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Abstract

In this paper, we construct a game theory model to capture competition among hospitals

for patients for their medical procedures. The utility functions of the hospitals contain a

revenue component and a component due to altruism benefit. The hospitals compete in

prices charged to paying patients as well as in the quality levels of their procedures. Both

prices and quality levels are subject to lower and upper bounds. We state the governing

Nash equilibrium conditions and provide the variational inequality formulation. We establish

existence of an equilibrium price and quality pattern and also present a Lagrange analysis of

the equilibrium solutions. An algorithm is proposed and then applied to numerical examples

comprising a case study focusing on four major hospitals in Massachusetts.

Keywords: game theory, hospitals, competition, quality, healthcare, variational inequalities
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1. Introduction

Hospitals are essential institutions for the provision of healthcare to society, providing

medical diagnostics, surgeries, treatments, deliveries of babies, and emergency care. They are

complex ecosystems, whose existence depends on delivering quality care to their patients. At

the same time, hospitals in the United States are under increasing pressure and stresses with

many consolidations in the industry, driven, in part, by needs to reduce costs, as well as to be

perceived as being value-based (see Commins (2016)). In 2015, there were over 100 hospital

and health system consolidations in the United States among over 5,500 registered hospitals

(American Hospital Association (2017)). Hospitals are also, often, regulated and have been

subject to reforms internationally to enhance competition (see Brekke et al. (2010)).

Given the importance of competition as a salient feature of hospitals today, there is a large

empirical literature on the relationship between quality and hospital competition (Gaynor

and Town (2011), Gravelle, Santos, and Siciliani (2014), Colla et al. (2016)). Other studies

have examined the relationships between competition and health care system costs (Rivers

and Glover (2008)), and between competition and patient satisfaction (Miller (1996) and

Brook and Kosecoff (1988)). The majority of the empirical literature has been on the US

experience, with more recent studies focusing on the United Kingdom and other European

countries (see, e.g., Kessler and McLellan (2000), Kessler and Geppert (2005), Cooper et al.

(2011)). Of course, it is important to quantify quality in this setting. Specifically, as noted

by Gravelle, Santos, and Siciliani (2014), although quality is often measured by hospital

mortality, they itemize sixteen different measures of hospital quality, with six of the sixteen

quality measures based on standardized mortality rates, seven on standardized readmission,

revisions, and redo rates, and three constructed from surveys of patients’ experiences.

However, the literature on theoretical frameworks for hospital competition is not as ad-

vanced and is primarily the purview of economists rather than operations researchers. For

example, Gravelle, Santos, and Siciliani (2014) construct a hospital quality competition

model under fixed prices, building on the work of Ma and Burges (1993), Gaynor (2007),

and Brekke, Siciliani, and Straum (2011). The model in this paper differs in several sig-

nificant ways; notably, we have competition in both prices and quality and we consider

multiple procedures for each hospital. Plus, our prices and quality levels must satisfy lower

and upper bounds. Longo et al. (2016) present a simple, yet elegant, two hospital model

of quality and efficiency competition. Brekke et al. (2010) develop a competitive hospital

model in quality with regulated prices in a Hotelling (1929) framework using a differential

game methodology. Rivers and Glover (2008) provide an excellent review of competition

and healthcare and emphasize the importance of being able to identify and understand the
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mechanism of competition in this industry in order to provide higher quality of care and

patient satisfaction.

Interestingly, a survey on operations research and healthcare (cf. Rais and Viana (2010))

does not mention the term game theory, although it does acknowledge the seminal contribu-

tions of Roth, Sönmez, and Ünver (2004) on kidney exchanges, which, as the latter authors

remark, resemble some of the “housing” problems considered in the mechanism design lit-

erature for indivisible products. In addition, we note the survey of Moretti (2013), which

reviews recent applications of coalition games in medical research, along with an identifica-

tion of some open problems.

We believe that a rigorous game theory framework for hospital competition that can

handle price and quality regulations in the form of lower and upper bounds and also enables

the computation of equilibrium solutions is valuable. Here we construct such a framework,

through the use of the theory of variational inequalities, for the formulation of the governing

Nash equilibrium conditions, the qualitative analysis, and the computation of the equilibrium

quality and price patterns. For background on the methodology of variational inequalities,

but applied to supply chain competition in quality, see the book by Nagurney and Li (2016).

