λk∗
i , if fk∗

ij = 0,
(6)

and

λk∗
i

{
≥ 0, if

∑
l 6=i f

k∗
il = p̄k

i ,

= 0, if
∑

l 6=i f
k∗
il < p̄k

i .
(7)

The above equilibrium conditions are due to Nagurney, Pan, and Zhao (1992a). We

assume that ck
ii(f) = 0, for all i and k, since those who elect to stay in their origin countries

and not migrate encumber a migration cost of zero.

We now recall the necessity of λk∗
i . As emphasized in Nagurney, Pan, and Zhao (1992a),

unlike spatial price equilibrium problems (or the transportation network equilibrium problem
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with elastic demand; see, e.g., Zhang and Nagurney (1997), Nagurney (1999), Daniele (2006),

Nagurney, Li, and Nagurney (2014), Nagurney, Besik, and Dong (2019), and the references

therein), the level of the population p̄k
i may not be sufficiently large so that the gain in utility

uk
j − uk

i is exactly equal to the migration cost ck
ij. Nevertheless, the utility gain minus the

migration cost will be maximal and nonnegative. Furthermore, the net gain will be equalized

for all countries and classes which have a positive flow out of a country.

The variational inequality formulation of the international human migration equilibrium

conditions according to Definition 1 is given in Theorem 1 below.

Theorem 1: Variational Inequality Formulation of the International Human Mi-

gration Model without Regulations

A population and migration flow pattern (p∗, f∗) ∈ K1 is an international human migra-

tion equilibrium without regulations according to Definition 1, if and only if it satisfies the

variational inequality problem

−〈u(p∗), p− p∗〉+ 〈c(f ∗), f − f ∗〉 ≥ 0, ∀(p, f) ∈ K1. (8)

Proof: We first show that if a pattern (p∗, f∗) ∈ K1 satisfies equilibrium conditions (6) and

(7), then it also satisfies the variational inequality in (8).

Suppose that (p∗, f∗) ∈ K1 satisfies the equilibrium conditions. We know, from the

conservation of flow equations, that fk∗
ij ≥ 0, and

∑
l 6=i f

k∗
il ≤ p̄k

i , for all i, j, and k.

For fixed class k and country i, it follows from (6) that for f ∈ K1:∑
l

[
uk

i (p
∗) + ck

il(f
∗)− uk

l (p
∗)
]
×
[
fk

il − fk∗
il

]
≥ −λk∗

i

∑
l

(fk
il − fk∗

il ) = 0, (9)

with the last equality holding because of the conservation of flow equation (3).

Therefore, for all classes k and all countries i, it follows that for (p∗, f∗) ∈ K1:∑
k

∑
i

∑
l

[
uk

i (p
∗) + ck

il(f
∗)− uk

l (p
∗)
]
×
[
fk

il − fk∗
il

]
≥ 0, ∀(p, f) ∈ K1. (10)

Note that inequality (10) can be re-expressed as:∑
k

∑
l

uk
l (p

∗)×((
∑

j

fk
lj−
∑

j

fk
jl)−(

∑
j

fk∗
lj −

∑
j

fk∗
jl ))+

∑
k

∑
i

∑
l

ck
il(f

∗)×(fk
il−fk∗

il ) ≥ 0.

(11)
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Using now constraints (3) and (4), substitution into (11), yields

−
∑

k

∑
l

uk
l (p

∗)× (pk
l − pk∗

l ) +
∑

k

∑
i

∑
l

ck
il(f

∗)× (fk
il − fk∗

il ) ≥ 0, (12)

or, equivalently, in vector notation:

−〈u(p∗), p− p∗〉+ 〈c(f ∗), f − f ∗〉 ≥ 0, ∀(p, f) ∈ K1. (13)

Hence, necessity has been established.

We now show that if a pattern (p∗, f∗) ∈ K1 satisfies variational inequality (8), then it

also satisfies equilibrium conditions (6) and (7).

Suppose that (p∗, f∗) satisfies variational inequality (8). Since (p∗, f∗) ∈ K1 satisfies VI

(8), then

〈−u(p∗), p〉+ 〈c(f ∗), f〉 ≥ 〈−u(p∗), p∗〉+ 〈c(f ∗), f∗〉, ∀(p, f) ∈ K1. (14)

Therefore, (p∗, f∗) solves the minimization problem

Min(p,f)∈K1〈−u(p∗), p〉+ 〈c(f ∗), f〉. (15)

In view of (4), we can express (15), exclusively, in terms of flows f :

Minf∈K̂1〈−û(f ∗), f〉+ 〈c(f ∗), f〉, (16)

where K̂1 ≡ {f |f ≥ 0 and satisfies (3)}, A is the arc-node incidence matrix in (4), and

û(f ∗) ≡ u(p∗). Since the constraints are linear, one has the following Kuhn Tucker conditions,

for all i, j, k; there exist:

λk∗
i ≥ 0, (17)

such that

λk∗
i (
∑
l 6=i

fk∗
il − p̄k

i ) = 0, (18)

and

ûk
i (f

∗) + ck
ij(f

∗)− ûk
j (f

∗) + λk∗
i ≥ 0, (19)

(ûk
i (f

∗) + ck
ij(f

∗)− ûk
j (f

∗) + λk∗
i )fk∗

ij = 0. (20)

Obviously, equilibrium conditions (6) and (7) follow from (17) - (20). The proof is complete.

