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1. Introduction

Massive human migrations are posing major challenges to national governments across

the globe. The reasons for recent migrations include: violence, wars, and persecution, cli-

mate change, a variety of disasters (earthquakes, hurricanes, floods, and tornadoes), and

poverty and economic inequality, with the latter driving humans to seek better lives for

their families and themselves. According to the UNHCR (2020), 70.8 million have fled their

homes worldwide, the highest level of displacement on record. The United Nations (2017)

is reporting that the number of international migrants was an estimated 258 million indi-

viduals in 2017, with the total number of international migrants increasing by almost 50%

since the new millennium. The number of refugees and asylum seekers during this period

has increased from 16 to 26 million, approximately 10% of the international migrants.

The media has been filled with news and images of migrants, including refugees, often

undertaking dangerous journeys on land and sea to flee their compromised situations. The

economic collapse of Venezuela (Kennedy (2019)) has resulted in a surge of migrants as has

the violence in many parts of Central America (Bartenstein and McDonald (2019)). Syria

continues to be in a state of war with many seeking to escape their suffering (United Nations

Refugee Agency (2019)). And now Libya is attracting the attention of many governments,

with Sakuma (2020) reporting that the largest flow of modern African migration is through

Libya, which is serving as a gateway to Europe, via the Mediterranean Sea. Furthermore,

natural disasters (cf. Nagurney and Qiang (2009)) are also generating new migratory flows

even from Puerto Rico (Cardona (2020)).

According to Jones (2018), Italy has now become the main route into Europe for economic

migrants and asylum seekers, with hundreds of thousands risking their lives in their journeys

from North Africa each year and thousands dying at sea. Indeed, the United Nations Refugee

Agency (2015) documented a maritime refugee crisis with 137,000 crossing the Mediterranean

Sea to Europe in the first half of that year, using highly risky transportation modes. In April

2015, 800 people perished in the largest refugee shipwreck ever recorded. Kitsantonis (2019)

states that the numbers of asylum seekers making the short but often treacherous journey

from Turkey across the Aegean Sea to Greece has seen a rise again, with Greek officials

looking towards replacing overcrowded migrant camps with centers and hoping to restrict

the migrants’ movements. And, recent data is showing that Cyprus is now hosting the most

refugees per capita in the European Union. (Stevis-Gridneff (2020)). As emphasized in

Nagurney and Daniele (2019), closer attention must be paid to human migration problems

in economic, political, sociological, and even environmental dimensions.
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Indeed, how to effectively manage human migration flows has become one of the major

challenges of the new millennium. The governments of many nations, hence, are now faced

with identifying suitable policies and regulations to address a variety of human migration

flows. In managing international migration flows, governments usually focus on distinct

classes of migrants, such as: highly skilled workers, dependents of migrant workers, irregular

migrants, and refugees and asylum seekers (cf. Karagiannis (2016)). The United Nations,

Department of Economic and Social Affairs, Population Division (2017) has compiled a list of

high level policies of various countries regarding international migration. For example, poli-

cies associated with “irregular migration” include fines, detention or deportation of migrants

in an irregular situation, as well as penalizing employers of such migrants. The International

Organization of Migration (2020a) defines irregular migration as the movement of persons

that takes place outside the laws, regulations, or international agreements governing the en-

try into or exit from the origin, transit or destination location; see also Karagiannis (2016).

The United Nations (2013) emphasizes that migration policies in both origin and destination

countries play an important role in determining the migratory flows.

Furthermore, the various human migration crises have even influenced the United Nation’s

2030 Sustainable Development Goals (SDGs). In particular, the 2030 Agenda for Sustainable

Development consists of a set of 17 SDGs and 169 targets (see United Nations Foundation

(2020)). Migration is specifically referenced in seven of the SDGs and is also a cross-cutting

issue, relevant to all 17 goals (cf. International Organization for Migration (2020b)).

2. Literature Review and Our Contributions

Clearly, the rigorous modeling of human migration networks with the inclusion of ap-

propriate policies for the evaluation of outcomes merits serious attention. Although there

have been efforts to construct computable models of human migration with those that are

network-based garnering resurgent attention, the incorporation of associated policies has

only been minimally explored. We first provide a literature review of the relevant models

and then outline the contributions in this paper.

2.1 Literature Review

We now provide an overview of the relevant literature on human migration models, with

a focus on networks. Specifically, it is important to mention that the network models pro-

posed, to-date, have primarily been from the perspective of individual migrants making their

decisions, which can be characterized as being that of “user-optimization” and leading to

an equilibrium that includes the utilities associated with migration. Rahmati and Tularam
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(2017) provide a critical review of a variety of theoretical frameworks for human migration

models, which also reference foundational network equilibrium models. These authors high-

light various mathematical theories of migration, focusing on macro-level, micro-level, and

meso-level approaches. The classical network equilibrium model of human migration is that

of Nagurney (1989). It is a multiclass model, and is isomorphic to a traffic network equilib-

rium with special structure (see also Nagurney (1999)). In that model, migrants of each class

distribute themselves among the locations according to maximal utilities associated with the

locations. The population of each class is assumed to be fixed and the utility functions are

assumed to be concave and a function of the populations at the locations. Subsequently,

Nagurney (1990) generalized that model to include migration costs that depend on the flows

along with the governing equilibrium conditions.

Nagurney, Pan, and Zhao (1992a), continuing in the user-optimization vein of human

migration modeling, constructed a multiclass human migration model, which they later

extended to include class transformations (Nagurney, Pan, and Zhao (1992b)). Pan and

Nagurney (1994) developed a multi-stage, Markov chain model and identified the connection

between a sequence of variational inequalities and a non-homogeneous Markov chain. In all

of the above papers, the specific governing equilibrium conditions were formulated as finite-

dimensional variational inequality problems. Pan and Nagurney (2006) were the first to apply

evolution variational inequalities to model the underlying dynamics of human migration and

also to discuss associated algorithms (see also Daniele (2006)).