This paper is organized as follows. In Section 2, we present the hospital competition

model, in which the hospitals compete in both prices and quality for patients for the proce-

dures that they offer. The utility function of each hospital consists of a revenue component

and also a component associated with altruism benefit since hospitals are decision-makers

in healthcare. Each hospital’s benefit function captures the total benefit of the patients

from receiving treatment at the hospital (see, e.g., Brekke, Siciliani, and Straume (2011)),

weighted by a factor reflecting the monetized value of altruism of the hospital. The demands

for procedures at different hospitals are elastic and depend on prices charged as well as the

quality levels, whereas the costs of different procedures depend on the quality levels. The

prices and quality levels are subject to lower and upper bounds, which allow us to capture

different regulations, such as minimum quality standards. Also, if, as in the case of a price

for a procedure, one sets the lower bound equal to the upper bound, then one has, in effect,

a fixed price, which is useful in modeling such pricing schemes that may occur in differ-

ent country health systems. We define the Nash equilibrium governing the noncooperative

game and present the variational inequality formulation. We also prove that an equilibrium

solution is guaranteed to exist.

In Section 3, we construct an alternative formulation of the variational inequality through

the use of Lagrange multipliers and give an analysis of the marginal utilities of the hospitals
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when the prices and quality levels of the hospital procedures lie within or at one of the

bounds. Such an analysis enables both hospitals as well as policymakers to assess the impacts

of loosening or tightening certain regulations. We note that there are several papers that

have contributed to the analysis of the behavior of the solutions to a variational inequality,

which models equilibrium problems through the use of Lagrange multipliers. For example, in

operations research, the papers by Barbagallo et al. (2014) and Daniele, Giuffré, and Lorino

(2016) have done so for the financial equilibrium problem, and the paper by Daniele and

Giuffré (2015) for the random traffic equilibrium problem. Also, recently, Daniele, Maugeri,

and Nagurney (2017) analyzed a cybersecurity investment supply chain game theory model

with nonlinear budget constraints by means of Lagrange multipliers.

In Section 4, we first describe the algorithm that we use in our case study. The case study

consists of four hospitals in eastern Massachusetts and three major procedures that they all

provide. In the case study we report, for different scenarios, the computed equilibrium prices

and quality levels of the hospital procedures, the demand for these procedures, as well as

the incurred net revenues and utilities. We conclude the paper with Section 5, where we

summarize our results and provide suggestions for future research.

2. The Hospital Competition Model

We now present the hospital competition model consisting of m hospitals with a typical

hospital denoted by i and with each being able to carry out n medical procedures with a

typical medical procedure denoted by k. Let pik denote the price charged by hospital i for

procedure k. We group the prices associated with hospital i into the vector pi ∈ Rn
+ and we

then group the vectors of prices of all the hospitals into the vector p ∈ Rmn
+ . In addition, we

let Qik denote the quality associated with hospital i carrying out procedure k. We group the

quality levels of hospital i into the vector Qi ∈ Rn
+ and the quality levels of all hospitals into

the vector Q ∈ Rmn
+ . The strategic variables of each hospital i; i = 1, . . . ,m, are its vector of

prices charged and its vector of quality levels for the procedures, which, at the equilibrium,

are denoted, respectively, by p∗i and Q∗
i . All vectors are column vectors.

We assume that there are lower and upper bounds on the price charged by hospital i for

procedure k, denoted by p
ik

and p̄ik, respectively, so that the prices pik; i = 1, . . . ,m, must

satisfy the constraints:

p
ik
≤ pik ≤ p̄ik, k = 1, . . . , n. (1)

Observe that, if, because of regulations, there is a fixed price imposed for a hospital i

and procedure k then we set: p
ik

= p̄ik. This is standard, for example, in England (cf.
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Gravelle, Santos, and Siciliani (2014)). We assume that patients undergoing the procedures

are responsible for the payments, which may come out of pocket, through insurance, and/or

a government subsidy.

In addition, there are bounds associated with the quality levels. Regulatory bodies often

impose minimum quality standards, which we denote by Q
ik

for i = 1, . . . ,m; k = 1, . . . , n,

to ensure a minimum level of quality. At the same time, hospitals may be limited by the

maximum level of quality that they can achieve for different procedures with Q̄ik representing

the maximum for hospital i and procedure k with i = 1, . . . ,m; k = 1, . . . , n. Hence, the

following constraints must also hold for each i; i = 1, . . . ,m:

Q
ik
≤ Qik ≤ Q̄ik, k = 1, . . . , n. (2)

We let Ki denote the feasible set corresponding to hospital i; i = 1, . . . ,m, where Ki ≡
{(pi, qi)|(1) and (2) hold}. These feasible sets are closed and convex.