2
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Existence of at least one solution to variational inequality (8) follows from the standard

theory of variational inequalities (see Kinderlehrer and Stampacchia (1980) Theorem 3.1)

under the assumption of continuity of the utility functions u and the international migration

cost functions c, since the feasible convex set K1 is compact. Uniqueness of the equilibrium

population and international migration flow pattern (p∗, f∗), in turn, is guaranteed under the

assumption that minus the utility functions and the international migration cost functions

are strictly monotone, i.e.,

−〈u(p1)− u(p2), p1 − p2〉+ 〈c(f 1)− c(f 2), f1 − f 2〉 > 0, (21)

∀(p1, f1), (p2, f2) ∈ K1, (p1, f1) 6= (p2, f2).

We now provide an interpretation of the monotonicity condition (21), which we expect

to hold under reasonable economic situations. Specifically, we assume that the migration

network consisting of origin and destination country locations/nodes as well as migratory

links/routes is subject to congestion. Consequently, the utility functions are decreasing with

larger populations, and the international migration cost functions are increasing with larger

migration flows. Furthermore, we assume that each utility function uk
i (p) depends mainly

on the population pk
i and that each migration cost function ck

ij(f) depends primarily on the

flow fk
ij. Mathematically, the strict monotonicity condition (21) will hold, for example, if

the functions u and c are continuously differentiable and the Jacobian matrices −∇u and

∇c are positive definite over K1 (see Theorem 5.4.3 in Ortega and Rheinboldt (1970)).

2.2 Variational Inequality Formulation of the International Human Migration

Model with Regulations

We now construct the constraint set that captures a plethora of international migration

regulations. For definiteness, we consider regulations imposed by a single country j̄. We

define the set C1 consisting of classes {k} and countries {i}, with i 6= j̄, subject to an upper

bound on the international migration flows into country j̄, denoted by Uj̄.

The constraint can then be stated as follows:∑
i∈C1

∑
k∈C1

fk
ij̄ ≤ Uj̄. (22)

We now highlight the different types of regulations that (22) captures.

For example, the set C1 can be defined to restrict the migratory flow from a specific

country ī and specific class of migrant k̄, in which case, (22) collapses to:

f k̄
īj̄ ≤ Uj̄. (23)
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On the other hand, an upper bound on all incoming migrants from a specific country ī,

irrespective of class, reduces constraint (22) to:∑
k

fk
īj̄ ≤ Uj̄. (24)

Also, a regulation restricting the number of all incoming migrants of class k̄ from a group

of countries, reduces constraint (22) to:∑
i∈C1

f k̄
ij̄ ≤ Uj̄. (25)

For the international human migration model with regulations, the equilibrium conditions

(6) and (7) are still relevant but with a new feasible set K2 defined as below to include the

constraint (22):

K2 ≡ {(p, f)|f ≥ 0 and (3), (4), and (22) hold}. (26)

Hence, it follows immediately that the variational inequality for the international human

migration model with regulations is as given in Theorem 2 below.

Theorem 2: Variational Inequality Formulation of the International Human Mi-

gration Model with Regulations

A population and migration flow pattern (p∗, f∗) ∈ K2 is an international human migration

equilibrium with regulations, if and only if it satisfies the variational inequality problem

−〈u(p∗), p− p∗〉+ 〈c(f ∗), f − f ∗〉 ≥ 0, ∀(p, f) ∈ K2. (27)

Proof: See Smith (1979).

Observe that VI (27) differs from VI (8) in that the feasible set K2 is distinct from K1.

We now provide a VI equivalent to the one in (27) but in flows only. We define a new

feasible set K3 ≡ {f |f ∈ RJnn
+ and (3) and (22) hold}. Recall that ûk

i (f) ≡ uk
i (p), ∀i, ∀k.

Observe now that VI (27) can be expressed in flows, since the first term in (27) is as

below:

−
∑

i

∑
k

uk
i (p

∗)× (pk
i − pk∗

i ) = −
∑

i

∑
k

ûk
i (f

∗)× (
∑

l

fk
li −

∑
l

fk∗
li ) (28)
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= −
∑

j

∑
k

ûk
j (f

∗)× (
∑

i

fk
ij −

∑
i

fk∗
ij ). (29)

It, thus, follows that VI (27) is equivalent to the VI: determine f ∗ ∈ K3 such that∑
i

∑
j

∑
k

(−ûk
j (f

∗) + ck
ij(f

∗))× (fk
ij − fk∗

ij ) ≥ 0, ∀f ∈ K3. (30)

Existence of a solution to variational inequality (30) is also guaranteed.

4. Lagrange Theory and Analysis

The aim of this section is to find an equivalent formulation of variational inequality (30),

by means of the Lagrange multipliers associated with the constraints defining the feasible set

K3. We also provide an interpretation of the Lagrange analysis obtained and present several

illustrative examples.

4.1 Lagrange Theory

First of all, we observe that K3 can be rewritten as follows:

K3 =

{
f : −f ≤ 0;

∑
j

fk
ij − p̄k

i = 0, ∀i, ∀k;
∑
i∈C1

∑
k∈C1

fk
ij̄ − Uj̄ ≤ 0

}
. (31)

Also, variational inequality (30) can be rewritten as a minimization problem, since if we set:

V (f) =
∑

i

∑
j

∑
k

(−ûk
j (f

∗) + ck
ij(f

∗))× (fk
ij − fk∗

ij ),

then we have:

V (f) ≥ 0 for f ∈ K3 and min
f∈K3

V (f) = V (f ∗) = 0.

Making use of the classical linear optimization duality, if f ∗ is a solution to variational

inequality (30), then the following conditions (32) – (34) hold and, vice versa; moreover, also

strong duality (35) holds.