A conjectural variations equilibrium (CVE) for human migration was promulgated by

Kalashnikov et al. (2008) (see, e.g., Isac, Bulavsky, and Kalashnikov (2002)). The authors

reported results of numerical experiments based on population data in locations in Mexico.

Cappello and Daniele (2019) developed a Nash equilibrium model of human migration with

features of conjectural variations. In their model, the utility and migration cost functions for

a given class depend on the populations and flows, respectively, of that class. The authors

included a numerical example with sensitivity analysis inspired by the flow of migrants from

Africa to Italy in 2018. And, as noted in Nagurney and Daniele (2019), Causa, Jadamba,

and Raciti (2017) extended the Nagurney (1990) model to include uncertainty in the utility

functions, the migration cost functions, and the populations. However, none of the above

cited models of human migration included regulations and/or policies. Furthermore, they

are all essentially user-optimized models.

As mentioned earlier, there has been very limited modeling work done on including poli-

cies and/or regulations in human migration networks. To-date, the only papers that we are

aware of are those by Nagurney and Daniele (2019) and Nagurney, Daniele, and Nagurney

4



(2019). These models incorporated explicit constraints that could be imposed by govern-

mental authorities to put capacities on the flows of different classes of migrants from certain

origins to specific destinations. In these models it was found that the utility of those that

were restricted decreased, whereas those that were allowed to migrate increased. The latter

paper also allowed for routes of migration consisting of links that capture congestion and

associated costs and can handle even migration through different nations. These models

were inherently user-optimized ones.

From a governmental and societal perspective, it is worthwhile to consider also system-

optimization for human migration networks. User-optimization (U-O) and system-optimiza-

tion (S-O) are seminal concepts and constructs in transportation and so named by Dafermos

and Sparrow (1969). They correspond, respectively, to Wardrop’s two principles of travel

behavior (Wardrop (1952)). In the case of system-optimization in congested urban trans-

portation networks, a central controller routes the traffic between origin/destination pairs of

nodes so that the total cost to society is minimized (and the demands are satisfied). In the

case of user-optimization, travelers, behaving selfishly, seek their individual cost-minimal

routes of travel between an origin/destination pair of nodes, also subject to the demand

constraints being satisfied. Historically, the system-optimization problem has been easier

to formulate and solve since it consists of a nonlinear programming problem with a single

objective function. The user-optimized problem, with connections to Nash equilibria (1950,

1951), in contrast, has stimulated the development and application of novel mathemati-

cal methodologies, including variational inequality theory (see Dafermos (1980), Nagurney

(1999), and the references therein). For novel applications of variational inequality theory

to cybersecurity investments, see Colajanni et al. (2018); to competitive pharmaceutical

supply chains and quality issues, see Nagurney, Li, and Nagurney (2018); to blood supply

chains, see Nagurney and Dutta (2019), and to disaster relief - Gossler et al. (2019).

It is important to recognize that there are policies that, when imposed, alter the behavior

of travelers, who are engaged in more short-term movement behavior than migrants. In the

case of transportation, for example, the imposition of congestion tolls (see Dafermos and

Sparrow (1969), Dafermos and Sparrow (1971), Dafermos (1973), Lawphongpanich, Hearn,

and Smith (2006)), when done appropriately, results in system-optimized flows also being

user-optimized. Hence, once the tolls are imposed, travelers, acting independently, will select

routes of travel which result in a system optimum, that minimizes the total cost to the society.

In this paper, we construct policies for human migration networks that maximize societal

welfare.

Trapp et al. (2018) focused on the resettlement of refugees using optimization in a
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system perspective. Our work in this paper, in contrast, is focused on migration networks

and demonstrating how, with appropriate policies, the system-optimized solution will, at

the same time, be user-optimized. Hence, migrants of different classes will individually

choose locations, while acting in their own self-interest, that are also optimal for society as

a whole. Our approach explicitly recognizes individual behavior and choices. Papadaki et

al. (2017) consider the growing stream of refugees from North Africa and the Middle East

and emphasize that governmental policies are disjointed. They propose the development of

a compact accommodation center comprised of shipping containers, to be utilized in one of

the initial stages for refugee resettlement for the purposes of adaptation before full social

integration of the displaced populations.

Robinson, Dilkina, and Moreno-Cruz (2020) focus on climate change and potential human

migration in the United States due to sea level rise, using a data-driven model with implicit

network concepts. However, in their interesting study, they note that because they utilize

machine learning techniques, they give up the explanatory power of a migration model in

favor of a more accurate prediction, with limits on being able to provide specific policy

recommendations. Here, in contrast, we are able to provide explicit formulae for policy

recommendations and our framework can handle international migration. Bier, Zhou, and

Du (2019) also consider sea level rise due to climate change and propose a game theory

model with the government as the first mover encourage pre-disaster relocation by residents

living in areas at high risk of flooding due to sea-level rise. The authors observe that offering

a subsidy (e.g., a partial buyout) can be effective if the government has a significantly lower

discount rate than residents. The authors consider homogeneous residents and the timing of

their relocations. Here, in contrast, we consider migrants of distinct classes and show how

appropriate subsidies can bring population distributions in line with system-optimization.

Moreover, our framework can capture the impact of disasters through changes in the utility

functions associated with the classes at the various locations in the network economy as

well as the changes in the initial fixed population of each class and, hence, also the final

population distributions.