The demand for procedure k over the time horizon of interest at hospital i, which is

denoted by dik, is given by the function

dik = dik(Q, p, αik), i = 1, . . . ,m; k = 1, . . . , n, (3)

where αik is a vector of demand parameters that capture the location of patients and other

hospitals relative to hospital i, patient preferences over distance and quality, and other factors

that can influence a patient’s choice sets. Gravelle, Santos, and Siciliani (2014) proposed

demand parameter vectors in the context of hospital quality competition; here we refine the

vectors from the hospital to the hospital-procedure level. Furthermore, we allow for the

demand at i for k to depend on the prices of the procedure not only at i but also at the

other hospitals as well as on the prices of other procedures. Moreover, the demand functions

can also, in general, depend on the quality levels of all procedures at all hospitals, as well as

on the vector of additional demand parameters associated with each hospital and procedure.

We assume that dik is increasing in Qik and is decreasing in pik for all hospitals i; i = 1, . . . ,m

and all procedures k; k = 1, . . . , n.

It is important to emphasize that, in the case of elective procedures, patients may have

more flexibility as to the hospital selected than in the case of emergency procedures. Hence,

for the latter, distance to the hospital would be a bigger factor and the demand would be

more inelastic.

The cost associated with procedure k at hospital i is denoted by cik and this function

takes the form:

cik = cik(Q, βik), i = 1, . . . ,m; k = 1, . . . , n, (4)
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where βik is a vector of cost parameters associated with hospital i and procedure k. Gravelle,

Santos, and Siciliani (2014) utilized cost parameter vectors associated with hospitals that

capture exogenous factors, such as input prices, which can correspond to supplies needed,

etc.; here, we further refine these to the hospital-procedure level.

For simplicity, we group the demand parameters αik for each i, ∀k, into the vector αi and

then we group these vectors, ∀i, into the vector α. Similarly, we group the cost parameters

βik for each i, ∀k, into the vector βi and then we group all such vectors for all the hospitals

into the vector β.

Hospitals, since they are in healthcare, cen be expected to have utility functions that

incorporate aspects of altruism. Hence, the component ui of the utility function of hospital

i, Ui, which we will soon construct fully, is as follows:

ui = ωiBi(Q, p), i = 1, . . . ,m, (5a)

where ωi is a monetized weight, which reflects the degree of altruism of hospital i, and

Bi(Q, p) is a function representing the total benefit of the patients from receiving treatment

at hospital i at the price and quality levels. Altruism functions have been utilized in Brekke,

Siciliani, and Straume (2011) in the case of hospital competition and by Nagurney, Alvarez

Flores, and Soylu (2016) in disaster relief, where additional references can be found.

Specifically, we consider benefit functions Bi(Q, p) =
∑n

k=1 dik(Q, p, αik)Qik, so that

ui = ωi

n∑
k=1

dik(Q, p, αik)Qik, i = 1, . . . ,m. (5b)

Therefore, the total benefit to the patients treated at hospital i is equal to the sum over all

procedures of the demand for a given procedure times the quality level for that procedure

at the hospital.

We assume that all the above functions are continuously differentiable.

The utility function of hospital i, Ui; i = 1, . . . ,m, is:

Ui(p, Q, αi, βi) =

[
n∑

k=1

[pik − cik(Q, βik)]dik(Q, p, αik)

]
+ ωi

n∑
k=1

dik(Q, p, αik)Qik. (6)

Note that each hospital’s utility function corresponds to its net revenue, since hospitals

must be financial sustainable, plus its monetized weighted benefit function.

The network structure of the problem is depicted in Figure 1 with the flows on links

joining each pair of nodes (i, k) corresponding to the strategic variables pik and Qik.
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Hence, in terms of the language of game theory (see, e.g., Gabay and Moulin (1980)), the

players in this noncooperative game are the hospitals with a hospital i; i = 1, . . . ,m being

faced with the utility given by (6) which it seeks to maximize. The strategies of a hospital

i, in turn, correspond to its vector of prices pi charged for its medical procedures and its

vector of quality levels Qi associated with his medical procedures. The price and quality

level strategies for each hospital i must lie in the feasible set Ki as defined following (2).
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Figure 1: The Network Structure of the Game Theory Model for Hospital Competition

We assume that the hospitals compete noncooperatively and that they must treat all

patients that enter their system. The governing concept in the game theory model is that of

a Nash equilibrium (cf. Nash (1950, 1951)) as defined below.