Theorem 3

If f ∗ ∈ K3 is a solution to variational inequality (30), then the Lagrange multipliers γ̄ ∈
RJnn

+ , δ̄ ∈ RJn, and µ̄j̄ ∈ R+ do exist, and for all i, j, k, and j̄, the following conditions hold

true:

γ̄k
ij(−fk∗

ij ) = 0, δ̄ik

(∑
j

fk∗
ij − p̄k

i

)
= 0, µ̄j̄

(∑
i∈C1

∑
k∈C1

fk∗
ij̄ − Uj̄

)
= 0, (32)
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−ûk
j (f

∗) + ck
ij(f

∗)− γk
ij + δik = 0, if j 6= j̄, (33)

−ûk
j̄ (f

∗) + ck
ij̄(f

∗)− γk
ij̄ + δik + µ̄j̄ = 0, if j = j̄. (34)

Moreover, the strong duality also holds true; namely:

V (f ∗) = min
f∈K3

V (f) = max
γ∈RJnn

+ ,δ∈RJn,µj̄∈R+

min
f∈RJnn

L(f, γ, δ, µj̄). (35)

Conditions (32)–(34) represent an equivalent formulation of variational inequality (30).

Indeed, let f ∈ K3 and let us multiply (34) by (fk
ij − fk∗

ij ). Then we obtain:(
−ûk

j (f
∗) + ck

ij(f
∗)
)
(fk

ij − fk∗
ij ) =

(
γk

ij − δik

)
(fk

ij − fk∗
ij ). (36)

Analogously, by multiplying (34) by (fk
ij̄ − fk∗

ij̄ ), we have:(
−ûk

j̄ (f
∗) + ck

ij̄(f
∗)
)
(fk

ij̄ − fk∗
ij̄ ) =

(
γk

ij̄ − δik − µ̄∗j̄
)
(fk

ij̄ − fk∗
ij̄ ). (37)

Then, summing (36) and (37) with respect to i, j, and k, we get:∑
i/∈C1

∑
k/∈C1

∑
j 6=j̄

(
−ûk

j (f
∗) + ck

ij(f
∗)
)
(fk

ij − fk∗
ij ) +

∑
i∈C1

∑
k∈C1

(
−ûk

j̄ (f
∗) + ck

ij̄(f
∗)
)
(fk

ij̄ − fk∗
ij̄ )

=
∑
i/∈C1

∑
k/∈C1

∑
j 6=j̄

γk
ij(f

k
ij − fk∗

ij ) +
∑
i∈C1

∑
k∈C1

γk
ij̄(f

k
ij̄ − fk∗

ij̄ )

−
∑
i/∈C1

∑
k/∈C1

∑
j 6=j̄

δik(f
k
ij − fk∗

ij )−
∑
i∈C1

∑
k∈C1

δik(f
k
ij̄ − fk∗

ij̄ )−
∑
i∈C1

∑
k∈C1

µ̄j̄(f
k
ij̄ − fk∗

ij̄ ). (38)

Since fk
ij ≥ 0, ∀i, j, k, it follows, by also making use of the first equality in (32), that the

sum of the first two terms after the equal sign in (38) is nonnegative. Furthermore, since

f ∈ K3 and f ∗ ∈ K3, −
∑

i/∈C1

∑
k/∈C1

∑
j 6=j̄ δik(f

k
ij − fk∗

ij ) −
∑

i∈C1

∑
k∈C1 δik(f

k
ij̄ − fk∗

ij̄ ) in

(38) is zero. Finally, the last term after the equal sign in (38) is nonnegative, that is,

−
∑

i∈C1

∑
k∈C1 µ̄j̄(f

k
ij̄ −fk∗

ij̄ ) ≥ 0, in view of the third term in (32) and since f ∈ K3. Hence,

the assertion follows.

We now proceed to provide a deeper interpretation of the above Lagrange analysis, which

also yields equilibrium conditions for the model with regulations.

Let us consider the case where fk∗
ij > 0 for some j 6= j̄; from (32) we know that then

γ̄k
ij = 0. It then follows from (34) that:

δ̄ik + ck
ij(f

∗) = ûk
j (f

∗). (39)
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If, on the other hand, fk∗
ij = 0, for some j 6= j̄, then γ̄k

ij ≥ 0, and, from (34), we can infer

that:

δ̄ik + ck
ij(f

∗) = ûk
j (f

∗) + γ̄k
ij;

equivalently:

δ̄ik + ck
ij(f

∗) ≥ ûk
j (f

∗). (40)

Also, note that, if f ∗ii > 0, then from (34) it follows, since cii = 0, that

0 + δ̄ik = ûk
i (f

∗)

and, hence,

δ̄ik = ûk
i (f

∗).

It is easy to see that the equilibrium conditions (6) and (7) hold true. Indeed, expressions

(39) and (40) can, hence, be interpreted as follows: migrants of a class will continue to

migrate to a destination node until the utility at it is equal to the utility at the origin node

plus the migration cost, assuming that there is sufficient population to equalize these. There

will be no flow, in equilibrium, to a “destination” country node if the utility there minus the

utility at the origin country node is insufficient to cover the cost of migration.

In contrast, if we consider a destination node j̄, under the regulation, and, if fk∗
ij̄ > 0,

then (34) applies and we obtain, from (34), that:

δ̄ik + ck
ij̄(f

∗) = ûk
j̄ (f

∗)− µ̄j̄. (41)

Using now (32), we can infer from (41) that, if the migration upper bound Uj̄ is not

met, then the condition (40) coincides with (39). On the other hand, if the upper bound

holds tightly, then the migrants incur a higher utility at destination node j̄ than just the

sum of the origin node utility and the migration cost. In other words, more were seeking to

migrate to that destination, but were prevented from doing so because of the regulation and,

interestingly, the migrants that did manage to reach j̄, are, in fact, “better off”. However,

those left at origin node i encounter a lower utility.

