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Abstract: The number of disasters is growing as well as the number of people affected,

creating a great need for resilient disaster management. In this paper, we construct multi-

product supply chain network models for multiple humanitarian organizations. The models

capture uncertainty associated with costs of their supply chain activities, including procure-

ment, storage, and distribution, under multiple disaster scenarios, along with uncertainty

associated with the demand for the disaster relief products at the demand points. The models

reflect the organizations’ operations, without and with cooperation, with the humanitarian

organizations seeking to determine the disaster relief multiproduct flows that minimize their

expected total cost and risk subject to expected demand satisfaction. We utilize a mean-

variance approach to capture the risk associated with cost uncertainty and propose a synergy

measure for the assessment of the potential strategic advantages of cooperation for resilient

disaster management. We also identify the role of technology in helping to parameterize the

models and illustrate the analytical framework with numerical examples, accompanied by

managerial insights.

Key words: network synergy; horizontal cooperation; disaster relief; humanitarian logistics;

humanitarian supply chain
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1. Introduction

Climate change has made our societies more vulnerable to disasters. Moreover, with

the ever increasing speed of urbanization, the impact of the disasters has been more se-

vere, resulting in greater challenges for disaster management in all its phases of mitigation,

preparedness, response, and recovery. For example, according to the Global Humanitarian

Overview (United Nations (2019)), between 2014 and 2017, disasters due to natural haz-

ards alone affected more than 870 million people per year in more than 160 countries and

territories around the globe, resulting in loss of life, severely disrupting livelihoods, and dis-

placing, annually, approximately 20 million people from their homes. 2017 was the costliest

year in terms of natural (weather and climate-related) disasters in the United States, with

the National Oceanographic and Atmospheric Administration estimating the financial cost

at $306 billion, beating the previous record, set in 2005, with a cost of $205 billion due

to such disasters (cf. Miller (2018)). The need for humanitarian assistance arises in both

sudden-onset as well as slow-onset disasters, with the United Nations estimating that, in

2019, nearly 132 million people will need humanitarian assistance, many of those because of

conflict. Given the severity and urgent nature of disaster response, humanitarian relief orga-

nizations are under increasing pressure to become more effective and cost-efficient (United

Nations (2019)).

Whether disasters are sudden-onset, such as earthquakes, hurricanes, floods, etc., or

slow-onset, such as droughts, famines, protracted conflicts, etc., they severely impact certain

geographical areas and humanitarian organizations need to work together to enhance the

response. However, as indicated in an ALNAP report regarding such organizations, “...coor-

dination and collaboration among them are often limited at best. Failure to work together

can lead to gaps in coverage and to duplications and inefficiencies in any given emergency

response” (cf. page 5 of Saavedra and Knox-Clarke (2015)).

Recently, there has been growing impetus to explore the benefits of cooperation among

humanitarian organizations in a quantifiable manner, with a goal including that of resiliency

in highly uncertain and complex environments. Opportunities for cooperation among hu-

manitarian organizations may exist along many different links in their supply chains from

procurement to storage as well as transportation and distribution using, for example, shared

freight services, and it is believed that cooperation may improve disaster preparedness and

response (cf. Van Wassenhove (2006), Nagurney and Qiang (2009), Balcik et al. (2010),

among others) as well as reduce materiel convergence (cf. Nagurney, Alvarez Flores, and

Soylu (2016)). Nevertheless, as noted by Schulz and Blecken (2010), research on horizontal

cooperation in the framework of disaster relief is only at the very early stages.
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Given the above discussion, we propose models to study the cooperative synergies related

to the multiproduct supply chains of multiple humanitarian organizations. In particular,

these models capture the uncertainties associated with costs and demands. A mean-variance

approach is used to capture risk associated with the uncertainties and we propose a syn-

ergy measure for the assessment of the potential strategic advantages of cooperation among

humanitarian organizations for disaster management.

This paper is organized as follows. The literature review is conducted in Section 2. The

pre-cooperation multiproduct humanitarian supply chain network model is developed in Sec-

tion 3, followed by the construction of the cooperation multiproduct humanitarian supply

chain model. The method of quantification of the synergistic gains, if any, is provided in Sec-

tion 4, along with theoretical results. In Section 5 we present the algorithm, which we apply

in Section 6 to compute solutions to numerical examples. The solutions not only illustrate

the richness of the framework proposed in this paper, but also demonstrate quantitatively

how various underlying model parameters associated with horizontal cooperation affect the

possible synergies. We conclude the paper with Section 7, in which we summarize the results

and present suggestions for future research.

2. Literature Review

Our perspective for the identification of potential synergy associated with horizontal coop-

eration between/among humanitarian organizations in disaster relief utilizes a supply chain

network perspective in its full generality/complexity with associated activities of procure-

ment, transportation, storage, and distribution. In the commercial space, the assessment of

potential synergy associated with horizontal integration using a supply chain perspective,

notably, in terms of mergers and acquisitions (M&As), is an important topic. Xu (2007)

considered two firms and linear models. Nagurney (2009) also considered two firms, but pro-

posed a nonlinear system-optimization approach, which was then adapted by Nagurney and

Woolley (2010) to include not only costs but also environmental concerns in the form of emis-

sions. Nagurney, Woolley, and Qiang (2010) also considered two cost-minimizing firms, but

with the inclusion of multiple products, and assessed the synergy associated with a merger

or an acquisition. Nagurney (2010), in turn, proposed a supply chain network perspective to

evaluate the potential synergy associated with mergers/acquisitions among multiple profit-

maximizing firms, but with a single product. Liu and Nagurney (2011) considered two firms

engaged in a potential M&A and utilized a mean variance (MV) approach to minimize risk

associated with cost uncertainty and proposed expected total cost and risk reduction synergy

measurements but, unlike the models in this paper of ours, assumed known fixed demands.
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In terms of the humanitarian space, Nagurney and Qiang (2009) discussed how the mul-

tiproduct supply chain network models of Nagurney, Woolley, and Qiang (2010) could be

utilized to assess synergy associated with teaming in the form of horizontal cooperation be-

tween humanitarian organizations engaged in disaster relief. Masoumi, Yu, and Nagurney

(2017), subsequently, proposed multiple synergy measures to evaluate the mergers or ac-

quisitions associated with multiple (not just two) blood banks in the United States, which

are, typically, nonprofits, and in an industry undergoing dramatic change due to economic

and other pressures. The authors’ blood supply chain network models pre- and post- the

merger/acquisition were generalized, nonlinear networks in order to capture the perisha-

bility of blood and, unlike the previously noted models, had uncertain, rather, than fixed

demands, along with penalties in the objective functions of the blood service organizations

associated with shortages/surpluses at demand points. Toyasaki et al. (2017), inspired by

horizontal cooperation for inventory management, as in practice done by the United Nations

Humanitarian Response Depot (UNHRD) network, constructed an analytical framework to

explore horizontal cooperation between humanitarian organizations for their inventory man-

agement. The authors proposed a single-product, two organization model and also discussed

the relevance of system-optimization in their framework, which was also the foundation for

many of the above models noted above. Our focus in this paper, in contrast, is on the full

supply chain networks of humanitarian organizations, and the associated activities, which

include also procurement as well as transportation and distribution, in addition to storage.

However, we retain a system-optimization framework (see also Nagurney and Qiang (2009)),

which is quite reasonable since humanitarian organizations are expected to report to their

stakeholders as to the use of their resources, including the obtained financial donations (cf.

Beamon and Kotleba (2006), Toyasaki and Wakolbinger (2014), Nagurney, Salarpour, and

Daniele (2019), and the references therein). It is worth mentioning that Dafermos (1973)

introduced multiclass system-optimization models in the context of transportation (see also,

e.g., Nagurney (1999) for additional background). Although the methodologies used in the

above M&A and humanitarian relief literature can be adapted to analyze synergies associ-

ated with humanitarian supply chain cooperation, there are, nevertheless, some gaps, which

we address in the new models in this paper.