Definition 1: Nash Equilibrium in Prices and Quality Levels

A price and quality level pattern (p∗, Q∗) ∈ K ≡
∏m

i=1 Ki, is said to constitute a Nash

equilibrium if for each hospital i; i = 1, . . . ,m:

Ui(p
∗
i , p̂

∗
i , Q

∗
i , Q̂

∗
i , αi, βi) ≥ Ui(pi, p̂∗i , Qi, Q̂∗

i , αi, βi), ∀(pi, Qi) ∈ Ki, (7)

where

p̂∗i ≡ (p∗1, . . . , p
∗
i−1, p

∗
i+1, . . . , p

∗
m) and Q̂∗

i ≡ (Q∗
1, . . . , Q

∗
i−1, Q

∗
i+1, . . . , Q

∗
m). (8)

According to (7), a Nash equilibrium is established if no hospital can unilaterally improve

upon its utility by selecting an alternative vector of prices and quality levels for its procedures.

We now derive the variational inequality formulation of the governing equilibrium condi-

tions.
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Theorem 1: Variational Inequality Formulations of Nash Equilibrium in Prices

and Quality

Assume that each hospital’s utility function is concave with respect to its strategic variables,

and is continuously differentiable. Then (p∗, Q∗) ∈ K is a Nash equilibrium according to

Definition 1 if and only if it satisfies the variational inequality:

−
m∑

i=1

n∑
k=1

∂Ui(p
∗, Q∗, αi, βi)

∂pik

× (pik − p∗ik)−
m∑

i=1

n∑
k=1

∂Ui(p
∗, Q∗, αi, βi)

∂Qik

× (Qik −Q∗
ik) ≥ 0,

∀(p, Q) ∈ K, (9)

or, equivalently,

−
m∑

i=1

n∑
k=1

[
dik(Q

∗, p∗, αik) +
n∑

j=1

p∗ij
∂dij(Q

∗, p∗, αij)

∂pik

−
n∑

j=1

cij(Q
∗, βij)

∂dij(Q
∗, p∗, αij)

∂pik

+ωi

n∑
j=1

∂dij(Q
∗, p∗, αij)

∂pik

Q∗
ij

]
× [pik − p∗ik]

−
m∑

i=1

n∑
k=1

[
n∑

j=1

[
p∗ij

∂dij(Q
∗, p∗, αij)

∂Qik

− cij(Q
∗, βij)

∂dij(Q
∗, p∗, αij)

∂Qik

−∂cij(Q
∗, βij)

∂Qik

dij(Q
∗, p∗, αij)

]
+ ωi

[
dik(Q

∗, p∗, αik) +
n∑

j=1

∂dij(Q
∗, p∗, αij)

∂Qik

Q∗
ij

]]
×[Qik −Q∗

ik] ≥ 0,

∀(p, Q) ∈ K. (10)

Proof: Since the feasible set K is closed and convex and the utility functions are concave

and continuously differentiable, the variational inequality (9) follows from Gabay and Moulin

(1980). Variational inequality (10) then follows by expanding the marginal utility functions

for each hospital i with respect to the strategic variables pik and Qik, for all procedures k,

and summing up the resultants. 2

We now put variational inequality (10) into standard variational inequality form (see

Nagurney (1999)), that is: determine X∗ ∈ K where X is a vector in RN , F (X) is a

continuous function such that F (X) : X 7→ K ⊂ RN , and

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (11)

where 〈·, ·〉 denotes the inner product in N -dimensional Euclidean space. We set K ≡ K,

which is a closed and convex set, and N = 2mn. We define the vector X ≡ (p, Q) and
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F (X) ≡ (F 1, F 2) with the (i, k)-th component of F 1 and F 2 given, respectively, for i =

1, . . . ,m; k = 1, . . . , n, by:

F 1
ik = −∂Ui(p, Q, αi, βi)

∂pik

= −dik(Q, p, αik)−
n∑

j=1

pij
∂dij(Q, p, αij)

∂pik

+
n∑

j=1

cij(Q, βij)
∂dij(Q, p, αij)

∂pik

−ωi

n∑
j=1

∂dij(Q, p, αij)

∂pik

Qij,

(12)

F 2
ik = −∂Ui(p, Q, αi, βi)

∂Qik

=
n∑

j=1

[
−pij

∂dij(Q, p, αij)

∂Qik

+ cij(Q, βij)
∂dij(Q, p, αij)

∂Qik

+
∂cij(Q, βij)

∂Qik

dij(Q, p, αij)

]

−ωi

[
dik(Q, p, αik) +

n∑
j=1

∂dij(Q, p, αij)

∂Qik

Qij

]
. (13)

Also, we let K ≡ K. Then, clearly, variational inequality (10) (and (9)) can be put into

standard form (11).

Theorem 2: Existence of a Solution

A solution (p∗, Q∗) ∈ K to variational inequality (9); equivalently, variational inequality

(10), is guaranteed to exist.