We now define K4 ≡ {(f, δ, µj̄)|f ∈ RJnn
+ , δ ∈ RJn, µj̄ ∈ R+}. Using (32) – (34) we can

construct an alternative VI to (27): determine (f ∗, δ∗, µ∗j̄) ∈ K4 such that∑
i;i/∈C1

∑
j 6=j̄

∑
k;k/∈C1

(−ûk
j (f

∗) + ck
ij(f

∗) + δ∗ik)× (fk
ij − fk∗

ij )

+
∑
i∈C1

∑
k∈C1

(−ûk
j̄ (f

∗) + ck
ij̄(f

∗) + δ∗ik + µ∗j̄)× (fk
ij̄ − fk∗

ij̄ )
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+
∑

i

∑
k

(p̄k
i −

∑
j

fk∗
ij )× (δik − δ∗ik)

+(Uj̄ −
∑
i∈C1

∑
k∈C1

fk∗
ij̄ )× (µj̄ − µ∗j̄) ≥ 0, ∀(f, δ, µj̄) ∈ K4. (42)

We now put variational inequality (42) into standard form (cf. Nagurney (1999)): deter-

mine X∗ ∈ K such that

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (43)

where F is a given continuous function from K to RN , K is a given closed convex set, and

〈·, ·〉 denotes the inner product in N -dimensional Euclidean space.

Indeed, we set K ≡ K4, X ≡ (f, δ, µj̄), and N = Jnn+Jn+1. Also, we define the vector

F ≡ (F1, F2, F3, F4), where the components of F1 consist of the elements: −ûk
j (f) + ck

ij(f) +

δik, for i; i /∈ C1 and j 6= j̄, and k; k /∈ C1; the components of F2 consist of the elements:

−ûk
j̄ (f) + ck

ij̄(f) + δik + µj̄, for i ∈ C1 and k ∈ C1; F3 consists of the elements: p̄k
i −

∑
j fk

ij,

∀i, k, and, finally, F4 consists of the single element: Uj̄ −
∑

i∈C1

∑
k∈C1 fk

ij̄.

4.2 Illustrative Examples

We now proceed to illustrate the above results in several simple examples. The migration

network consists of the topology depicted in Figure 2.

m1

m2Origin Countries

Destination Countries

m1

m2

-�
�

�
�

�
��
-

@
@

@
@

@
@R

Figure 2: International Migration Network for Illustrative Examples

There are two origin country nodes and the same two country destination nodes. We

consider a single class of migrant. We, hence, suppress the superscript 1 in the notation.

The data are as follows: p̄1 = 50 and p̄2 = 0 with the utility functions given by: u1(p) =

−p1 + 100 and u2(p) = −p2 + 120. The migration cost functions are: c11(f) = c22(f) = 0,

c12(f) = .1f12 + 7, c21(f) = f21 + 10.

We first consider the case without regulations. It is easy to compute the equilibrium

solution, using simple algebra. Indeed, we find that:

f ∗12 = 30, f ∗11 = 20, f ∗21 = 0, f ∗22 = 0;
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hence,

p∗1 = 20, p∗2 = 30,

with associated utilities being:

û1(f
∗) = u1(p

∗) = 80, û2(f
∗) = u2(p

∗) = 90,

and the migration costs: c11(f
∗) = c22(f

∗) = 0, c12(f
∗) = 10, and c21(f

∗) = 10.

Moreover, δ̄11 = 80, δ̄21 = 90, and γ̄11 = γ̄21 = γ̄12 = γ̄22 = 0.

We now verify that the equilibrium conditions hold. Indeed, for the node pair (1, 2):

f ∗12 > 0, and

δ̄11 + c12(f
∗) = û2(f

∗) or u1(p
∗) + c12(f

∗) = u2(p
∗),

since 80 + 10 = 90. Moreover, for node pair (1, 1) and node pair (2, 2):

u1(p
∗) + c11(f

∗) = u1(p
∗), u2(p

∗) + c22(f
∗) = u2(p

∗),

since the cii(f)s are equal to 0 for i = 1, 2. Finally, since f ∗21 = 0:

δ̄21 + c21(f
∗) ≥ û1 or u2(p

∗) + c21(f
∗) ≥ u1(p

∗),

with notice that, indeed, 90 + 10 ≥ 80.

It is also easy to verify that VI (8) is satisfied.

We now suppose that a regulation is imposed on destination node 2, such that

f12̄ ≤ U2̄ = 20.

Following our notation, and since the underlying functions are not changed, we have that

c12̄(f) = c12(f)

and that

û2̄(f) = u2(p).

The new equilibrium solution is:

f ∗11 = 30, f ∗12̄ = 20, f ∗21 = 0, f ∗22 = 0,

with p∗1 = 30 and p∗2̄ = 20, and associated utilities:

û1(f
∗) = u1(p

∗) = 70, û2̄(f
∗) = u2̄(p

∗) = 100,

18



and incurred migration costs: c11(f
∗) = c2(f

∗) = 0; c12̄(f
∗) = 9, c21(f

∗) = 10.

Also, cf. (32): µ̄2̄ = 21.

Moreover, δ̄11 = 70, δ̄21 = 100, and γ̄11 = γ̄21 = γ̄12 = γ̄22 = 0.