2.2 Our Contributions and Organization of the Paper

In this paper, we first propose a system-optimized multiclass network model of human

migration. The model assumes no births and no deaths and there is a fixed population of each

class of migrant. There are no costs associated with migration, since we are interested in the

long term. There is a utility function associated with each class of migrant and each location

in the network economy. Each such utility is a function of the populations of the classes at

6



that location and at other locations, in general. The objective in the network economy is to

optimize the system and the societal welfare by maximizing the total utility, subject to the

conservation of flow. The total utility is equal to the sum for all classes and all locations of

the product of the individual utility at the location and class times the population of that

class at the location. We assume that the total utility function is concave and continuously

differentiable and show that the system-optimized solution satisfies a variational inequality

problem.

We then recall the user-optimized analogue of this human migration network, which was

introduced in Nagurney (1989). Therein, the governing equilibrium conditions state that

migrants of a class will keep on moving from location to location until the individual utility

of each class at each location that is populated by that class is maximal and equalized. Hence,

at the equilibrium, noone has any incentive to change his location. We also, for completeness,

provide the variational inequality formulation of the user-optimized (equilibrium) solution.

We propose a ratio for assessing the societal welfare loss if migrants select their locations

based on U-O rather than S-O behavior. The price of anarchy, introduced by Koutsoupias

and Papadimitriou (1999), and later so named by Papadimitrou (2001), is an inspiration for

the societal welfare loss ratio. The price of anarchy was originally constructed to measure

the total cost evaluated at the U-O solution and divided by the total cost evaluated at the

S-O solution (see also Roughgarden (2005)). Here, in contrast, we focus on total utility

maximization in the network economy.

In this paper, we provide a procedure for computing subsidies that a government (or

governments) can impose to guarantee that the system-optimized multiclass population dis-

tribution in the network economy is also user-optimized. These policies, when imposed,

guarantee that individuals will choose their locations in a manner so that the societal wel-

fare is maximized.

The paper is organized as follows. In Section 3, the multiclass system-optimized model

of human migration is presented and its user-optimized analogue. The optimal solutions to

both satisfy an appropriate variational inequality problem. The societal welfare loss ratio is

proposed and an illustrative example presented in order to reinforce the basic concepts. In

Section 4, we outline the procedure for determining the subsidies for the different migrant

classes and locations, so that, when applied, the S-O multiclass population distribution in

the network economy is, at the same time, U-O. We also discuss how the framework can be

used post a disaster. An algorithm is proposed in Section 5 and convergence results provided.

The algorithm is then applied in Section 6 to compute the solutions to a series of numerical
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examples, with changes in the demands, and in the utility functions, in order to also address

the possible impacts of a pandemic, followed by a natural disaster. We summarize our results

and present our conclusions in Section 7.

3. The System-Optimization Migration Network Model

In the network economy there are n locations at which the different classes in the pop-

ulation can locate. We assume freedom of movement between locations at zero cost, since

here we are focusing on the long-term equilibrium population distributions at the various

locations. We consider J classes of migrants with a typical class denoted by k. The network

representation is given in Figure 1. Note that we associate locations with links (rather than

nodes). Each link i; i = 1, . . . , n, has an associated utility for each class denoted by Uk
i . The

utility functions capture how attractive location i, ∀i, is for an individual of class k, ∀k. The

relevant notation is given in Table 1. All vectors here are assumed to be column vectors.

n

n

1

0

R 	U

1 2 · · · n

U1
1 , . . . , UJ

1 U1
n, . . . , UJ

n

Figure 1: Network Structure of the Human Migration Model

Table 1: Notation for the Human Migration Models

Notation Definition
pk

i the population of class k at location i. The {pk
i } elements are grouped

into the vector pk ∈ Rn
+. We then further group the pk vectors; k =

1, . . . , J , into the vector p ∈ RJn
+ .

P k the population of class k in the network economy; k = 1, . . . , J .
Uk

i (p) the utility perceived by individuals of class k at location i; i = 1, . . . , n.
We group the utility functions for each k into the vector Uk ∈ Rn and
then group all such vectors for all k into the vector U ∈ RJn.

Ûk
i (p) the total utility perceived by class k at location i; i = 1, . . . , n. The total

utility Ûk
i (p) = Uk

i (p)× pk
i ; k = 1, . . . , J ; i = 1, . . . , n.

The conservation of flow equation for each class k; k = 1, . . . , J , is:

n∑
i=1

pk
i = P k. (1)
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Hence, the population distribution of each class among the various locations must sum up

to the population of that class in the network economy.

Moreover, the populations must be nonnegative, that is,

pk
i ≥ 0, ∀i;∀k. (2)

Note that, according to Table 1, the total utility associated with a location and class,

may, in general, depend upon the distribution of not only that particular class but also on

that of the other classes. This is very reasonable: migrants may wish to locate where there is

a certain concentration of those similar to themselves at the same location and, in proximity.

At the same time, because of cultural and even economic factors they may wish to distance

themselves from other classes.

We define the feasible set K1 ≡ {p| (1) and (2) hold.}.

3.1 The System-Optimization (S-O) Problem

In the system-optimization (S-O) problem, the goal is to maximize the total utility in the

network economy. This is achieved when the following optimization problem is solved:

Maximize
J∑

k=1

n∑
i=1

Ûk
i (p) =

J∑
k=1

n∑
i=1

Uk
i (p)× pk

i (3)

subject to the conservation of flow constraints (1) for all k and the nonnegativity ones (2).

Observe that the objective function (3) captures the total utility of the society/economy

under study. Locations i can correspond to different countries; to different regions in dif-

ferent countries, or to regions within a country, if the focus is on within country move-

ments/migrations.

Under the assumption that the total utility functions for all the classes at all the locations

are concave, and are continuously differentiable, we know that the optimal solution, denoted

by p′, satisfies the following variational inequality (VI): determine p′ ∈ K1, such that

−
J∑

k=1

n∑
i=1

[
J∑

l=1

n∑
j=1

∂Û l
j(p

′)

∂pk
i

]
× (pk

i − pk′

i ) ≥ 0, ∀p ∈ K1. (4)

Furthermore, if all the utility functions are strictly concave, it follows that the optimal

population distribution p′ is unique.