Specifically, here, we add to the existing literature by constructing “without cooperation”

and “with horizontal cooperation” multiproduct supply chain network models of humani-

tarian organizations engaged in disaster relief. In the case of the former, each humanitarian

organization optimizes just its own supply chain network, whereas, in the case of the lat-

ter, there is the possibility of the sharing of supply chain network resources. The models

can handle as many humanitarian organizations, as need be. We utilize a mean-variance
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approach to capture risk associated with the uncertainty in the various link cost functions,

associated with procurement, transportation, storage, and distribution. The use of a mean-

variance approach for the measurement of risk originates in the celebrated work of the Nobel

laureate Markowitz (1952, 1959) and remains (cf. Schneeweis, Crowder, and Kazemi (2010))

a powerful tool in finance to capture volatility. The MV approach has been increasingly

used in the supply chain management literature to study decision-making under risk and

uncertainty (cf. Liu and Nagurney (2011), Heckmann, Comes, and Nickel (2015), and the

references therein). In this paper, our new supply chain network models for humanitarian

organizations also include uncertainty associated with the demands for the relief items, along

with appropriate penalties due to shortage or surplus. Moreover, the supply chain links in

our models are subject to capacities.

We note that Nagurney and Nagurney (2016) also utilized a MV approach to construct an

integrated supply chain network model for disaster relief with time targets, subject to cost

and demand uncertainty, which captured decision-making in both disaster preparedness and

response phases. However, that model was a single decision-maker, single product one and

there were no upper bounds on the link flows in the form of capacities, which is very relevant

since humanitarian organizations may not have unlimited resources in terms of freight access

capacity, storage, etc. Hence, the new models in this paper integrate the models of Liu and

Nagurney (2011), Nagurney and Nagurney (2016), and Masoumi, Yu, and Nagurney (2017)

(in a pure network setting), and extend them to allow for multiple products, which is very

reasonable in disaster relief since victims of a sudden-onset disaster may require food, water,

medicines, and shelter essentially immediately, and within 72 hours (cf. Nagurney (2016)

and the references therein). Victims of slow-onset disasters, on the other hand, may require

regular deliveries of relief supplies over a longer time horizon. In our models in this paper,

the products are critical needs products, which need to be delivered in a timely manner.

As noted in Qiang and Nagurney (2012), critical needs products may be defined as those

products and supplies that are essential to human health and life, with examples being: food,

water, medicines, and vaccines.

It is also worth mentioning that the contributions in this paper add to the literature

on the modeling of multiple, interacting humanitarian organizations engaged in disaster

relief. Here, we are interested in cooperation among humanitarian organizations, but it is

important to note that noncooperative game theory is also growing in prominence as a tool

for the modeling of the behavior of multiple humanitarian organizations (cf. Muggy and

Heier Stamm (2014)), since, for example, they engage in competition for financial donations

(cf. Toyasaki and Wakolbinger (2014), Nagurney, Alvarez Flores, and Nagurney (2016), and
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Nagurney, Salarpour, and Daniele (2019)) and also for freight service provision (cf. Nagurney

(2018) and Gossler et al. (2019)).

3. Multiproduct Supply Chain Network Models

This Section develops the “without” and the “with horizontal cooperation” multiproduct

supply chain network models for humanitarian organizations using a system-optimization

approach with the inclusion of explicit capacities on the various links as well as the introduc-

tion of stochastic elements. Moreover, here, we provide variational inequality formulations

of the multiproduct supply chains and their integration, which enable a computational ap-

proach that fully exploits the underlying network structure. We identify the supply chain

network structures of both the with and the without cooperation models and construct a

synergy measure.

Section 3.1 describes the underlying supply chain network associated with multiple, in-

dividual humanitarian organizations without horizontal cooperation and their associated

economic activities of procurement, transportation, storage, and distribution. Section 3.2

then develops the supply chain network model with horizontal cooperation. The models are

extensions of the Nagurney (2009), Nagurney, Woolley, and Qiang (2010), Nagurney and

Nagurney (2016), and Masoumi, Yu, and Nagurney (2017) models to multiproduct supply

chains of multiple humanitarian organizations, with uncertainties in both costs and demands,

and upper bounds on links.

3.1 The Case without Horizontal Cooperation Multiproduct Supply Chain Net-

work Model

We first formulate the multiproduct decision-making optimization problem faced by I

humanitarian organizations without horizontal cooperation and we refer to this model as

Case 0. We assume that each organization is represented as a network of its supply chain

activities, as depicted in Figure 1. Each organization i; i = 1, . . . , I, has available ni
M

procurement facilities; ni
S storage facilities, and serves ni

D disaster areas. Let Gi = [Ni, Li]

denote the graph consisting of nodes [Ni] and directed links [Li] representing the supply chain

activities associated with each organization i; i = 1, . . . , I. Let L0 denote the links: L1 ∪
L2∪ · · ·LI as in Figure 1. We assume that each organization is involved in the procurement,

transportation, storage, and distribution of J products, with a typical product denoted by

j.

The links from the top-tiered nodes i; i = 1, . . . , I, in each network in Figure 1 are

connected to the procurement nodes of the respective humanitarian organization i, which

6



D1
1 ����

· · · ����
D1

n1
D

· · ·
Demand Points

DI
1 ����

· · · ����
DI

nI
D

Distribution

?

HHH
HHHHHHj?

���
������� ?

HHH
HHHHHHj?

���
�������

S1
1,2 ����

· · · ����
S1

n1
S ,2 SI

1,2 ����
· · · ����

SI
nI

S ,2
· · ·

? ? ? ?

S1
1,1 ����

· · · ����
S1

n1
S ,1

· · ·

Storage

SI
1,1 ����

· · · ����
SI

nI
S ,1

Transportation

?

H
H

H
H

H
H

H
HHj?

�
�

�
�

�
�

�
��� ?

H
H

H
H

H
H

H
HHj?

�
�

�
�

�
�

�
���

M1
1 ����

· · · ����
M1

n1
M

· · · M I
1 ����

· · · ����
M I

nI
M

�
�

�
��	

@
@

@
@@R

�
�

�
��	

@
@

@
@@R

����
1 ����

I

Organization 1 Organization I

Procurement

· · ·

Figure 1: Supply Chains of Humanitarian Organizations 1 through I Prior to the Coopera-
tion

are denoted, respectively, by: M i
1, . . . ,M

i
ni

M
. These links represent the procurement links.

The links from the procurement nodes, in turn, are connected to the storage center nodes

of each humanitarian organization i; i = 1, . . . , I, which are denoted by Si
1,1, . . . , S

i
ni

S ,1.

These links correspond to the transportation links between the procurement facilities and

the storage centers where the products are stored. The links joining nodes Si
1,1, . . . , S

i
ni

S ,1

with nodes Si
1,2, . . . , S

i
ni

S ,2 for i = 1, . . . , I, correspond to the storage links for the products.

Finally, there are the distribution links joining the nodes Si
1,2, . . . , S

i
ni

S ,2 for i = 1, . . . , I with

the disaster area nodes: Di
1, . . . , D

i
ni

D
for each humanitarian organization i = 1, . . . , I. These

nodes are also referred to as demand points. Each organization i is assumed to be responsible

for delivery of the products to a set of disaster areas, as depicted in Figure 1, prior to the

cooperation, for distribution to the victims.