One can see that, indeed, (34) holds since

δ̄11 + c12̄(f
∗)− γ̄12̄ = û2̄(f

∗)− µ̄2̄;

equivalently,

70 + 9− 0 = 100− 21.

Under this regulation, those who manage to migrate enjoy a higher utility than before,

but those who are left behind in country 1 experience a lower utility than in the case without

regulations (a utility of 70, as compared to 80).

5. Algorithm and Numerical Examples

In this section, we describe the algorithm, along with convergence results, and present

several numerical examples solved by the algorithm.

5.1 The Modified Projection Method

For the solution of the numerical examples, we implemented the modified projection

method (see Korpelevich (1977) and Nagurney (1999)). This algorithm is guaranteed to

converge if the function F that enters the standard form of the variational inequality (cf.

(42)) satisfies monotonicity and Lipschitz continuity (see Nagurney (1999)) and that a solu-

tion exists.

Recall that the function F (X) is said to be monotone, if

〈F (X1)− F (X2), X1 −X2〉 ≥ 0, ∀X1, X2 ∈ K, (44)

and that the function F (X) is Lipschitz continuous, if there exists a constant L > 0, known

as the Lipschitz constant, such that

‖F (X1)− F (X2)‖ ≤ L‖X1 −X2‖, ∀X1, X2 ∈ K. (45)

The steps of the modified projection method are given below, with t denoting an iteration

counter:
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The Modified Projection Method

Step 0: Initialization

Initialize with X0 ∈ K. Set t := 1 and let β be a scalar such that 0 < β ≤ 1
L
, where L is the

Lipschitz constant.

Step 1: Computation

Compute X̄ t by solving the variational inequality subproblem:

〈X̄ t + βF (X t−1)−X t−1, X − X̄ t〉 ≥ 0, ∀X ∈ K. (46)

Step 2: Adaptation

Compute X t by solving the variational inequality subproblem:

〈X t + βF (X̄ t)−X t−1, X −X t〉 ≥ 0, ∀X ∈ K. (47)

Step 3: Convergence Verification

If |X t −X t−1| ≤ ε, with ε > 0, a pre-specified tolerance, then stop; otherwise, set t := t + 1

and go to Step 1.

As mentioned earlier, because of the simplicity of the feasible set K = K4, both Steps

1 and 2 result in subproblems that can be solved explicitly in closed form in terms of the

migration flows, the Lagrange multipliers associated with the population equality constraint,

and the Lagrange multiplier associated with the regulation constraint. Indeed, at each itera-

tion of the algorithm, we have the following explicit formulae for Step 1. The corresponding

explicit formulae for Step 2 are similar in form.

Explicit Formulae for the Migration Flows in Step 1 of the Modified Projection

Method

f̄kt
ij = max{0, fk(t−1)

ij + β(ûk
j (f

t−1)− ck
ij(f

t−1)− δt−1
ik )}, i; i /∈ C1; j 6= j̄; k; k /∈ C1, (48)

f̄kt
ij̄ = max{0, fk(t−1)

ij̄
+ β(ûk

j̄ (f
t−1)− ck

ij̄(f
t−1)− δt−1

ik − µt−1
j̄

)}, i; i ∈ C1; k; k ∈ C1. (49)

Explicit Formulae for the Lagrange Multipliers in Step 1 of the Modified Pro-

jection Method

δ̄t
ik = δt−1

ik + β(
∑

j

f
k(t−1)
ij − p̄k

i ), ∀i,∀k, (50)
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µ̄t
j̄ = max{0, µt−1

j̄
+ β(

∑
i∈C1

∑
k∈C1

f
k(t−1)

ij̄
− Uj̄)}. (51)

We now verify under what conditions on the specific F (X) of our model in (43) the

conditions for convergence will be satisfied.

We first construct 〈F (X1)− F (X2), X1 −X2〉 as in (44) for our model, which is:∑
i;i∈C1

∑
j 6=j̄

∑
k;k 6=C1

((−ûk
j (f

1) + ck
ij(f

1) + δ1
ik)− (−ûk

j (f
2) + ck

ij(f
2) + δ2

ik))× (fk1
ij − fk2

ij )

+
∑
i∈C1

∑
k∈C1

((−ûk
j̄ (f

1) + ck
ij̄(f

1) + δ1
ik + µ1

j̄)− (−ûk
j̄ (f

2) + ck
ij̄(f

2) + δ2
ik + µ2

j̄))× (fk1
ij̄ − fk2

ij̄ )

+
∑

i

∑
k

((p̄k
i −

∑
j

fk1
ij )− (p̄k

i −
∑

j

fk2
ij ))× (δ1

ik − δ2
ik)

((Uj̄ −
∑
i∈C1

∑
k∈C1

fk1
ij̄ )− (Uj̄ −

∑
i∈C1

∑
k∈C1

fk2
ij̄ )× (µ1

j̄ − µ2
j̄), (52)

which, after algebraic simplification, yields:∑
i;i∈C1

∑
j 6=j̄

∑
k;k 6=C1

((−ûk
j (f

1) + ck
ij(f

1))− (−ûk
j (f

2) + ck
ij(f

2))× (fk1
ij − fk2

ij )

+
∑
i∈C1

∑
k∈C1

((−ûk
j̄ (f

1) + ck
ij̄(f

1))− (−ûk
j̄ (f

2) + ck
ij̄(f

2)))× (fk1
ij̄ − fk2

ij̄ ). (53)

But (53) can be further simplified, with the use of (4) and (28), to:∑
k

∑
j

(−uk
j (p

1) + uk
j (p

2))× (pk1
j − pk2

j ) +
∑

i

∑
j

∑
k

(ck
ij(f

1)− ck
ij(f

2))× (fk1
ij − fk2

ij ). (54)

Clearly, if the functions −u(p) and c(f) are monotone in p and f , respectively, then (54)

is greater than or equal to zero and F (X) is, under these reasonable assumptions, monotone.