9



It is interesting to remark that, since Ûk
i (p) = Uk

i (p)× pk
i , then variational inequality (4)

is equivalent to

−
J∑

k=1

n∑
i=1

J∑
l=1

n∑
j=1

∂U l
j(p

′)

∂pk
i

× (pk
i − pk′

i )−
J∑

k=1

n∑
i=1

Uk
i (p′)× (pk

i − pk′

i ) ≥ 0, ∀[∈ K1

and the second term coincides with (6).

3.2 The User-Optimization (U-O) Problem

As mentioned in the Introduction, it may be challenging, if nearly impossible, to reallocate

the various class populations so that the system-optimal solution is achieved (unless one is

living in a totalitarian state). This is especially the case, since migrants may not individually

care about such a solution but may act selfishly in order to achieve an optimal solution for

themselves “individually.” In the case of user-optimization (U-O), it is assumed that the

migrants are rational and that migration will continue until no individual of any class has

any incentive to move since a unilateral decision will no longer yield an increase in the utility.

The governing solution will satisfy the following migration equilibrium conditions proposed

by Nagurney (1989); see also Nagurney (1999): Mathematically, a multiclass population

vector p∗ ∈ K1 is said to be in equilibrium if for each class k; k = 1, . . .,J ; i = 1, . . . , n:

Uk
i (p∗)

{
= λk, if pk

i
∗

> 0
≤ λk, if pk

i
∗

= 0.
(5)

Equilibrium conditions (5) state that, for a given class k, only those locations i with maximal

utility equal to an indicator λk will have a positive population of the class. Furthermore,

the utilities for a given class at populated locations by that class are equalized, that is,

equilibrated across the locations. We note that λk is, in actuality, the Lagrange multiplier

associated with constraint (1) for k. Indeed, from the duality theory (see Barbagallo et al.

(2014) and Colajanni et al. (2018)), we have that the multipliers λ̄ and µ̄ associated with

constraints (1) and (2) respectively satisfy the following conditions:

Uk
i (p∗) = −λ̄k + µ̄k

i , i = 1, . . . , n, k = 1, . . . , J ; µ̄k
i p

k∗
i = 0, µ̄k

i ≥ 0

and, hence, we obtain (5).

As shown in the above noted references, the equilibrium p∗ satisfies the variational in-

equality problem: determine p∗ ∈ K1 such that

−
J∑

k=1

n∑
i=1

Uk
i (p∗)× (pk

i − pk∗
i 〉 ≥ 0, ∀p ∈ K1. (6)
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Clearly, the solution p∗ to VI (6) can be expected to be distinct from the solution p′ to

VI (4).

3.3 A Simple Example

In order to reinforce the above concepts we present an example for which both the system-

optimized and the user-optimized solutions are provided. We consider a network economy

consisting of two locations and a single class; hence, we suppress the superscript notation.

The total population is: P = 100 and the utility functions at the two locations are:

U1(p) = −p1 + 200, U2(p) = −p2 + 220.

The user-optimized solution is:

p∗1 = 40, p∗2 = 60,

yielding λ = 160, since

U1(p
∗) = U2(p

∗) = 160.

Observe that VI (6) is satisfied by this p∗. Note that, at this population distribution, the

total utility: Û1 + Û2 = 16, 000.

On the other hand, the system-optimized solution is:

p′1 = 45, p′2 = 55,

and VI (4) is satisfied since

−∂Û1(p
′)

∂p1

= −∂Û2(p
′)

∂p2

= −110.

The corresponding total utility is: 16, 050. Clearly, 16, 050 > 16, 000. Furthermore, at the

system-optimized solution, we have that:

U1(p
′) = 155, U2(p

′) = 165

and, clearly, the S-O solution is not U-O. Hence, without appropriate policy interventions,

and, if humans are “free” to move/migrate, the S-O solution would be difficult to sustain.

Indeed, one can expect that some of those at location 1 will migrate to location 2 until the

U-O solution is achieved since the utility in location 2 is higher than in location 1 and people

will move; so the initial S-O solution (45, 55) would become (40, 60).
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3.4 The Societal Welfare Loss Ratio

We now construct the societal welfare loss ratio. Note that the classical price of anar-

chy focused on total cost minimization in the congested transportation/telecommunications

network context. Here, in contrast, we are concerned with total utility maximization in

a network economy and the associated societal welfare loss under U-O as opposed to S-O

behavior.

Our societal welfare loss ratio π is defined as follows:

π =
TU(p∗)

TU(p′)
, (7)

where TU denotes the total utility such that

TU =
J∑

k=1

n∑
i=1

Ûk
i ; (8)

and recall that p∗ is the population distribution pattern under the U-O solution for a given

migration network problem and p′ is that for the S-O solution for the problem. The ratio

quantifies the societal welfare loss if migrants select their U-O destinations rather than being

allocated to locations under S-O. Note that here we consider multiple classes of migrants in

our ratio.

For the above numerical example, we have that:

π = 16, 000/16, 050 = .997.

The value of π in (7) can never exceed 1, since the highest societal total utility TU is

achieved at p′, the S-O solution. The smaller the value of the societal welfare loss ratio π,

the greater the welfare loss to society under the U-O solution.

4. Policy Intervention in the Form of Subsidies

We now proceed to ask the following question. Is there a migration policy that, when

applied, can make the system-optimized solution also a user-optimized one? If so, an ap-

plication of such a policy would result in no users having any incentive to switch their

locations, and the population distribution would be one that is also optimal for the society

(system-optimized).