The demands for the products are assumed to be random and are associated with each

product, and each demand point. Let dj
ik denote the random variable representing the

actual demand for product j and let vj
ik denote the projected random demand for product j;

j = 1, . . . , J , at demand point Di
k for i = 1, . . . , I; k = 1, . . . , ni

D. In addition, the probability
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density function of the actual demand for product j is F j
ik(t) at disaster area Di

k; i = 1, . . . , I;

k = 1, . . . , ni
D. Hence, we can define the cumulative probability distribution function of dj

ik

as Pj
ik(v

j
ik) = Pj

ik(d
j
ik ≤ vj

ik) =
∫ vj

ik
0 F j

ik(t)d(t). Following Masoumi, Yu, and Nagurney (2017)

and Dong, Zhang, and Nagurney (2004), we also define the supply shortage and surplus for

product j; j = 1, . . . , J , at disaster area Di
k; i = 1, . . . , I; k = 1, . . . , ni

D, as

∆j−
ik ≡ ∆j−

ik (vj
ik) ≡ max{0, dj

ik − vj
ik} (1a)

∆j+
ik ≡ ∆j+

ik (vj
ik) ≡ max{0, vj

ik − dj
ik}. (1b)

The expected value of the shortage ∆j−
ik , denoted by E(∆j−

ik ), and of the surplus ∆j+
ik ,

denoted by E(∆j+
ik ), for j = 1, . . . , J ; Di

k; i = 1, . . . , I; k = 1, . . . , ni
D, are then given by

E(∆j−
ik ) =

∫ ∞

vj
ik

(t− vj
ik)F

j
ik(t)d(t), E(∆j+

ik ) =
∫ vj

ik

0
(vj

ik − t)F j
ik(t)d(t). (2)

Furthermore, we denote the penalty associated with the shortage and the surplus of the

demand for product j; j = 1, . . . , J , at the disaster area Di
k by λj−

ik and λj+
ik , respectively,

where i = 1, . . . , I; k = 1, . . . , ni
D.

A path consists of a sequence of links originating at a node i; i = 1, . . . , I and denotes

supply chain activities comprising procurement, transportation, storage, and distribution of

the products to the disaster area nodes. Let xj
p denote the nonnegative flow of product j

on path p. Let P 0
Di

k
denote the set of all paths joining an origin node i with (destination)

disaster area node Di
k. Clearly, since we are first considering the organizations prior to any

cooperation, the paths associated with a given organization have no links in common with

paths of the other organization. This changes (see also Nagurney (2009) and Masoumi, Yu,

and Nagurney (2017)) when the cooperation occurs, in which case the number of paths and

the sets of paths also change, as do the number of links and the sets of links, as described

in Section 3.2. The following conservation of flow equations must hold for each organization

i; i = 1, . . . , I, each product j; j = 1, . . . , J , and each disaster area Di
k; k = 1, . . . , ni

D:

∑
p∈P 0

Di
k

xj
p = vj

ik, i = 1, ..., I; j = 1, . . . , J ; k = 1, . . . , ni
D, (3)

that is, the projected demand for each product associated with a humanitarian organization

at a demand point must be satisfied by the sum of the product path flows of the organization’s

supply chain network.
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Links are denoted by a, b, etc. Let f j
a denote the flow of product j on link a. We also

must have the following conservation of flow equations satisfied:

f j
a =

∑
p∈P 0

xj
pδap, j = 1 . . . , J ; ∀a ∈ L0, (4)

where δap = 1 if link a is contained in path p and δap = 0, otherwise. Here P 0 denotes

the set of all paths in Figure 1, that is, P 0 = ∪i=1,...,I;k=1,...,ni
D
P 0

Di
k
. The path flows must be

nonnegative, that is,

xj
p ≥ 0, j = 1, . . . , J ; ∀p ∈ P 0. (5)

We group the path flows into the vector x. All vectors are assumed to be column vectors.

Note that the different products flow on the supply chain networks depicted in Figure 1

and share resources with one another. To capture the costs, we proceed as follows. There

is a total cost associated with each product j; j = 1, . . . , J , and each link (cf. Figure 1) of

the network corresponding to each humanitarian organization i; i = 1, . . . , I. We denote the

total cost on a link a associated with product j by ĉj
a. The total cost of a link associated

with a product, be it a procurement link, a transportation/distribution link, or a storage

link is assumed, in general, to be a function of the flow of all the products on the link; see,

for example, Dafermos (1973). In addition, given the uncertain nature of disasters, we allow

the total costs to be influenced by uncertainty factors. Hence, the total cost on link a, ĉj
a,

takes the form:

ĉj
a = ĉj

a(f
1
a , . . . , fJ

a , ωj
a), j = 1, . . . , J ; ∀a ∈ Li,∀i. (6)

In equation (6), ωj
a is a random variable associated with various disaster events, which

have an impact on the total cost of link a, ∀a, and product j; j = 1, . . . , J . We assume that

the distribution of the ωj
as is known.

The top tier links in Figure 1 have multiproduct total cost functions associated with them

that capture the procurement costs of the products; the second tier links have multiproduct

total cost functions associated with them that correspond to the total costs associated with

the subsequent transportation/shipment to the storage facilities, and the third tier links,

since they are the storage links, have associated with them multiproduct total cost functions

that correspond to storage. Finally, the bottom-tiered links, since they correspond to the

distribution links to the disaster areas, have total cost functions associated with them that

capture the costs of distribution of the products.

We remark that the supply chain networks of the humanitarian organizations, as depicted

in Figure 1, capture the prepositioning of the supplies in the preparedness phase of disaster
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management, through the storage links, as well as the distribution of the supplies through

the distribution links in the response phase.

The humanitarian organizations consider both costs and risks in their operations using a

mean-variance framework and each organization seeks to minimize its expected total cost and

the valuation of its risk. In addition, since the organizations’ supply chain networks without

horizontal cooperation have no links or costs in common (cf. Figure 1). The optimization

problems of the organizations are independent pre-cooperation. Hence, each organization i;

i = 1, . . . , I, seeks to find the values of the link flows and the projected random demands

that solve the following optimization problem:

Minimize

E(
J∑

j=1

∑
a∈Li

ĉj
a(f

1
a , . . . , fJ

a , ωj
a)) + ξi(V (

J∑
j=1

∑
a∈Li

ĉj
a(f

1
a , . . . , fJ

a , ωj
a)))

+
J∑

j=1

ni
D∑

k=1

(λj−
ik E(∆j−

ik ) + λj+
ik E(∆j+

ik ))

 (7)

subject to: constraints (3) – (5) and the following capacity constraints:

J∑
j=1

αjf
j
a ≤ ua, ∀a ∈ Li. (8)

in (8), the term αj denotes the volume taken up by product j, whereas ua denotes the

nonnegative capacity of link a.

In equation (7), the first and the second terms denote the expected total cost of hu-

manitarian organization i and the variance of the total cost, respectively, with the term

ξi representing the risk aversion factor of organization i. V (
∑J

j=1

∑
a∈Li

ĉj
a(f

1
a , . . . , fJ

a , ωj
a))

denotes the variance of the total cost of organization i. In addition, the third term in (7)

represents the total costs related to the shortage and/or surplus of the humanitarian prod-

ucts at the disaster areas associated with i. We assume that the total operational costs and

the variances in (7) are convex. Furthermore, we know that
∑ni

D
k=1(λ

j−
ik E(∆j−

ik )+λj+
ik E(∆j+

ik ))

is also convex, as established in Nagurney, Masoumi, and Yu (2012) for the single product

case. Hence, the objective function (7) is convex for each i; i = 1, . . . , I. Furthermore, the

individual terms in (7) are continuously differentiable. Under the above imposed assump-

tions, the optimization problem is a convex optimization problem and, clearly, the feasible

set underlying the problem represented by the constraints (3) – (5) and (8) is non-empty, so

it follows from the standard theory of nonlinear programming (cf. Weierstrass theorem in

Bazaraa, Sherali, and Shetty (1993)) that an optimal solution exists.

We refer to objective function (7) as the total generalized cost TGC0
i for i = 1, . . . , I.
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We associate the Lagrange multiplier βa (please refer to the KKT conditions in Chapter

4 of Bazaraa, Sherali, and Shetty (1993)) with constraint (8) for each a ∈ L0 with βa ≥
0,∀a ∈ L0. We denote the associated optimal Lagrange multiplier by β∗a,∀a ∈ L0. This term

may be interpreted as the price or value of an additional unit of capacity on link a; it is also

sometimes referred to as the shadow price. We group the link flows into the vector f ; the

projected demands into the vector v, and the Lagrange multipliers into the vector β.