Note that the numerical examples in this section satisfy this condition.

As for Lipschitz continuity of F (X) for our model, the other condition for convergence

of the algorithm, we assume that the utility functions and the migration cost functions have

bounded first order derivatives. The result is then direct by applying a mid-value theorem

from calculus to the vector function that enters the variational inequality problem (43);

equivalently, variational inequality (42). Lipschitz continuity of F (X) also holds in the case

of our numerical examples.

21



5.2 Numerical Examples

The modified projection method was implemented in FORTRAN and the computer sys-

tem used was a Linux system at the University of Massachusetts Amherst. The algorithm

was initialized as follows: the initial migration flow of a class from a given origin country to

a destination country was set equal to the initial population of the class in the origin coun-

try divided by the number of countries, resulting in equal flows. The Lagrange multipliers

were all initialized to be equal to 1. The convergence tolerance ε was set to 10−3; in other

words, the algorithm was deemed to have converge if the absolute value of successive flow

and Lagrange multiplier iterates differed by no more than this value.

5.2.1 Single Class Example without and with a Regulation

The first example consists of three countries and no regulations. Since there is only a

single class of migrant we suppress the superscript 1 in the notation. The initial populations

are given, respectively, by p̄1 = 10, 000, p̄2 = 5, 000, and p̄3 = 1, 000. The utility functions

associated with the countries are:

u1(p) = −p1 − .5p2 + 30, 000, u2(p) = −2p2 − p1 + 20, 000, u3(p) = −3p3 + .5p2 + 10, 000.

The migration cost functions are:

cii(f) = 0, i = 1, 2, 3;

c12(f) = 2f12 + 20, c13(f) = f13 + 30,

c21(f) = 5f21 + 40, c23(f) = 4f23 + 20,

c31(f) = 6f31 + 80, c32(f) = 4f32 + 60.

We set β = .1 in the modified projection method.

The algorithm converged, yielding the following equilibrium migration flow pattern:

f ∗11 = 10, 000.00, f ∗12 = 0.00, f ∗13 = 0.00,

f ∗21 = 2, 447.90, f ∗22 = 1, 519.66, f ∗23 = 1, 032.44,

f ∗31 = 1, 000.00, f ∗32 = 0.00, f ∗33 = 0.00.

The incurred migration costs at equilibrium are:

c11(f
∗) = 0.00, c12(f

∗) = 20.00, c13(f
∗) = 30.00,
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c21(f
∗) = 12, 279.50, c22(f

∗) = 0.00, c23(f
∗) = 4, 149.76,

c31(f
∗) = 6, 080.09, c32(f

∗) = 60.00, c33(f
∗) = 0.00.

The above equilibrium flow pattern corresponds to the following equilibrium population

distribution:

p∗1 = 13, 447.92, p∗2 = 1, 519.66, p∗3 = 1, 032.44,

and associated utilities at the equilibrium given by:

u1(p
∗) = 15, 792.25, u2(p

∗) = 3, 512.75, u3(p
∗) = 7, 662.51.

The computed equilibrium Lagrange multipliers are:

δ∗1 = 15, 792.25, δ∗2 = 3, 512.75, δ∗3 = 9, 712.17.

Country 1 is clearly a very attractive country. No-one migrates out of the country.

Moreover, about half of those in Country 2 migrate to Country 1, and the entire original

population of Country 3 migrates to Country 1. Less than a third of the original population

of Country 2 remains, with others migrating also to Country 3, in addition to Country 1.

Clearly, this example also verifies the theory in Section 4 associated with the international

human migration model without regulations.

Furthermore, it is easy to verify that the equilibrium conditions (cf. (6) and (7)) hold for

all migration outflows associated with Country 1 and with Country 2, and, clearly, λ∗1 = 0

and λ∗2 = 0. Furthermore, it follows that λ∗3 = 2, 049.65, with notice that u3(p
∗) + c31(f

∗) =

u1(p
∗)− λ∗3, since: 7, 622.51 + 6, 080.09 = 15, 792.25− 2, 049.65.

We now proceed to impose a regulation on the above example. Specifically, Country 1 is

concerned about overpopulation and imposes the following regulation (see also (22)):

f21̄ + f31̄ ≤ 2, 000.

The modified projection method converged, yielding the following equilibrium migration

flow pattern:

f ∗11 = 10, 000.00, f ∗12 = 0.00, f ∗13 = 0.00,

f ∗21̄ = 1, 458.42, f ∗22 = 2, 545.93, f ∗23 = 995.65,

f ∗31̄ = 541.58, f ∗32 = 0.00, f ∗33 = 458.42.

23



The incurred migration costs at equilibrium are:

c11(f
∗) = 0.00, c12(f

∗) = 20.00, c13(f
∗) = 30.00,

c21̄(f
∗) = 7, 332.10, c22(f

∗) = 0.00, c23(f
∗) = 4, 002.61,

c31̄(f
∗) = 3, 329.50, c32(f

∗) = 60.00, c33(f
∗) = 0.00.

The above equilibrium flow pattern corresponds to the following equilibrium population

distribution:

p∗1 = 12, 000.00, p∗2 = 2, 545.93, p∗3 = 1, 454.07,

and associated utilities at the equilibrium given by:

u1̄(p
∗) = 16, 727.04, u2(p

∗) = 2, 908.15, u3(p
∗) = 6, 910.75.