The answer is: Yes! The derivation and construction of such a migration policy is as

follows. We first solve for the system-optimized solution p′. For each class k, we denote

12



those locations with a positive population by k1, . . . , knk
, where nk is the number of locations

in the network economy with a positive population of class k. We also introduce notation

for subsidies associated with the different locations for each class denoted by class k by:

(subsidy)k1 , (subsidy)k2 , ..., (subsidy)knk
. We can then list those location as:

Uk
k1

(p′) + subsidyk
k1

= µk,

Uk
k2

(p′) + subsidyk
k2

= µk, (9a)

and so on until

Uk
knk

(p′) + subsidyk
knk

= µk,

where µk is the incurred utility for class k after the subsidies are distributed for the class at

the locations with positive populations of that class. Also, we can number those locations

for that class with zero populations of that class (if there are any) as follows:

Uk
knk+1

(p′) + subsidyk
knk+1

≤ µk,

and so on until

Uk
kn

(p′) + subsidyk
kn
≤ µk. (9b)

According to (9a) and (9b), the cognizant government authority selects the µk for each

class k, and then the subsidy for each location for that class is easily determined via sub-

traction.

The question now arises as to what value is reasonable for µk? We propose that µk be set

as: maxkl;l=1,...,nk
Uk

kl
(p′). This procedure guarantees that all the subsidies will be nonnegative

and that all enjoy the maximal utility for each class at all the populated locations. Also,

for the subsidies associated with locations with no populations of a class k (see (9b)), those

subsidies are set to zero.

Returning to the above simple example and, again suppressing superscripts since there is

a single class, the above subsidy formulae simplify to:

U1(p
′) + subsidy1 = µ,

U2(p
′) + subsidy2 = µ,

or

155 + subsidy1 = 165,

165 + subsidy2 = 165.
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Location 2 has a subsidy of zero, whereas those at location 1 receive a subsidy of 10. It

is always the case that, with the above procedure, the location(s) with the highest utility

at the system-optimized solution are not subsidized, since it is wasteful to do so. Of course,

according to (9a) the government is “free” to set µk as high as it is willing to and the budget

allows.

In terms of practical implementation, we note that congestion pricing in the form of

tolls has achieved success around the world with notable examples including the cities of

Gothenburg and Stockholm in Sweden, London in the United Kingdom, as well as Singapore,

with tolls even on the horizon in New York City (see Smolens (2019), Short (2019)).

We view the provision of the above subsidies as investments by government(s) that might

help to alleviate various migrant and refugee crises around the globe. As for the budgets,

if an individual government falls short, provision should be provided by a supra authority

such as the World Bank, the United Nations, or if in Europe, the European Union.

4.1 Applying the Framework Post a Disaster

Disasters, as mentioned in the Introduction, may lead to migrations of humans. Of

course, it is important to emphasize that there are both slow-onset disasters (certain wars,

droughts, famine, pestilence, etc.), as well as sudden-onset disasters (earthquakes, hurri-

canes, tsunamis, floods, etc.). For an edited volume on dynamics of disasters, see Kotsireas,

Nagurney, and Pardalos (2016).

In the case of a disaster, one would expect to encounter changes in the utility functions

associated with locations that the disaster has impacted and such changes may affect certain

classes more or less. In particular, one would expect that, in general, the location(s) would

become less attractive because of compromised infrastructure, loss of resources and amenities,

and even perhaps dangerous conditions. The above system-optimization model can then be

adapted to incorporate the modified utility functions and appropriate subsidies provided.

Similarly, once a disaster strikes, there may be major loss of life and that would then affect

the population in the network economy of one or more classes of migrants. The system-

optimization model can then be rerun to identify the new optimal multiclass population

distribution and assign the subsidies accordingly.

The above system-optimization model and policy intervention are relevant to a network

economy even prior to a disaster since individuals may wish to seek better lives for themselves

by changing their locations within a country or across countries and governments may wish
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to intervene to enhance the societal welfare in terms of the population distribution and

associated total utility.

5. Computation of the S-O Multiclass Population Distribution Pattern

In order to determine the subsidies to make the S-O behavior, after imposition, also U-O,

we first must compute the system-optimizing flow pattern.

For purposes of standardizing the mechanism, we put variational inequality (4) into stan-

dard form (Nagurney (1999)): determine X∗∗ ∈ K ⊂ RN such that:

〈F (X∗∗), X −X∗∗〉 ≥ 0, ∀X ∈ K, (10)

where 〈·, ·〉 denotes the inner product in N -dimensional Euclidean space. F (X) is a given

continuous function such that F (X) : X → K ⊂ RN . K is a closed, bounded, and convex

set.

We define the vector X ≡ p and the vector F (X) with elements: Fk,i(p)≡
∑J

l=1

∑n
j=1−

∂Û l
j(p)

∂pk
i

;

k = 1, . . . , J ; i = 1, . . . , n. The feasible set K ≡ K1 and N = Jn. Then, clearly, VI (4)

can be put into the standard form (10) with X∗∗ = p′. Similarly, VI (6) can also be put

into standard form with X and K as above and with the components of its F (X) given by

−Uk
i (p); ∀k, ∀i, and with X∗∗ = p∗.

We emphasize that there exists a solution to both VI (4) and VI (6) since the underlying

feasible set is compact and the corresponding function that enters the variational inequality,

F (X) is continuous under our imposed assumptions (cf. Kinderlehrer and Stampacchia

(1980)).

We apply the Euler method to compute the solutions to the numerical examples in the

next section. The Euler method is induced by the general iterative scheme of Dupuis and

Nagurney (1993). Specifically, iteration τ of the Euler method (see also Nagurney and Zhang

(1996)) is given by:

Xτ+1 = PK(Xτ − aτF (Xτ )), (11)

where PK is the projection on the feasible set K and F is the function that enters the

variational inequality problem (10).