Proof: Follows from the classical theory of variational inequalities (cf. Kinderlehrer and

Stampacchia (1980)) since the feasible set K is compact, due to the price and quantity

bounds, and the marginal utilities are all continuous. 2

3. Alternative Formulation of the Variational Inequality and Analysis of Marginal

Utilities

In this section, we provide an alternative formulation to variational inequalities (8) and

(9) governing the competitive hospital Nash equilibrium, which then allows us to further

analyze the marginal utilities.

Observe that the feasible set K can be expressed as follows:

K = {(p, Q) ∈ R2mn : −pik + p
ik
≤ 0, pik − p̄ik ≤ 0,

−Qik −Q
ik
≤ 0, Qik − Q̄ik ≤ 0, i = 1, . . . ,m; k = 1, . . . , n}. (14)
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Also, variational inequality (8) can be equivalently rewritten as a minimization problem.

By letting:

V (p, Q) = −
m∑

i=1

n∑
k=1

∂Ui(p
∗, Q∗, αi, βi)

∂pik

× (pik − p∗ik)

−
m∑

i=1

n∑
k=1

∂Ui(p
∗, Q∗, αi, βi)

∂Qik

× (Qik −Q∗
ik),

we have that

V (p, Q) ≥ 0 in K and min
K

V (p, Q) = V (p∗, Q∗) = 0. (15)

We now construct the Lagrange function L such that

L(p, Q, λ1, λ2, µ1, µ2) = −
m∑

i=1

n∑
k=1

∂Ui(p
∗, Q∗, αi, βi)

∂pik

× (pik − p∗ik)

−
m∑

i=1

n∑
k=1

∂Ui(p
∗, Q∗, αi, βi)

∂Qik

× (Qik −Q∗
ik)

+
m∑

i=1

n∑
k=1

λ1
ik(−pik + p

ik
) +

m∑
i=1

n∑
k=1

λ2
ik(pik − p̄ik)

+
m∑

i=1

n∑
k=1

µ1
ik(−Qik + Q

ik
) +

m∑
i=1

n∑
k=1

µ2
ik(Qik − Q̄ik), (16)

where (p, Q) ∈ R2mn, λ1, λ2 ∈ Rmn
+ , µ1, µ2 ∈ Rmn

+ , and λ1 consists of all the λ1
ik elements; λ2

consists of all the λ2
ik elements, µ1 consists of all the µ1

ik elements, and µ2 consists of all the

µ2
ik; i = 1, . . . ,m; k = 1, . . . , n.

Since for the convex set K the Slater condition is verified and (p∗, Q∗) is a minimal solution

to problem (15), due to well-known theorems (see Jahn (1994)), there exist λ̄1, λ̄2 ∈ Rmn
+ ,

µ̄1, µ̄2 ∈ Rmn
+ such that the vector (p∗, Q∗, λ̄1, λ̄2, µ̄1, µ̄2) is a saddle point of the Lagrange

function (16); that is,

L(p∗, Q∗, λ1, λ2, µ1, µ2) ≤ L(p∗, Q∗, λ̄1, λ̄2, µ̄1, µ̄2) ≤ L(p, Q, λ̄1, λ̄2, µ̄1, µ̄2) (17)

for all (p, Q) ∈ K, for all λ1, λ2 ∈ Rmn
+ , for all µ1, µ2 ∈ Rmn

+ , and

λ̄1
ik(pik

− p∗ik) = 0, λ̄2
ik(p

∗
ik − p̄ik) = 0, i = 1, . . . ,m; k = 1, . . . , n,

µ̄1
ik(Qik

−Q∗
ik) = 0, µ̄2

ik(Q
∗
ik − Q̄ik) = 0, i = 1, . . . ,m; k = 1, . . . , n. (18)
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From the right-hand side of (17) it follows that (p∗, Q∗) ∈ R2mn
+ is a minimal point of

L(p, Q, λ̄1, λ̄2, µ̄1, µ̄2) in the entire space R2mn and, thus, for all i = 1, . . . ,m and k = 1, . . . , n,

we have that:

∂L(p∗, Q∗, λ̄1, λ̄2, µ̄1, µ̄2)

∂pik

= −∂Ui(p
∗, Q∗, αi, βi)

∂pik

− λ̄1
ik + λ̄2

ik = 0 (19)

∂L(p∗, Q∗, λ̄1, λ̄2, µ̄1, µ̄2)

∂Qik

= −∂Ui(p
∗, Q∗, αi, βi)

∂Qik

− µ̄1
ik + µ̄2

ik = 0, (20)

along with conditions (18).