Let K0 denote the set where K0 ≡ {(f, v, β)|∃x such that (3) − (5) and β ≥ 0 hold}. We

now provide the variational inequality formulation of the problem (7) for all humanitarian

organizations i; i = 1, . . . , I, simultaneously. For convenience, and, since we are considering

Case 0, we denote the solution of variational inequality (VI) (9) below as (f 0∗, v0∗, β0∗) and

we refer to the corresponding vectors of variables with superscripts of 0.

Theorem 1: Variational Inequality Formulation of Case 0: No Cooperation

The vector of link flows, projected demands, and Lagrange multipliers (f 0∗, v0∗, β0∗) ∈ K0

is an optimal solution to (7), for all humanitarian organizations i; i = 1, . . . , I, subject to

their constraints (3)–(5) and (8), if and only if it satisfies the following variational inequality

problem:

I∑
i=1

J∑
j=1

∑
a∈Li

[
∂E(

∑J
l=1

∑
a∈Li

ĉl
a(f

1∗
a , . . . , fJ∗

a , ωl
a))

∂f j
a

+ξi
∂V (

∑J
l=1

∑
a∈Li

ĉl
a(f

1∗
a , . . . , fJ∗

a , ωl
a))

∂f j
a

+αjβ
∗
a]

×[f j
a − f j∗

a ] +
I∑

i=1

J∑
j=1

ni
D∑

k=1

[
λj+

ik P
j
ik(v

j∗
ik )− λj−

ik (1− Pj
ik(v

j∗
ik )

]
× [vj

ik − vj∗
ik ]

+
∑

a∈L0

[ua −
J∑

j=1

αjf
j∗
a ]× [βa − β∗a] ≥ 0, ∀(f 0, v0, β0) ∈ K0. (9)

Proof: See Bertsekas and Tsitsiklis (1989), Nagurney (1999), Dong, Zhang, and Nagurney

(2004), Liu and Nagurney (2011), and Masoumi, Yu, and Nagurney (2017).

3.2 The Case with Horizontal Cooperation Multiproduct Humanitarian Supply

Chain Network Model

We now formulate the case with horizontal cooperation multiproduct humanitarian supply

chain network model, referred to as Case 1. Figure 2 depicts the humanitarian supply chain

network topology under Case 1. Note that there is now a supersource node 0 which represents

the “joining” in terms of cooperation of the organizations in terms of their supply chain

networks with additional links connecting node 0 to nodes 1 through I.
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Figure 2: Humanitarian Supply Chain Network after Cooperation

As in Case 0, the optimization problem in Case 1 is also concerned with cost and risk min-

imization. Specifically, we retain the nodes and links associated with the multiorganization

supply chain network depicted in Figure 1 but now we add the additional links connecting

the procurement facilities of each organization and the distribution centers of the other orga-

nization as well as the links connecting the distribution centers of each organization and the

disaster areas of the other organization. We refer to the network in Figure 2, underlying this

integration, as G1 = [N1, L1] where N1 ≡ N0∪ node 0 and L1 ≡ L0∪ the additional links as

in Figure 2. We associate total cost functions as in (6) with the new links, for each product

j. Note that if the total cost functions associated with the cooperation links connecting node

0 to node 1 through node I are set equal to zero, this means that the cooperation is costless

in terms of the integrated supply chain network of the humanitarian organizations.

A path p now (cf. Figure 2) originates at the node 0 and is destined for one of the

bottom disaster nodes. Let xj
p, under the cooperation network configuration given in Figure

12



2, denote the flow of product j on path p joining (origin) node 0 with a (destination) disaster

area (demand) node. Then, the following conservation of flow equations must hold for each

i, j, k: ∑
p∈P 1

Di
k

xj
p = vj

ik, (10)

where P 1
Di

k
denotes the set of paths connecting node 0 with disaster area node Di

k in Figure 2.

Due to the cooperation, the disaster areas can obtain each product j from any procurement

facility, and any storage facility. The set of paths P 1 ≡ ∪i=1,I;k=1,...,ni
D
P 1

Di
k
.

In addition, as before, let f j
a denote the flow of product j on link a. Hence, we must also

have the following conservation of flow equations satisfied:

f j
a =

∑
p∈P 1

xj
pδap, j = 1, . . . , J ; ∀a ∈ L1. (11)

Of course, we also have that the path flows must be nonnegative for each product j, that

is,

xj
p ≥ 0, j = 1, . . . , J ; ∀p ∈ P 1. (12)

We assume, again, that the supply chain network activities have nonnegative capacities,

denoted as ua, ∀a ∈ L1, with αj representing the volume factor for product j. Hence, the

following constraints must be satisfied:

J∑
j=1

αjf
j
a ≤ ua, ∀a ∈ L1. (13)

The term ξ denotes the associated risk aversion factor of the integrated organizations

under cooperation.

Consequently, the optimization problem for the integrated humanitarian supply chain

network is:

Minimize E(
J∑

j=1

∑
a∈L1

ĉj
a(f

1
a , . . . , fJ

a , ωj
a)) + ξ

V (
J∑

j=1

∑
a∈L1

ĉj
a(f

1
a , . . . , fJ

a , ωj
a))



+
I∑

i=1

J∑
j=1

ni
D∑

k=1

(λj−
ik E(∆j−

ik ) + λj+
ik E(∆j+

ik )) (14)

subject to constraints: (10) – (13).

Similar to equation (7), the terms in (14) represent the total operational costs, the risks,

and the shortage/surplus costs related to the uncertain demand. The term ξ is the associated
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risk aversion factor of the integrated organizations under cooperation. The solution to the

optimization problem (14) subject to constraints (10), for all i, j, k, through (13) can also be

obtained as a solution to a variational inequality problem akin to (9) where now links a ∈ L1.

The vectors f , v, and β have identical definitions as before, but are re-dimensioned/expanded

accordingly and superscripted with 1. Finally, instead of the feasible set K0 we now have

K1 ≡ {(f, v, β)|∃x such that (10)− (12) hold and β ≥ 0}.

We refer to objective function (14) as the total generalized cost TGC1.

We denote the solution to the variational inequality (VI) problem (15) below governing

Case 1 by (f 1∗, v1∗ , β1∗) and denote the vectors of corresponding variables as (f 1, v1, β1). We

now, for completeness, provide the variational inequality formulation of the Case 1 problem.

The proof is immediate.

Theorem 2: Variational Inequality Formulation of Case 1: Cooperation

The vector of link flows, projected demands, and Lagrange multipliers (f 1∗, v1∗, β1∗) ∈ K1 is

an optimal solution to (14), subject to constraints (10)–(13), if and only if it satisfies the

following variational inequality problem:

J∑
j=1

∑
a∈L1

[
∂E(

∑J
l=1

∑
a∈L1 ĉl

a(f
1
a , . . . , fJ

a , ωl
a))

∂f j
a

+ ξ
∂V (

∑J
l=1

∑
a∈L1 ĉl

a(f
1∗
a , . . . , fJ∗

a , ωl
a))

∂f j
a

+ αjβ
∗
a]

×[f j
a − f j∗

a ] +
I∑

i=1

J∑
j=1

ni
D∑

k=1

[
λj+

ik P
j
ik(v

j∗
ik )− λj−

ik (1− Pj
ik(v

j∗
ik )

]
× [vj

ik − vj∗
ik ]

+
∑

a∈L1

[ua −
J∑

j=1

αjf
j∗
a ]× [βa − β∗a] ≥ 0, ∀(f 1, v1, β1) ∈ K1. (15)

Theorem 2 states that the solution to (15) coincides with the solution to the optimization

problem (14). Therefore, we can utilize the existing theories and algorithms for VIs to explore

the problem further and to generate managerial insights through numerical computations.