The computed equilibrium Lagrange multipliers are:

δ∗1 = 10, 240.25, δ∗2 = 2, 908.15, δ∗3 = 6, 910.75,

and

µ∗1̄ = 6, 486.79.

Observe that the migration flows into Country 1 are precisely equal to the regulatory

upper bound of 2,000 and, hence, the associated Lagrange multiplier µ∗1̄ > 0.

Note, also, that, under the regulation, denizens of Country 1 now enjoy a high utility of

16, 727.04, as opposed to a utility of 15, 792.25, without the regulation.

However, migrants who move to either Country 2 or to Country 3 now experience a lower

utility; for Country 2: 2, 908.15 versus 3, 512.75 and, for Country 3: 6, 910.76 as opposed to

7, 662.51. Both Countries 2 and 3, under the regulation, have a higher final population than

that under no regulation.

The equilibrium conditions hold with excellent accuracy for this example with the regu-

lation, as well.

5.2.2 Multiclass Example without and with a Regulation

We now present examples consisting of two classes of migrants. The examples build on

the examples in Section 5.2.1. There are, again, three countries. The initial populations of

Class 1 in the countries are as in the preceding example as are the migration costs associated
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with the three countries. The utility functions, on the other hand, now capture interactions

among classes. The superscripts 1 and 2 in the notation below refer to the respective class.

The utility functions are as follows for both classes of migrants:

u1
1(p) = −p1

1−.5p1
2−.5p2

1+30, 000, u1
2(p) = −2p1

2−p1
1−p2

2+20, 000, u1
3(p) = −3p1

3+.5p1
2−p2

3+10, 000,

u2
1(p) = −2p2

1 − p1
1 + 25, 000, u2

2(p) = −3p2
2 − p1

2 + 15, 000, u2
3(p) = −p3 − .5p1

1 + 20, 000.

The initial populations of Class 2 in the countries are: p̄2
1 = 5, 000, p̄2

2 = 3, 000, and

p̄2
3 = 500. Again, we have that ck

ii(f) = 0, ∀i, and for k = 1, 2. The additional migration

cost functions for Class 2 are:

c2
12(f) = 2f 2

12 + 10, c2
13(f) = f 2

13 + 20,

c2
21(f) = 3f 2

21 + 10, c2
23(f) = 2f 2

23 + 30,

c2
31(f) = f 2

31 + 25, c2
32(f) = 2f 2

32 + 15.

The remainder of the migration cost functions are as in the preceding example(s).

The modified projection method converged to the following multiclass equilibrium solu-

tion.

The equilibrium migration flows are:

for Class 1:

f 1∗
11 = 10, 000.00, f 1∗

12 = 0.00, f 1∗
13 = 0.00,

f 1∗
21 = 2, 649.57, f 1∗

22 = 1, 547.75, f 1∗
23 = 802.68,

f 1∗
31 = 1, 000.00, f 1∗

32 = 0.00, f 1∗
33 = 0.00,

for class 2:

f 2∗
11 = 2, 343.67, f 2∗

12 = 182.49, f 2∗
13 = 2, 473.85,

f 2∗
21 = 0.00, f 2∗

22 = 1, 955.57, f 2∗
23 = 1, 044.43,

f 2∗
31 = 0.00, f 2∗

32 = 0.00, f 2∗
33 = 500.00.

The incurred migration costs at equilibrium are:

for Class 1:

c1
11(f

∗) = 0.00, c1
12(f

∗) = 20.00, c1
13(f

∗) = 30.00,

c1
21(f

∗) = 13, 287.86, c1
22(f

∗) = 0.00, c1
23(f

∗) = 3, 230.72,
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c1
31(f

∗) = 6, 080.09, c1
32(f

∗) = 60.00, c1
33(f

∗) = 0.00,

for Class 2:

c2
11(f

∗) = 0.00, c2
12(f

∗) = 374.98, c2
13(f

∗) = 2, 493.85,

c2
21(f

∗) = 10.00, c2
22(f

∗) = 0.00, c2
23(f

∗) = 2, 118.86,

c2
31(f

∗) = 25.00, c2
32(f

∗) = 15.00, c2
33(f

∗) = 0.00.

The above equilibrium flow pattern corresponds to the following multiclass equilibrium

population distribution:

p1∗
1 = 13, 649.59, p1∗

2 = 1, 547.75, p1∗
3 = 802.68,

p2∗
1 = 2, 343.67, p2∗

2 = 2, 138.06, p2∗
3 = 4, 018.28,

and associated multiclass utilities at the equilibrium given by:

u1
1(p

∗) = 14, 404.70, u1
2(p

∗) = 1, 116.84, u1
3(p

∗) = 4, 347.56,

u2
1(p

∗) = 6, 663.08, u2
2(p

∗) = 7, 038.06, u2
3(p

∗) = 9, 156.92.

The computed equilibrium Lagrange multipliers are:

δ1∗
1 = 14, 404.70, δ1∗

2 = 1, 116.84, δ1∗
3 = 8, 324.62,

δ2∗
1 = 6, 663.08, δ2∗

2 = 7, 038.06, δ2∗
3 = 9, 156.92.

Country 1 remains the most popular for Class 1; whereas Country 3 has the greatest

number of Class 2 residents. Class 2 prefers Country 3 whereas Class 1 prefers Country 1.

We now present the multiclass human migration network example under a regulation. The

data are as in the multiclass example above except now we consider the following scenario.