As discussed in Nagurney and Zhang (1996), the Euler method is, in fact, a discrete-time

approximation to the continuous-time trajectories associated with a projected dynamical

system, whose set of stationary points coincides with the set of solutions to the corresponding

variational inequality problem. In the multiclass human migration network context here,
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this means that there is an associated projected dynamical system to both VI (4) and

to VI (6). Projected dynamical systems, as noted by Dupuis and Nagurney (1993)), are

nonclassical in that the right-hand side is discontinuous, but capture the underlying feasible

set corresponding to the constraints of the given problem.

Dupuis and Nagurney (1993) proved that, for convergence of the general iterative scheme,

which induces the Euler method, the sequence {aτ} must satisfy:
∑∞

τ=0 aτ = ∞, aτ > 0,

aτ → 0, as τ → ∞. Specific conditions for convergence of the Euler method within many

network-based models can be found in Nagurney and Zhang (1996) and in Nagurney (2006)

and the references therein.

We now provide the convergence result.

Theorem: Convergence

In the S-O model of human migration constructed above let F (X) be strictly monotone at

any equilibrium pattern. Also, assume that F is uniformly Lipschitz continuous. Then there

exists a unique S-O population distribution pattern p′ ∈ K and any sequence generated by the

Euler method as given by (11), with {aτ} satisfies
∑∞

τ=0 aτ = ∞, aτ > 0, aτ → 0, as τ →∞
converges to p′, satisfying VI (4).

The proof follows from Theorem 5.8 in Nagurney and Zhang (1996).

The analogue of the above Theorem for VI (6) easily follows.

In view of the special network structure underlying our multiclass model (cf. Figure 1),

it makes sense to use an algorithm for the solution of the encountered separable quadratic

programming problems at each iteration of the above Euler method. Note that (11), because

of the network structure of the feasible set K, consists of J separable quadratic programming

problems, one for each class k, and subject to the conservation of flow constraint (1) and the

nonnegativity constraints (2) for each class k. Specifically, for these network subproblems

of special structure, we propose the use of the exact equilibration algorithm (cf. Dafermos

and Sparrow (1969) and Nagurney (1999)). This algorithm yields the exact solution at each

iteration and guarantees that the conservation of equations (1) and (2) are satisfied.

6. Numerical Examples

We now present several numerical examples, which are solved using the Euler method

outlined in the preceding section. The algorithm was implemented in FORTRAN and the

system used was a Unix system at the University of Massachusetts Amherst. The series
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{aτ} in the algorithm was set to: .1(1, 1
2
, 1

2
, 1

3
, 1

3
, 1

3
, . . .. the convergence tolerance ε was 10−5,

that is, the algorithm was deemed to have converged when the absolute value of each of the

computed population values at two successive iterations was less than or equal to .00001.

There are two classes of migrants and five locations in all the numerical examples. We

report the computed U-O and the S-O solutions, as well as the subsidies, for each of them.

Numerical Example 1

This example serves as the baseline for all the other examples in this section.

The fixed populations in the network economy of the two classes are, respectively:

P 1 = 1, 000.00 P 2 = 2, 000.00.

The utility functions and the total utility functions for class 1 are:

U1
1 (p) = −2p1

1 − .2p2
1 + 2, 000, Û1

1 (p) = −2(p1
1)

2 − .2p2
1p

1
1 + 2, 000p1

1,

U1
2 (p) = −3p1

2 − .1p2
2 + 1, 500, Û1

2 (p) = −3(p1
2)

2 − .1p2
2p

1
2 + 1, 500p1

2,

U1
3 (p) = −p1

3 − .3p2
3 + 3, 000, Û1

3 (p) = −(p1
3)

2 − .3p2
3p

1
3 + 3, 000p1

3,

U1
4 (p) = −p1

4 − .2p2
4 + 2, 500, Û1

4 (p) = −(p1
4)

2 − .2p2
4p

1
4 + 2, 500p1

4,

U1
5 (p) = −2p1

5 − .3p2
5 + 4, 000, Û1

5 (p) = −2(p1
5)

2 − .3p2
5p

1
5 + 4, 000p1

5.

The utility functions and the total utility functions for class 2 are:

U2
1 (p) = −p2

1 − .4p1
1 + 4, 000, Û2

1 (p) = −(p2
1)

2 − .4p1
1p

2
1 + 4, 000p2

1,

U2
2 (p) = −2p2

2 − .6p1
2 + 3, 000, Û2

2 (p) = −2(p2
2)

2 − .6p1
2p

2
2 + 3, 000p2

2,

U2
3 (p) = −p2

3 − .2p1
3 + 5, 000, Û2

3 (p) = −(p2
3)

2 − .2p1
3p

2
3 + 5, 000p2

3,

U2
4 (p) = −2p2

4 − .3p1
4 + 4, 000, Û2

4 (p) = −2(p2
4)

2 − .3p1
4p

2
4 + 4, 000p2

4,

U2
5 (p) = −p2

5 − .4p1
5 + 3, 000, Û2

5 (p) = −(p2
5)

2 − .4p1
5p

2
5 + 3, 000p2

5.

We first computed the U-O solution since it is interesting to compare it with the S-O

solution. If the migrants are free to move between locations (and no subsidies are provided),

the U-O solution satisfying VI (6) is:

Class 1 U-O Population Distribution

p1∗
1 = 0.00, p1∗

2 = 0.00, p1∗
3 = 167.31, p1∗

4 = 41.68, p1∗
5 = 791.01.
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Class 2 U-O Population Distribution

p2∗
1 = 415.89, p2∗

2 = 0.00, p2∗
3 = 1, 382.41, p2∗

4 = 201.69, p2∗
5 = 0.00.

For class 1, the incurred utility at equilibrium at the populated locations 3, 4, and 5 is

2, 417.98 and it is lower at locations 1 and 2 - 1, 916.82 and 1, 500.00, respectively. For class

2, the incurred utility at equilibrium at the populated locations 1, 3, and 4 is 3, 584.11. At

location 2, the utility of class 2 is 3, 000.00 and at location 5 it is 2, 683.60.