Definition 1: Total Generalized Costs at the Optimal Solutions to the Supply

Chain Network Problems without and with Cooperation

Let TGC0∗ denote the total generalized cost equal to
∑I

i TGC0
i =E(

∑J
j=1

∑
a∈L0 ĉj

a(f
1
a , . . . , fJ

a , ωj
a))

+
∑I

i=1 ξi

[
V (

∑J
j=1

∑
a∈Li

ĉj
a(f

1
a , . . . , fJ

a , ωj
a))

]
+

∑I
i=1

∑J
j=1

∑ni
D

k=1(λ
j−
ik E(∆j−

ik ) + λj+
ik E(∆j+

ik )),

evaluated at the optimal solution (f 0∗, v0∗, β0∗) to (9).
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Also, let TGC1∗ = E(
∑J

j=1

∑
a∈L1 ĉj

a(f
1
a , . . . , fJ

a , ωj
a))

+ ξ
[
V (

∑J
j=1

∑
a∈L1 ĉj

a(f
1
a , . . . , fJ

a , ωj
a))

]
+

∑I
i=1

∑J
j=1

∑ni
D

k=1(λ
j−
ik E(∆j−

ik ) + λj+
ik E(∆j+

ik )), denote

the total generalized cost evaluated at the solution (f 1∗, v1∗, β1∗) to (15).

4. Quantifying Synergy of Horizontal Cooperation of the Multiproduct Human-

itarian Supply Chain Networks

We now quantify the synergy associated with cooperation of the humanitarian organi-

zations by analyzing the generalized costs under the cases with and without humanitarian

supply chain network cooperation (cf. Eccles, Lanes, and Wilson (1999) and Nagurney

(2009)).

We denote the synergy here by STGC . It is calculated as the percentage difference between

the total generalized cost without vs. with the horizontal cooperation (evaluated at the

respective optimal solutions):

STGC ≡ [
TGC0∗ − TGC1∗

TGC0∗ ]× 100%. (16)

From (16), one can see that the lower the total generalized cost TGC1∗, the higher the

synergy associated with the humanitarian supply chain network cooperation and, therefore,

the greater the total cost savings resulting from the cooperation. It is important to further

emphasize that the general costs include not only the monetary costs, but also the risks and

uncertainties involved in the humanitarian supply chain as well as the associated penalties

of shortages and surpluses. Of course, in specific operations one may wish to evaluate the

integration of humanitarian supply chain networks with only a subset of the links joining the

original supply chain networks. In that case, Figure 2 would be modified accordingly and

the synergy as in (16) computed with TGC1∗ corresponding to that supply chain network

topology.

We now provide a theorem which shows that, under certain assumptions related to the

total operational costs associated with the supply chain integration and the risk factors, the

associated synergy can never be negative.

Theorem 3

If the total generalized cost functions associated with the cooperation links from node 0 to

nodes 1 through I for each product are identically equal to zero; and the risk aversion factors

ξi; i = 1, . . . , I, are all equal and set to ξ, then the associated synergy, STGC, can never be

negative.
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Proof: The result follows using the same arguments as the proof of Theorem 3 in Nagurney,

Woolley, and Qiang (2010). 2

Another interpretation of this theorem is that, in the system-optimization context (as-

suming that the total cost functions remain the same as do the demands), the addition of

new links can never make the total cost increase. This is in contrast to what may occur in

the context of user-optimized networks, where the addition of a new link may make everyone

worse-off in terms of user cost, which is what occurs in the case of the well-known Braess

paradox (1968); see, also, Braess, Nagurney, and Wakolbinger (2005). More specifically, in

the classical Braess paradox, the addition of a link, which results in a new path available for

travelers from an origin to a destination, results in an increase in travel cost (travel time) for

all travelers in the network. Hence, users are better off without the network addition. The

Braess paradox can occur not only in congested urban transportation networks but also on

the Internet (cf. Korilis, Lazar, and Orda (1999)).

5. The Computational Scheme

In view of the conservation of flow equations (10) and (11), and constraints (12) and

(13), we can also construct a variational inequality formulation akin to (15), but in path

flows, rather than in links flows (the same holds for a path flow analogue of variational

inequality (9)). We now present the path flow variational inequality for the cooperation

supply chain network problem, with the accompanying computational scheme (which can

easily be adapted to also solve the pre-cooperation VI problem in path flows).

We group the path flows into the vector x ∈ RnP1 , where nP 1 is the number of paths in

P 1. Also, nL1 denotes the number of links in L1.

We define the feasible set K2 ≡ {(x, β)|x ≥ 0, β ≥ 0}. Then the VI (17) below follows

directly from the relationships between variational inequalities and nonlinear programming

problems (cf. Nagurney (1999) and the references therein) (or, equivalently, by utilizing

the conservation of flow expressions and embedding them into the link flow VI analogue

(15), along with algebraic simplification). A vector of path flows and Lagrange multipliers

(x∗, β∗) ∈ K2 is an optimal solution to problem (14) subject to (10) – (13) if and only if it

satisfies the variational inequality:

J∑
j=1

∑
p∈P 1

∂TGC1(x∗)

∂xj
p

+ αj

∑
a∈L1

β∗aδap

× [
xj

p − xj∗
p

]

+
∑

a∈L1

ua −
J∑

j=1

αj

∑
p∈P 1

xj∗
p δap

× [βa − β∗a] ≥ 0, ∀(x, β) ∈ K2. (17)
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We now put VI (17) into standard form (cf. Nagurney (1999)): determine X∗ ∈ L ⊂ RN ,

such that

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ L, (18)

where F is a given continuous function from L to RN , L is a closed, convex set, and 〈·, ·〉
denotes the inner product in N -dimensional Euclidean space.

Let X ≡ (x, β) and F (X) ≡ (F1(X), F2(X)), where F1(X) consists of elements:[
∂TGC1(x∗)

∂xj
p

+ αj
∑

a∈L1 β∗aδap

]
, ∀j,∀p ∈ P 1, and F2(X) of elements:

[
ua −

∑J
j=1 αj

∑
p∈P 1 xj∗

p δap

]
,

∀a ∈ L1, and all vectors are column vectors. Then, clearly, (17) can be put into the form

(18), where N = nP 1 + nL1 .

The algorithm that we apply for the computation of the optimal product path flow and

Lagrange multiplier patterns for both supply chain network problems is the modified pro-

jection method (see Korpelevich (1977)). The algorithm is guaranteed to converge, provided

that the function F (X) is monotone and Lipschitz continuous (cf. the Appendix), and that

a solution exists.

5.1 The Modified Projection Method

The steps of the modified projection method are:

Step 0: Initialization

Initialize with X0 ∈ L. Set t := 1 and select η, such that 0 < η ≤ 1
L̄
, where L̄ is the Lipschitz

constant (cf. (20)) for the function F in the variational inequality problem.

Step 1: Construction and Computation

Compute X̄ t ∈ L by solving the variational inequality subproblem:

〈X̄ t + ηF (X t−1)−X t−1, X − X̄ t〉 ≥ 0, ∀X ∈ L. (19)

Step 2: Adaptation

Compute X t ∈ L by solving the variational inequality subproblem:

〈X t + ηF (X̄ t)−X t−1, X −X t〉 ≥ 0, ∀X ∈ L. (20)
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Step 3: Convergence Verification

If |X t −X t−1| ≤ ε, for ε > 0, a specified tolerance, then, stop; otherwise, set t := t + 1 and

go to Step 1.

For both the pre-cooperation model and the cooperation model, Steps 1 and 2 of the

modified projection method above (cf. (21) and (22)) result in closed form expressions for

the product path flows as well as the Lagrange multipliers at each iteration. Below we

provide the associated explicit formulae for Step 1 for the solution of VI (17). Analogous

ones are easily obtained for Step 2.

Closed Form Expressions for the Product Path Flows and the Lagrange Multi-

pliers at Step 1 of Iteration t

We now present the closed form expressions for the solution variational inequality subproblem

(19) associated with VI (17).

The closed form expression for the product path flow x̄j
p

t
for each p ∈ P 1; j = 1, . . . , J ,

at iteration t is:

x̄j
p

t
= max{0, η

−∂TGC1(xt−1)

∂xj
p

− αj

∑
a∈L1

βt−1
a δap

 + xj
p

t−1}. (21)

The closed form expression for the Lagrange multiplier β̄t
a for a ∈ L1 is:

β̄t
a = max{0, η

 J∑
j=1

αj

∑
p∈P 1

xj
p

t−1
δap − ua

 + βt−1
a }. (22)

Theorem 4: Convergence of the Algorithm

Assume that the function F (X) that enters the variational inequality (18) is monotone and

Lipschitz continuous and that a solution exists. Then, the modified projection method outlined

above converges to a solution.