Conditions (18) – (20) correspond to an equivalent formulation of variational inequality

(9).

Indeed, multiplying (19) by (pik − p∗ik) we obtain:

−∂Ui(p
∗, Q∗, αi, βi)

∂pik

(pik − p∗ik)− λ̄1
ik(pik − p∗ik) + λ̄2

ik(pik − p∗ik) = 0.

Utilizing now (18), we obtain:

−∂Ui(p
∗, Q∗, αi, βi)

∂pik

(pik − p∗ik) = λ̄1
ik(pik − p

ik
) + λ̄2

ik(pik − p̄ik) ≥ 0. (21)

Similarly, multiplying (20) by (Qik −Q∗
ik) we obtain:

∂Ui(p
∗, Q∗, αi, βi)

∂Qik

(Qik −Q∗
ik)− µ̄1

ik(Qik −Q∗
ik) + µ̄2

ik(Qik −Q∗
ik) = 0.

Using (18), we get:

∂Ui(p
∗, Q∗, αi, βi)

∂Qik

(Qik −Q∗
ik) = µ̄1

ik(Qik −Q
ik

) + µ̄2
ik(Qik − Q̄ik) ≥ 0. (22)

Summation of (21) and (22) over all i and over all k yields variational inequality (8).

3.1 Analysis of the Marginal Utilities

We now proceed, using the above framework, to provide a deeper analysis of the marginal

utilities of the hospitals. We first consider the marginal utilities with respect to the prices of

the hospital procedures and then turn to the marginal utilities associated with the hospitals’

quality levels.

From (19) we have that:

−∂Ui(p
∗, Q∗, αi, βi)

∂pik

− λ̄1
ik + λ̄2

ik = 0.
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Hence, if p
ik

< p∗ik < p̄ik, then, also making use of (10), it follows that:

−∂Ui(p
∗, Q∗, αi, βi)

∂pik

=

[
−dik(Q

∗, p∗, αik)−
n∑

j=1

p∗ij
∂dij(Q

∗, p∗, αij)

∂pik

+
n∑

j=1

cij(Q
∗, βij)

∂dij(Q
∗, p∗, αij)

∂pik

−ωi

n∑
j=1

∂dij(Q
∗, p∗, αij)

∂pik

Q∗
ij

]
= 0. (23)

However, if λ̄1
ik > 0, and, therefore, p∗ik = p

ik
and λ̄2

ik = 0, we get

−∂Ui(p
∗, Q∗, αi, βi)

∂pik

=

[
−dik(Q

∗, p∗, αik)−
n∑

j=1

p∗ij
∂dij(Q

∗, p∗, αij)

∂pik

+
n∑

j=1

cij(Q
∗, βij)

∂dij(Q
∗, p∗, αij)

∂pik

−ωi

n∑
j=1

∂dij(Q
∗, p∗, αij)

∂pik

Q∗
ij

]
= λ̄1

ik, (24)

and, if λ̄2
ik > 0, and, hence, p∗ik = p̄ik and λ̄1

ik = 0, we have that

−∂Ui(p
∗, Q∗, αi, βi)

∂pik

=

[
−dik(Q

∗, p∗, αik)−
n∑

j=1

p∗ij
∂dij(Q

∗, p∗, αij)

∂pik

+
n∑

j=1

cij(Q
∗, βij)

∂dij(Q
∗, p∗, αij)

∂pik

−ωi

n∑
j=1

∂dij(Q
∗, p∗, αij)

∂pik

Q∗
ij

]
= −λ̄2

ik. (25)

From (23), which holds if p
ik

< p∗ik < p̄ik, we see that for hospital i performing procedure

k, the marginal utility with respect to the price charged is equal to zero; that is, the marginal

revenue associated with the price hospital i charges for procedure k, dik(Q
∗, p∗, αik) +∑n

j=1 p∗ij
∂dij(Q

∗,p∗,αij)

∂pik
, plus the marginal utility due to altruism with respect to price,

ωi

∑n
j=1

∂dij(Q
∗,p∗,αij)

∂pik
Q∗

ij, is equal to the associated marginal cost
∑n

j=1 cij(Q
∗, βij)

∂dij(Q
∗,p∗,αij)

∂pik
.

In (24), minus the marginal utility with respect to the price of the procedure is equal

to λ̄1
ik; namely, the marginal cost associated with the price charged by the hospital for the

procedure is greater than the associated marginal revenue plus the marginal altruism utility

12



with respect to price. Hospital i has a marginal loss with respect to the price charged for

procedure k given by λ̄1
ik.