Neither class, under U-O behavior, elects to migrate to and locate at location 2. Class 1

migrants only locate at locations 3 through 5. Only those of class 2 locate at location 1, in

equilibrium, whereas only those of class 1 locate at location 5.

Now we present the S-O solution for this problem, which satisfies VI (4).

Class 1 S-O Population Distribution

p1′

1 = 0.00, p1′

2 = 0.00, p1′

3 = 120.43, p1′

4 = 314.39, p1′

5 = 565.19.

Class 2 S-O Population Distribution

p2′

1 = 606.48, p2′

2 = 53.23, p2′

3 = 1, 076.35, p2′

4 = 263.94, p2′

5 = 0.00.

We see that in the S-O solution, location 2 is now populated by class 2. Locations 1 and

2 remain unpopulated under S-O for class 1 as does location 5 for class 2.

Using the procedure outlined in Section 4 (cf. (9a) and (9b)), we set µ1 = 2, 869.63 since

the highest utility under the S-O flow pattern for class 1 is that at location 5 and it is equal

to the above value. Also, we set µ2 = 3, 899.56 since the highest utility for class 2 under the

S-O flow pattern is achieved at location 3 and it is equal to 3, 899.56.

We then, via subtraction of the particular location and class utility evaluated at the S-O

population pattern, obtain the following subsidies:

Class 1 Subsidies

subsidy1
1 = 0.00, subsidy1

2 = 0.00, subsidy1
3 = 312.96, subsidy1

4 = 736.80, subsidy1
5 = 0.00,

Class 2 Subsidies

subsidy2
1 = 506.04, subsidy2

2 = 1, 006.03, subsidy2
3 = 0.00, subsidy2

4 = 521.75, subsidy2
5 = 0.00.
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In order to verify the above theory we modified the original utility functions by adding the

above subsidies and solved for the U-O pattern, and the answer, as expected, was identical

to the above reported S-O pattern. Hence, the policy of subsidies accomplishes what it was

designed for.

Numerical Example 2

Numerical Example 2 has the same data as Numerical Example 1, except that the demands

are now switched so that:

P 1 = 2, 000.00 P 2 = 1, 000.00.

The U-O solution is now:

Class 1 U-O Population Distribution

p1∗
1 = 0.00, p1∗

2 = 0.00, p1∗
3 = 631.39, p1∗

4 = 412.41, p1∗
5 = 956.21.

Class 2 U-O Population Distribution

p2∗
1 = 63.16, p2∗

2 = 0.00, p2∗
3 = 936.84, p2∗

4 = 0.00, p2∗
5 = 0.00.

For class 1, the incurred utility at equilibrium at the populated locations 3, 4, and 5 is

2, 087.59 and it is lower at locations 1 and 2 - 1, 987.37 and 1, 500.00, respectively. For class

2, the incurred utility at equilibrium at the populated locations 1 and 3 is 3, 936.89. At

location 2, the utility of class 2 is 3, 000.00, at location 4 it is 3, 876.28, and at location 5 it

is 2, 617.52.

The computed S-O solution, which is also utilized to determine the subsidies is:

Class 1 S-O Population Distribution

p1′

1 = 205.08, p1′

2 = 75.92, p1′

3 = 265.89, p1′

4 = 714.23, p1′

5 = 738.89.

Class 2 S-O Population Distribution

p2′

1 = 225.39, p2′

2 = 0.00, p2′

3 = 720.43, p2′

4 = 54.18, p2′

5 = 0.00.

Again, we see in this example that the S-O population pattern is quite different from the

U-O one. In fact, at the U-O solution, class 1 only located at three locations: 3 – 5, whereas,
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at the S-O solution, there was a positive population of this class at the S-O solution at all

locations. Hence, both quantitatively and qualitatively, we can expect the U-O and the S-O

solutions to differ, demonstrating the need for appropriate migration policies.

We now report the subsidies, noting that in this example, we set µ1 = 2, 522.23 since the

highest utility under the S-O flow pattern for class 1 is that at location 5 and it is equal to

the above value. Also, we set µ2 = 4, 226.39 since the highest utility for class 2 under the

S-O flow pattern is achieved, again, at location 3.

The subsidies are now:

Class 1 Subsidies

subsidy1
1 = 977.46, subsidy1

2 = 1, 250.00, subsidy1
3 = 4.25, subsidy1

4 = 747.29, subsidy1
5 = 0.00,

Class 2 Subsidies

subsidy2
1 = 533.81, subsidy2

2 = 0.00, subsidy2
3 = 0.00, subsidy2

4 = 549.01, subsidy2
5 = 1, 521.94.

Numerical Example 3

In this example we consider a healthcare disaster hitting the network economy in the form

of a pandemic. This example is inspired, in part, by the coronavirus outbreak emanating

from Wuhan, China (Shih, Denyer, and Taylor (2020)). The data in this example was as in

Numerical Example 1, except that now we assumed that 50% of the population of each class

has perished, so that:

P 1 = 500.00 P 2 = 1, 000.00.

Note that in this example the utility functions remain unchanged since the disaster does

not affect infrastructure, per se, and involves “only” loss of life.

Below we report the complete results for this example, as we have done for the others in

this section. The U-O population distribution is now:

Class 1 U-O Population Distribution

p1∗
1 = 0.00, p1∗

2 = 0.00, p1∗
3 = 0.00, p1∗

4 = 0.00, p1∗
5 = 500.00.

Class 2 U-O Population Distribution

p2∗
1 = 0.00, p2∗

2 = 0.00, p2∗
3 = 1, 000.00, p2∗

4 = 0.00, p2∗
5 = 0.00.
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This solution is quite interesting. Note that all migrants of class 1 choose to locate

exclusively at location 5 whereas those of class 2 all migrate, post the disaster, to location

3. There is a complete separation of these two classes under U-O behavior in the network

economy.