Proof: According to Korpelevich (1977), the modified projection method converges to the

solution of the variational inequality problem of the form (18), if the function F that enters

the variational inequality is monotone and Lipschitz continuous and a solution exists. 2
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6. Numerical Examples

In this Section, we compute solutions to numerical examples illustrating the modeling

and algorithmic framework. The numerical examples are inspired, in part, by ongoing

refugee/migrant crises as in Central America and Mexico (cf. Stemple (2019)), Yemen (see

Palmer (2018)), Syria (Ki-Moon (2018)), among many others. Such slow-onset, ongoing

disasters are providing immense challenges for humanitarian organizations (in addition to

governments) to provide the necessary food, water, medicines, etc., to the needy in a variety

of shelters. Our numerical examples are stylized but reflect real-world features. Moreover,

as in the case of the refugee/migrant crisis emanating from Central America, numerous hu-

manitarian organizations are involved in providing assistance and, hence, it is valuable to be

able to assess possible synergies since the demand is so great. In particular, with carefully

calibrated historical data and information, our models can be used to assist the humanitarian

organizations on how to cooperate in terms of the delivery of humanitarian relief products

in a cost-effective fashion.

The pre-cooperation supply chain network for the numerical examples is depicted in

Figure 3 and the cooperation one in Figure 4.

According to Figure 3, there are two humanitarian organizations, HO 1 and HO 2, each

of which is to provide relief items to disaster victims at two demand points. The demand

points associated with HO 1, D1
1 and D1

2, differ from those of HO 2, that is, D2
1 and D2

2.
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Figure 3: Pre-Cooperation Supply Chain Network Topology for the Numerical Examples

Pre-cooperation, each organization can procure the relief items from two possible loca-
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tions (distinct for each organization) and then have the items transported for storage to a

separate storage facility, from which the relief items are ultimately transported to the points

of demand. On the other hand, under cooperation, as the supply chain network figure in

Figure 4 reveals, the demand points can be serviced by either humanitarian organization (or

both), and they can make use of one another’s storage facilities as well as freight services

for transportation and distribution, and can also avail themselves of all the procurement

location options.
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Figure 4: Cooperation Supply Chain Network Topology for the Examples

In the numerical examples, we consider a single product and, hence, we suppress the

superscripts associated with products in our notation of Section 2 and 3.

The total link cost functions are of the form:

ĉa = ca(fa, ωa) = ωaĝafa + gafa, ∀a ∈ L1. (23)

The objective function (14) then becomes:

Minimize
∑

a∈L1

E(ωa)ĝafa +
∑

a∈L1

gafa + ξV (
∑

a∈L1

ωaĝafa) +
I∑

i=1

ni
D∑

k=1

(λ−ikE(∆−
ik) + λ+

ikE(∆+
ik)),

(24)

where in our examples I = 2.

The covariance matrix associated with the ĉa(fa, ωa), ∀a ∈ L1, is the 28× 28 matrix σ2I,

since there are 28 links in the network in Figure 4.
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Following Nagurney and Nagurney (2016), we know that:

∑
a∈L1

σ2ĝ2
af

2
a = V (

∑
a∈L1

ωaĝafa) = V (
∑

a∈L1

ωaĝa

∑
q∈P

xqδaq); (25)

hence,
∂V (

∑
a∈L1 ωaĝa

∑
q∈P xqδaq)

∂xp

= 2σ2
∑

a∈L1

ĝ2
afaδap. (26)

We define the following marginal cost on a link a, Ĝc′a, as:

Gĉ′a ≡ E(ωa)ĝa + ga + ξ2σ2ĝ2
afa, (27)

and the following marginal cost on a path:

GĈ ′
p ≡

∑
a∈L1

Gĉ′aδap, ∀p ∈ P 1, (28)

so that ∂TGC1(xt−1)
∂xp

in the algorithmic statement (21) would have the form (cf. Masoumi, Yu,

and Nagurney (2017)), ∀i, ∀k, ∀p ∈ P 1
Di

k
:

∂TGC1(xt−1)

∂xp

= GĈ ′
p(x

t−1)− λ−ik(1− Pik(
∑

q∈P 1

Di
k

xt−1
q )) + λ+

ikPik(
∑

q∈P 1

Di
k

xt−1
q ). (29)

We implemented the algorithm in FORTRAN and utilized a Unix system at the University

of Massachusetts Amherst for the computations. The algorithm was initialized with the

projected demand for each demand point set to 100 and equally distributed among the

paths. The convergence tolerance ε was set to 10−5; that is, the algorithm was terminated

when the absolute value of the difference of successive path flows at two iterations as well

as that of successively computed Lagrange multipliers were all less than or equal to this ε

value.

Example 1

The definition of the links, the upper bounds on the links, the associated total links cost

functions are given in Table 1 for Example 1. Example 2 is a variant of Example 1 and has

the same data except for the probability distribution functions at the demand points. The

time horizon under consideration is one week.

Since we assume one type of relief item, we set (cf. (8)), α1 = 1. The product to

be delivered to the shelters is that of relief item kits, so our costs/prices associated with

the procurement links (cf. Table 1) are reasonable (cf. Nagurney, Salarpour, and Daniele
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(2019)). The weights ξ1 = ξ2 = 1 for the without cooperation supply chain network problem

(cf. Figure 3).

The demand at each of the four demand points in Figures 3 and 4 for Example 1 is

assumed to follow a continuous uniform distribution on the intervals: [150, 400], [150, 250],

[150, 500], and [100, 200], respectively. Hence, the demand at the second demand point of

each HO is lower than at its first demand location. We then have that, for HO 1:

P11(
∑

p∈P 0

D1
1

) =

∑
p∈P 0

D1
1

xp − 150

400− 150
, P12(

∑
p∈P 0

D1
2

) =

∑
p∈P 0

D1
2

xp − 150

250− 150
,

and, for HO 2:

P21(
∑

p∈P 0

D2
1

) =

∑
p∈P 0

D2
1

xp − 150

500− 150
, P22(

∑
p∈P 0

D2
2

) =

∑
p∈P 0

D2
2

xp − 100

200− 100
.

The demand points associated with HO 1 are in the western part of a region, whereas those

associated with HO2 are in the eastern part. Their respective storage centers are located

centrally.

We set σ2 = 1. For the construction of the Gĉ′a, ∀a ∈ L1, please refer to equation (27)

and Table 1.

Also, we set: λ−ik = 10000 and λ+
ik = 100 for both HOs and all demand points since

shortages are penalized more than surpluses.

The computed optimal link flows and Lagrange multipliers for this example, prior to

cooperation, are reported in Table 2.

The component of the total generalized cost TGC0∗ not including the penalized expected

shortages and surpluses is equal to 1,415,963, whereas the total generalized cost TGC0∗=

1,024,443,264.

As can be seen from the results in Table 2, the volume of relief item flows into each

demand point is above the minimum amount of the corresponding interval of the associated

probability distribution. Interestingly, the relief item flows on the procurement links of both

HOs are at their respective link capacities and, hence, the corresponding optimal Lagrange

multipliers are positive. The HOs may wish to discuss with their suppliers the possibility of

procuring additional items in the future.