The government of Country 3 is concerned about overpopulation and imposes the following

regulation, which bounds the number of migrants of either class to the country:

f 1
13̄ + f 1

23̄ + f 2
13̄ + f 2

23̄ ≤ 2, 000.

The modified projection method yielded the following multiclass equilibrium solution.

for Class 1:

f 1∗
11 = 10, 000.00, f 1∗

12 = 0.00, f 1∗
13̄ = 0.00,
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f 1∗
21 = 2, 746.92, f 1∗

22 = 1, 788.86, f 1∗
23̄ = 464.22,

f 1∗
31 = 1, 000.00, f 1∗

32 = 0.00, f 1∗
33 = 0.00,

for Class 2:

f 2∗
11 = 3, 581.93, f 2∗

12 = 232.53, f 2∗
13̄ = 1, 185.54,

f 2∗
21 = 0.00, f 2∗

22 = 2, 649.76, f 2∗
23̄ = 350.24,

f 2∗
31 = 0.00, f 2∗

32 = 0.00, f 2∗
33 = 500.00.

The incurred migration costs at equilibrium are:

for Class 1:

c1
11(f

∗) = 0.00, c1
12(f

∗) = 20.00, c1
13̄(f

∗) = 30.00,

c1
21(f

∗) = 13, 774.62, c1
22(f

∗) = 0.00, c1
23̄(f

∗) = 1, 876.90,

c1
31(f

∗) = 6.080.02, c1
32(f

∗) = 60.00, c1
33(f

∗) = 0.00,

for Class 2:

c2
11(f

∗) = 0.00, c2
12(f

∗) = 475.06, c2
13̄(f

∗) = 1, 205.54,

c2
21(f

∗) = 10.00, c2
22(f

∗) = 0.00, c2
23̄(f

∗) = 730.47,

c2
31(f

∗) = 25.00, c2
32(f

∗) = 15.00, c2
33(f

∗) = 0.00.

The above equilibrium migration flow pattern corresponds to the following multiclass

equilibrium population distribution:

p1∗
1 = 13, 746.93, p1∗

2 = 1, 788.86, p1∗
3̄ = 464.22,

p2∗
1 = 3, 581.93, p2∗

2 = 2, 882.29, p2∗
3̄ = 2, 035.78,

and associated multiclass utilities at the equilibrium given by:

u1
1(p

∗) = 13, 567.68, u1
2(p

∗) = −206.93, u1
3̄(p

∗) = 7, 465.98,

u2
1(p

∗) = 4, 089.21, u2
2(p

∗) = 4, 564.27, u2
3̄(p

∗) = 11, 090.76.

The computed equilibrium Lagrange multipliers are:

δ1∗
1 = 13, 567.69, δ1∗

2 = −206.94, δ1∗
3 = 7, 487.66,

δ2∗
1 = 4, 089.20, δ2∗

2 = 4, 564.27, δ2∗
3 = 11, 090.75,
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and for the regulation constraint:

µ∗3̄ = 5, 796.02.

Note that the regulation constraint holds tightly and, hence, the associated Lagrange mul-

tiplier is positive.

Both classes in Country 3, under the regulation, experience a higher utility than in the case

of no regulation. However, with freedom of migration restricted, both classes in Countries 1

and 2 now experience lower utilities. Members of Class 2, again, enjoy the highest utility in

Country 3, whereas members of Class 1, again, enjoy the highest utility in Country 1.

6. Summary and Conclusions

International human migration is a subject of global concern with the number of inter-

national migrants growing faster than the world’s population. Challenges such as climate

change and associated disruptions, along with wars, conflicts, and strife, are acting as push

forces for humans to seek locations of greater safety and security. Others, on the other hand,

are being pulled by the prospect of better economic conditions and enhanced prosperity in

different countries.

Governments, in turn, are being forced to deal with increases in migratory flows across

national boundaries. This has given rise to various regulations. In this paper, we provide

both the theoretical and computational network framework to model and solve international

human migration problems under regulations. We introduce a novel constraint that captures

distinct possible regulations associated with bounding migratory flows of different countries

and classes of migrants. The work builds on the earlier literature on operations research

perspectives for human migration but with notable extensions:

1. We provide a new underlying network structure for problems of human migration and

associated feasibility conditions.

2. A constraint is introduced to capture a plethora of regulations of migratory flows.

3. Lagrange analysis is conducted, with accompanying insights, on the associated utilities

of migrants at origin and at destination nodes, along with incurred migration costs.

4. Alternative variational inequality formulations of the governing equilibrium conditions

are constructed along with accompanying qualitative analysis, in terms of conditions for

existence and uniqueness of a solution.

5. An algorithm, with nice features for implementation, is proposed, along with conditions
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for convergence, and then applied to solve a series of single class and multiclass international

human migration problems, in order to illustrate the framework.

The numerical examples support the theoretical result that, under the regulation, denizens

of the country imposing the migratory flow bound, incur higher utility, whereas those in

other countries can experience reduced utility, due to restrictions on their movement across

national boundaries for relocation.

The results in this paper also add to the literature on operations research for problems

of societal impact, with an emphasis on the impact of regulations.

Future research can advance in multiple directions, including: the investigation of human

migration chaining between countries, under regulations; comparing system-optimal solu-

tions to problems of human migration to the more user-optimal perspective delineated here,

and even applying the model to problems of migration encountered in nature, such as that of

fisheries, in order to reduce the depletion of stocks, a problem, in many parts of the globe. Of

course, the general, theoretical framework in this paper can also be adapted to empirically

study migratory flows in various parts of the world, with and without regulations imposed.
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