On the other hand, in the case of (25), where p∗ik = p̄ik, and λ̄2
ik > 0, the marginal revenue

with respect to the price charged for the procedure is greater than the associated marginal

cost plus marginal utility due to altruism and with respect to price. Hospital i has a marginal

gain given by λ̄2
ik.

A similar analysis to the above can be obtained for the marginal utilities of hospital i

with respect to the quality level of procedure k and the associated Lagrange multipliers µ̄1
ik

and µ̄2
ik. We now provide such an analysis, for completeness, and since the hospital altruism

functions also yield interesting insights.

From (20) we know that:

−∂Ui(p
∗, Q∗, αi, βi)

∂Qik

− µ̄1
ik + µ̄2

ik = 0.

Therefore, if Q
ik

< Qik < Q̄ik, using also (10), we have that:

−∂Ui(p
∗, Q∗, αi, βi)

∂Qik

=

[
n∑

j=1

[
−p∗ij

∂dij(Q
∗, p∗, αij)

∂Qik

+ cij(Q
∗, βij)

∂dij(Q
∗, p∗, αij)

∂Qik

+
∂cij(Q

∗, βij)

∂Qik

dij(Q
∗, p∗, αij)

]

−ωi

[
dik(Q

∗, p∗, αik) +
n∑

j=1

∂dij(Q
∗, p∗, αij)

∂Qik

Q∗
ij

]]
= 0. (26)

If, on the other hand, µ̄1
ik > 0, and, hence, Q∗

ik = Q
ik

and µ̄2
ik = 0, then

−∂Ui(p
∗, Q∗, αi, βi)

∂Qik

=

[
n∑

j=1

[
−p∗ij

∂dij(Q
∗, p∗, αij)

∂Qik

+ cij(Q
∗, βij)

∂dij(Q
∗, p∗, αij)

∂Qik

+
∂cij(Q

∗, βij)

∂Qik

dij(Q
∗, p∗, αij)

]

−ωi

[
dik(Q

∗, p∗, αik) +
n∑

j=1

∂dij(Q
∗, p∗, αij)

∂Qik

Q∗
ij

]]
= µ̄1

ik. (27)

If, however, µ̄2
ik > 0, and, therefore, Q∗

ik = Q̄ik and µ̄1
ik = 0, we have that:

−∂Ui(p
∗, Q∗, αi, βi)

∂Qik

13



=

[
n∑

j=1

[
−p∗ij

∂dij(Q
∗, p∗, αij)

∂Qik

+ cij(Q
∗, βij)

∂dij(Q
∗, p∗, αij)

∂Qik

+
∂cij(Q

∗, βij)

∂Qik

dij(Q
∗, p∗, αij)

]

−ωi

[
dik(Q

∗, p∗, αik) +
n∑

j=1

∂dij(Q
∗, p∗, αij)

∂Qik

Q∗
ij

]]
= −µ̄2

ik. (28)

From (26), which is the case when Q
ik

< Q∗
ik < Q̄ik, we observe that, for hospital i and

procedure k, the hospital’s marginal utility with respect to the quality level of that procedure

at the hospital is equal to zero. Hence, the marginal revenue associated with the procedure’s

quality level plus the marginal utility due to altruism with respect to quality is equal to the

marginal cost for that procedure at the hospital with respect to the quality level.

In (27), minus the marginal utility of the hospital i with respect to the quality level of

the procedure k is equal to µ̄1
ik. Hence, the marginal cost associated with the quality level

for the procedure at the hospital is greater than the marginal revenue associated with the

procedure’s quality level plus the marginal utility due to altruism with respect to quality.

Hospital i experiences a marginal loss with respect to the quality level of µ̄1
ik.

Finally, according to (28), when Q∗
ik = Q̄ik, and µ2

ik > 0, the marginal revenue associated

with the procedure’s quality level plus the marginal utility due to altruism with respect to

quality exceeds the associated marginal cost with respect to the quality level of the procedure

at the hospital. Hospital i, hence, experiences a marginal gain of µ̄2
ik.

4. The Computational Procedure and a Case Study

Before we present a case study we outline our computational procedure. The computa-

tional procedure that we use to solve variational inequalities (9) and (10) is the Euler method

of Dupuis and Nagurney (1993), which, at each iteration, results in closed form expressions

for the hospital procedure prices and quality levels.

Specifically, iteration τ of the Euler method, where the variational inequality is expressed

in standard form (11), is given by:

Xτ+1 = PK(Xτ − aτF (Xτ )), (29)

where PK is the projection on the feasible set K and F is the function that enters the

variational inequality problem (10), where recall that X ≡ Q and F (X) consists of the

components given in (12) and (13).