In Table 3, we report the computed optimal solution for the cooperation supply chain

network for Example 1. We set ξ = 1.
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Table 1: Definition of Links, the Link Upper Bounds, and Associated Total Cost and Other
Functions for Examples 1 and 2

Link a From Node To Node ua ĉa(fa, ωa)=ωaĝafa + gafa E(ωa) Gĉ′a
1 1 M1

1 200 ω12f1 + 60f1 1 8f1 + 62
2 1 M1

2 175 ω2f2 + 55f2 1 2f2 + 56
3 M1

1 S1
1,1 250 ω3f3 + 4f3 1 2f3 + 5

4 M1
2 S1

1,1 200 ω4f4 + 5f4 1 2f4 + 6

5 S1
1,1 S1

1,2 400 ω5f5 + 2f5 1 2f5 + 3

6 S1
1,2 D1

1 300 ω62f6 + 2f6 1 8f6 + 4

7 S1
1,2 D1

2 300 ω72f7 + 2f7 1 8f7 + 4

8 2 M2
1 175 ω8f8 + 50f8 1 2f8 + 51

9 2 M2
2 175 ω9f9 + 45f9 1 2f9 + 46

10 M2
1 S2

1,1 300 ω10f10 + 2f10 1 2f10 + 3

11 M2
2 S2

1,1 300 ω11f11 + 6f11 1 2f11 + 7

12 S2
1,1 S2

1,2 450 ω122f12 + 2f12 1 8f12 + 4

13 S2
1,2 D2

1 350 ω13f13 + 7f13 1 2f13 + 8

14 S2
1,2 D2

2 200 ω14f14 + 8f14 1 2f14 + 9

15 1 M2
1 150 ω15f15 + 50f15 1 2f15 + 51

16 1 M1
2 175 ω16f16 + 45f16 1 2f16 + 46

17 2 M1
1 175 ω172f17 + 60f17 1 8f17 + 62

18 2 M1
2 150 ω18f18 + 55f18 1 2f18 + 56

19 M1
1 S2

1,1 200 ω19f19 + 5f19 1 2f19 + 6

20 M1
2 S2

1,1 200 ω20f20 + 6f20 1 2f20 + 7

21 M2
1 S1

1,1 200 ω21f21 + 3f21 1 2f21 + 4

22 M2
2 S1

1,1 200 ω22f22 + 7f22 1 2f22 + 8

23 S1
1,2 D2

1 200 ω232f23 + 3f23 1 8f23 + 5

24 S1
1,2 D2

2 200 ω242f24 + 3f24 1 8f24 + 5

25 S2
1,2 D1

1 150 ω25f25 + 8f25 1 2f25 + 9

26 S2
1,2 D1

2 150 ω26f26 + 9f26 1 2f26 + 10

27 0 1 large 0 – 0
28 0 2 large 0 – 0

Again, the relief item flows to the demand points are all greater than the lower value of

the interval of the respective probability distribution. Moreover, whereas in the case without

cooperation, a total of 725 relief items were delivered across all demand points, now 850 have

been delivered under cooperation. Hence, victims benefit from the cooperation of HOs.

In the optimal solution to the supply chain network with cooperation, as reported in

Table 3, the relief item flows at the two storage locations are now at capacity levels, as is

the flow on the shipment link from the second storage facility to the fourth (last) demand
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Table 2: Optimal Link Flows and Lagrange Multipliers for Examples 1 and 2 without Co-
operation

Example 1 Example 2
Link a From Node To Node f ∗a β∗a f ∗a β∗a

1 1 M1
1 200 3448 200 1878

2 1 M1
2 175 4753 175 3183

3 M1
1 S1

1,1 200 0 200 0

4 M1
2 S1

1,1 175 0 175 0

5 S1
1,1 S1

1,2 375 0 375 0

6 S1
1,2 D1

1 202 0 187.5 0

7 S1
1,2 D1

2 173 0 187.5 0

8 2 M2
1 175 3774 175 1026

9 2 M2
2 175 3775 175 1027

10 M2
1 S2

1,1 175 0 175 0

11 M2
2 S2

1,1 175 0 175 0

12 S2
1,1 S2

1,2 350 0 350 0

13 S2
1,2 D2

1 226 0 200 0

14 S2
1,2 D2

2 124 0 150 0

point. Hence, the Lagrange multipliers associated with these links (links 5, 12, and 26) are

now positive.

The component of the total generalized cost TGC1∗ not including the penalized ex-

pected shortages and surpluses is equal to 1,480,565, whereas the total generalized cost

TGC1∗=466,333,824.

The resulting synergy for Example 1, associated with cooperation, is, hence, STGC = 54%.

The HOs also gain under cooperation, in addition to the refugees.

Example 2

Example 2 has the identical data to that in Example 1 except that we assume that there are

now better estimates of the demand ranges for the first and third demand points. Hence, we

now have that, for HO 1:

P11(
∑

p∈P 0

D1
1

) =

∑
p∈P 0

D1
1

xp − 150

250− 150
,
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Table 3: Optimal Link Flows and Lagrange Multipliers for Examples 1 and 2 with Cooper-
ation

Example 1 Example 2
Link a From Node To Node f ∗a β∗a f ∗a β∗a

1 1 M1
1 86 0 106 0

2 1 M1
2 112 0 106 0

3 M1
1 S1

1,1 78.5 0 100 0

4 M1
2 S1

1,1 106 0 100 0

5 S1
1,1 S1

1,2 400 7291 400 11305

6 S1
1,2 D1

1 79.5 0 110 0

7 S1
1,2 D1

2 140 0 110 0

8 2 M2
1 114 0 106 0

9 2 M2
2 114 0 106 0

10 M2
1 S2

1,1 120 0 113 0

11 M2
2 S2

1,1 120 0 113 0

12 S2
1,1 S2

1,2 450 4917 450 9737

13 S2
1,2 D2

1 96 0 123 0

14 S2
1,2 D2

2 115 0 82 0

15 1 M2
1 114 0 106 0

16 1 M1
2 114 0 106 0

17 2 M1
1 86 0 106 0

18 2 M1
2 112 0 106 0

19 M1
1 S2

1,1 93.5 0 113 0

20 M1
2 S2

1,1 117 0 113 0

21 M2
1 S1

1,1 108 0 100 0

22 M2
2 S1

1,1 108 0 100 0

23 S1
1,2 D2

1 81 0 100 0

24 S1
1,2 D2

2 100 0 70 0

25 S2
1,2 D1

1 90 0 123 0

26 S2
1,2 D1

2 150 703 123 0

27 0 1 425 0 425 0
28 0 2 425 0 425 0

and for HO 2:

P21(
∑

p∈P 0

D2
1

) =

∑
p∈P 0

D2
1

xp − 150

250− 150
.

The computed optimal solution for the supply chain network for Example 2 without

cooperation is reported in Table 2 and that for the supply chain network with cooperation

is reported in Table 3.
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In Example 2, the same links in the without cooperation supply chain network are at

their capacities, in terms of the link flows, as in Example 1; that is, the procurement links.

Also, in the case of cooperation, the storage links are at their capacities in both Examples 1

and 2, whereas link 26, corresponding to a shipment/distribution link is only at its capacity

in Example 1 and not in Example 2.

The component of the total generalized cost TGC0∗ not including the penalized ex-

pected shortages and surpluses is equal to 1,409,139, whereas the total generalized cost

TGC0∗=494,335,328.

The component of the total generalized cost TGC1∗ not including the penalized ex-

pected shortages and surpluses is equal to 1,498,029, whereas the total generalized cost

TGC∗1=1,536,779.

The resulting synergy associated with cooperation for Example 2, STGC = 99%. With

tighter estimates of the projected demand, a higher generalized total cost synergy is achieved.

Furthermore, the needy now receive volumes of relief kits closer to the higher bound of the

respective interval over which the probability distribution function is defined.

Example 3

In Example 3, we considered the situation where HO 1 is in a developed country with access

to more resources, whereas HO 2 is in a developing country with fewer resources, and is also

more susceptible/exposed to natural disasters and strife, with a greater number of victims

requiring shelters.

The data for Example 3 was as in Example 2 except for the following: the capacities on

certain procurement links were increased so that:

u1 = 400, u2 = 350, u7 = 350, u8 = 350.

Also, in order to reflect that HO 1 has access to greater resources, the capacity on its storage

link (link 5) was increased, so that now

u5 = 600.

P11 and P12 remained as in Example 2, but, in order to reflect higher demand at demand

points originally associated with HO 2 (cf. Figure 3) in Example 3 we had that

P21(
∑

p∈P 0

D2
1

) =

∑
p∈P 0

D2
1

xp − 400

500− 400
,
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and

P22(
∑

p∈P 0

D2
2

) =

∑
p∈P 0

D2
2

xp − 300

400− 300
.