Those of class 1 have a utility of 3, 000.00 at location 5, whereas those of class 1 have a

utility of 4, 000.00 at location 3.

The computed S-O solution is:

Class 1 S-O Population Distribution

p1′

1 = 0.00, p1′

2 = 0.00, p1′

3 = 47.98, p1′

4 = 43.17, p1′

5 = 408.85.

Class 2 S-O Population Distribution

p2′

1 = 206.96, p2′

2 = 0.00, p2′

3 = 694.96, p2′

4 = 98.08, p2′

5 = 0.00.

In the S-O solution, there is more “spreading out” of the classes among the locations than

in the U-O solution.

For this example, we set µ1 = 3, 182.31 since the highest utility under the S-O flow pattern

for class 1 is that at location 5 and it is equal to the above value. Also, we set µ2 = 4, 295.44

since the highest utility for class 2 under the S-O flow pattern is achieved, again, at location

3.

The subsidies (see, again, (9a) and (9b)) are:

Class 1 Subsidies

subsidy1
1 = 0.00, subsidy1

2 = 0.00, subsidy1
3 = 438.78, subsidy1

4 = 745.10, subsidy1
5 = 0.00,

Class 2 Subsidies

subsidy2
1 = 502.40, subsidy2

2 = 0.00, subsidy2
3 = 0.00, subsidy2

4 = 504.56, subsidy2
5 = 0.00.

Numerical Example 4

Numerical Example 4 had the same data as that in Numerical Example 3 except that we

now consider the impact of a natural disaster following the healthcare disaster. We assume

that locations 3 and 5 are impacted so that the utility functions of both classes of migrants
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associated with these locations are modified as follows. The fixed term in each of the noted

utility functions in Examples 1 through 3 is reduced by 50% yielding new associated utility

functions for the classes at those locations of:

U1
3 (p) = −p1

3 − .3p2
3 + 1, 500, U1

5 (p) = −2p1
5 − .3p2

5 + 2, 000,

U2
3 (p) = −p2

3 − .2p1
3 + 2, 500, U2

5 (p) = −p2
5 − .4p1

5 + 1, 500.

The computed U-O solution is:

Class 1 U-O Population Distribution

p1∗
1 = 0.00, p1∗

2 = 0.00, p1∗
3 = 0.00, p1∗

4 = 480.97, p1∗
5 = 19.03.

Class 2 U-O Population Distribution

p2∗
1 = 714.75, p2∗

2 = 0.00, p2∗
3 = 0.00, p2∗

4 = 285.25, p2∗
5 = 0.00.

With the negatively impacted by the disaster locations 3 and 5, the majority of class 1

migrates from location 5 to location 4; whereas those of class 2 completely leave location 3

(as do those of class 1). Those of class 2 leave location 3 for locations 1 and 4.

The computed S-O solution is:

Class 1 S-O Population Distribution

p1′

1 = 6.85, p1′

2 = 0.00, p1′

3 = 0.00, p1′

4 = 389.05, p1′

5 = 104.10.

Class 2 S-O Population Distribution

p2′

1 = 648.28, p2′

2 = 75.17, p2′

3 = 0.00, p2′

4 = 276.54, p2′

5 = 0.00.

The S-O population distribution is also affected by the disaster with neither class locating

at location 3. No-one of class 2 remains at location 5, whereas those of class 1 have a higher

population at location 5 under the S-O solution, than under the U-O one.

In Numerical Example 4, µ1 = 2, 055.64 and µ2 = 3, 348.98.

The subsidies are now:

Class 1 Subsidies

subsidy1
1 = 199.00, subsidy1

2 = 0.00, subsidy1
3 = 0.00, subsidy1

4 = 0.00, subsidy1
5 = 263.83,
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Class 2 Subsidies

subsidy2
1 = 0.00, subsidy2

2 = 499.33, subsidy2
3 = 848.98, subsidy2

4 = 18.78, subsidy2
5 = 1, 890.62.

6. Summary and Conclusions

Humans throughout history have sought to migrate to locations where they could enjoy a

greater quality of life with enhanced safety, security, prosperity, and access to resources. With

climate change, the increasing number of natural disasters, and their major impact, as well as

wars, violence, and persecution in many countries around the globe, the world is witnessing

some of the largest human migrations. Governments, hence, are feeling increasing pressure

and stress to respond to the challenges of migratory flows through appropriate policies and

regulations.

Mathematical models of human migration networks have advanced over the past three

decades to include, among others, multiple classes of migrants, costs associated with migra-

tion between locations, the incorporation of dynamics, etc. However, essentially all of the

rigorous operations research based migration modeling work has focused on selfish, that is,

user-optimizing, behavior. Such a perspective is rich in theory and scope but such behavior

may lead to migratory flows and the resulting population distributions among regions and

countries that are far from optimal from a societal perspective.

In this paper, we introduce a new multiclass network model of human migration that

assumes system-optimizing behavior. The model fills a research gap in the literature. We

then, using its classical user-optimizing analogue, demonstrate how governments can provide

subsidies in order to make the system-optimizing population distribution pattern across

multiple locations, also user-optimizing. Hence, once the subsidies are provided, migrants

will independently locate themselves where it is also best from a societal perspective.

We provide, for completeness, the variational inequality formulations of both models and

draw analogues to traffic network models and policies of tolls that alter travelers’ behavior

to make drivers selects routes of transport that are system-optimizing. We also propose a

societal welfare loss ratio, inspired by the price of anarchy.

An algorithm is proposed that is a time-discretization of the underlying dynamics until

the optimal population distribution is achieved/computed. The algorithm is then applied to

compute solutions to a series of multiclass numerical examples and the population distribu-

tions reported under user-optimization, under system-optimization, along with the subsidies

for the different classes at the different locations.
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