The computed optimal solution for this example without cooperation is reported in Table

4, and that for this example with cooperation, in Table 5.

Table 4: Optimal Link Flows and Lagrange Multipliers for Example 3 without Cooperation

Example 3
Link a From Node To Node f ∗a β∗a

1 1 M1
1 207 0

2 1 M1
2 200 0

3 M1
1 S1

1,1 207 0

4 M1
2 S1

1,1 200 1276

5 S1
1,1 S1

1,2 407 0

6 S1
1,2 D1

1 204 0

7 S1
1,2 D1

2 204 0

8 2 M2
1 225.4 0

9 2 M2
2 225.6 0

10 M2
1 S2

1,1 225 0

11 M2
2 S2

1,1 225 0

12 S2
1,1 S2

1,2 450 17549

13 S2
1,2 D2

1 274 0

14 S2
1,2 D2

2 176 0

The component of the total generalized cost TGC0∗ not including the penalized ex-

pected shortages and surpluses is equal to 1,974,112 whereas the total generalized cost

TGC0∗=2,574,611,712.

Whereas in Example 2 the total volume of delivered relief items was 850; in Example 3

the total volume is 1,050.

In Example 3, under cooperation, both HOs utilize the storage facilities to their capacities.

The component of the total generalized cost TGC1∗ not including the penalized ex-

pected shortages and surpluses is equal to 2,108,016 whereas the total generalized cost

TGC1∗=2,255,516.

The synergy STGC is again 99%, demonstrating the benefits of cooperation between HOs

for disaster relief.
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Table 5: Optimal Link Flows and Lagrange Multipliers for Example 3 with Cooperation

Example 3
Link a From Node To Node f ∗a β∗a

1 1 M1
1 131 0

2 1 M1
2 131 0

3 M1
1 S1

1,1 150 0

4 M1
2 S1

1,1 150 0

5 S1
1,1 S1

1,2 600 12652

6 S1
1,2 D1

1 99 0

7 S1
1,2 D1

2 99 0

8 2 M2
1 131 0

9 2 M2
2 131 0

10 M2
1 S2

1,1 113 0

11 M2
2 S2

1,1 113 0

12 S2
1,1 S2

1,2 450 21084

13 S2
1,2 D2

1 234 0

14 S2
1,2 D2

2 153 0

15 1 M2
1 131 0

16 1 M1
2 131 0

17 2 M1
1 131 0

18 2 M1
2 131 0

19 M1
1 S2

1,1 113 0

20 M1
2 S2

1,1 113 0

21 M2
1 S1

1,1 150 0

22 M2
2 S1

1,1 150 0

23 S1
1,2 D2

1 200 12619

24 S1
1,2 D2

2 200 2565

25 S2
1,2 D1

1 32 0

26 S2
1,2 D1

2 32 0

27 0 1 525 0
28 0 2 525 0

Remark

The above examples are stylized but, nevertheless, yield managerial insights into the benefits

of cooperation among humanitarian organizations for both them and for the needy that

they serve. Of course, the models can be parameterized to particular disaster settings and

scenarios. This would require obtaining the requisite data for the various supply chain

network link cost functions as well as data associated with the demands at different points

of demand for disaster relief item delivery/distribution.
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In the supply chain disruption literature, catastrophic events with low probability of

occurrence but high impact are receiving more and more attention due to their devastating

and long-lasting effects (see, for example, Sheffi (2005) and Kleindorfer and Saad (2005)).

Therefore, the estimation of the probability occurrence as well as the corresponding impacts

of these events has attracted more research attention. Information such as historical data,

expert opinion as well as simulation is often used in estimating the frequency, impact as

well as the resulting costs of disaster events (Knemeyer et al. (2009)). As discussed by

Van Wassenhove and Pedraza Martinez (2012), humanitarian logistics can achieve significant

improvement by adopting successful supply chain management techniques and best practices.

Hence, estimation methodologies used in commercial supply chain disruptions can be readily

used in the planning of humanitarian logistics.

In terms of the demand uncertainty in humanitarian relief, as described by Van Wassen-

hove (2006), “Unlike logisticians in the private sector, humanitarians are always faced with

the unknown. They do not know when, where, what, how much, where from and how many.”

Hence, recognizing and measuring the uncertainties in demand for the relief supplies is criti-

cal. Several studies have shown major advantages using certain methodologies in estimating

demand. For example, by using the data from Center for Research and Epidemiology of

Disasters, and historical disaster information, Cort et al. (2009) assess the affected area

demand after accounting for the population growth over the years. The demand data is then

used to fit into a distribution to be utilized for the humanitarian planning. Furthermore, in

the case of slow-onset disasters and ensuing refugee crises, which were the focus of our nu-

merical examples, data obtained from the tracking of movements of refugees towards shelter

locations, such as that from social media or even the use of drones, may be utilized to assess

prospective demand.

7. Summary and Conclusions and Suggestions for Future Research

In this Section, we present the summary and conclusions of the paper, which can lead to

a few possible future research directions.

7.1 Summary and Conclusions

Natural catastrophes as well as large man-made disasters have been occurring at a record-

breaking pace and scale in terms of the size of populations affected and the loss of assets,

creating significant challenges for humanitarian organizations in their relief efforts. At the

same time, humanitarian logistics practice is in dire need of operating more efficiently in

order to have the relief products delivered to the affected population in a timely manner.
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However, due, in part, to the lack of collaboration among many humanitarian organizations,

it’s been reported that service gaps and duplication occur frequently in emergency response.

In this paper, based on previous research, but with a multiproduct extension of earlier

work (cf. Nagurney (2009), Nagurney, Woolley, and Qiang (2010), Nagurney and Nagurney

(2016), and Masoumi, Yu, and Nagurney (2017)), to include also stochastic components

of uncertain supply chain link costs as well as demands, and link capacities, we construct

pre-cooperation and horizontal cooperation multiproduct supply chain network models of

humanitarian organizations. By recognizing the complexities in the relief efforts, the supply

chain network models make use of a MV approach to capture risks and uncertainties in both

costs and demands, which are typically fluctuating in the case of disasters.

We also propose a measure to capture the synergy resulting from the aforementioned

cooperation. In addition, we propose a computational method that is used to compute

solutions to the numerical examples in Section 5. For the numerical examples, we report

the optimal link flows of relief items, the Lagrange multipliers associated with the links, as

well as the total generalized cost without and with cooperation. The corresponding synergy

for each example is also calculated. The numerical results support the theory, with positive

synergy obtained in each of our examples. Moreover, the results demonstrate that victims

also gain in that, with cooperation, a greater total number of relief items is delivered. Hence,

both humanitarian organizations as well as the needy benefit when the former cooperate

horizontally from a supply chain network operational perspective.

The parameters of the model can be calibrated with information/data specific to the

region(s) of concern to provide guidance to humanitarian organizations as well as to cognizant

governmental agencies.

7.2. Suggestions for Future Research

There are many possibilities for future research, including having the link capacities be

uncertain and developing multiperiod models that consider disaster events such that the

size of the affected population changes over time. This is particularly relevant in situations

where refugees transverse borders to other countries for shelter and assistance. In addition,

it would be interesting to incorporate explicit budget constraints of the HOs and to construct

associated synergy measures. We leave such work for future research.
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Appendix

We here, for easy reference, recall the definitions of monotonicity and Lipschitz continuity

of F (X) as in (18).

Definition A1: Monotonicity

F (X) is monotone if

〈F (X1)− F (X2), X1 −X2〉 ≥ 0, ∀X1, X2 ∈ L. (A1)

Definition A2: Lipschitz Continuity

F (X) is Lipschitz continuous on L if the following condition holds:

‖F (X ′)− F (X ′′)‖ ≤ L̄‖X ′ −X ′′‖, ∀X ′, X ′′ ∈ L, (A2)

where L̄ > 0 is known as the Lipschitz constant.
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