As proven in Dupuis and Nagurney (1993), for convergence of the general iterative scheme,

which induces the Euler method, the sequence {aτ} must satisfy:
∑∞

τ=0 aτ = ∞, aτ > 0,

14



aτ → 0, as τ →∞. Conditions for convergence for a variety of network-based problems can

be found in Nagurney and Zhang (1996) and Nagurney (2006).

Explicit Formulae for the Euler Method Applied to the Hospital Competition

Game Theory Model

The elegance of this algorithm for our variational inequality (10) for the computation of

solutions to our model is apparent from the following explicit formulae.

We have the following closed form expression for the hospital procedure prices for i =

1, . . . ,m; k = 1, . . . , n, at iteration τ + 1:

pτ+1
ik = max{p

ik
, min{p̄ik, p

τ
ik + aτ (dik(Q

τ , pτ , αik) +
n∑

j=1

pτ
ij

∂dij(Q
τ , pτ , αij)

∂pik

−
n∑

j=1

cij(Q
τ , βij)

∂dij(Q
τ , pτ , αij)

∂pik

+ ωi

n∑
j=1

∂dij(Q
τ , pτ , αij)

∂pik

Qτ
ij)}}. (30)

Also, we have the following closed form expression for the hospital quality service levels

for i = 1, . . . ,m; k = 1, . . . , n, at iteration τ + 1:

Qτ+1
ik = max{Q

ik
, min{Q̄ik, Q

τ
ik + aτ (

n∑
j=1

[
pτ

ij

∂dij(Q
τ , pτ , αij)

∂Qik

− cij(Q
τ , βij)

∂dij(Q
τ , pτ , αij)

∂Qik

−∂cij(Q
τ , βij)

∂Qik

dij(Q
τ , pτ , αij)

]
+ ωi

[
dik(Q

τ , pτ , αik) +
n∑

j=1

∂dij(Q
τ , pτ , αij)

∂Qik

Qτ
ij

]
)}}. (31)

We now present the case study. The case study is inspired by four major hospitals in

eastern Massachusetts, which are in relative proximity, and based in the Cambridge-Boston

area. Specifically, the four hospitals, which we refer to, henceforth, as Hospital 1, Hospital

2, Hospital 3, and Hospital 4, are modeled after: Beth Israel, Brigham and Women’s, Mas-

sachusetts General Hospital (MGH), and Mount Auburn, respectively. All four hospitals are

considered acute care hospitals, providing a variety of inpatient and outpatient services. The

three procedures that we consider are common procedures. They are denoted by Procedure

1, Procedure 2, and Procedure 3, and correspond, respectively, to: appendectomy, knee joint

replacement, and Cesarean delivery. All four hospitals conduct all three procedures. The

time horizon is a year. In order to construct the demand functions at the hospitals for the

three procedures we used data from 2009. We used the private payer data to estimate the

demand functions. In addition, we obtained prices charged for the procedures by these hos-

pitals, both lower and upper bounds. The cost functions we parameterized using the average
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price over the year for each hospital’s procedure under study, noting that, according to Fuller

(2014), hospitals in Massachusetts have an average markup of 221%. The quality level here

is a composite of “patient experience,” “process of care,” and “patient outcomes,” which

measures mortality and readmission rates. Our resources for the above included documents

by the Massachusetts Division of Health Care Finance and Policy (2011a, b, c).

Th network for the case study is given in Figure 2.

����
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3 4

����
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2 ����
3

Beth Israel Brigham and Women’s MGH Mount Auburn

Hospitals

Appendectomy Knee Cesarean Delivery

Medical Procedures
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Figure 2: The Network Structure of the Case Study of Four Hospitals in Massachusetts

We set the quality bounds for all procedures as: Q
ik

= 50 and Q̄ik = 98, ∀i,∀k, with an

upper bound of quality of 100 equal to perfect quality, which is not achievable.

The algorithm was implemented in FORTRAN and a Linux system at the University of

Massachusetts Amherst was used for the computations. The algorithm was initialized as

follows: all price and quality variables were set to their lower bounds. Also, the convergence

tolerance was .0001, which means that the absolute value of the difference of two successive

computed variable iterates of prices and quality levels differed by no more than that amount.

In the case study we report on two sets of examples. For each set of examples, we consider

first weights wi = 1; i = 1, 2, 3, 4, and then set the weights wi = 0; i = 1, 2, 3, 4, in order to

investigate the differences in computed equilibrium prices and quality levels, as well as the

net revenues and utilities of the hospitals.

Example Set 1
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The demand data for Example Sets 1 and 2 are as follows. We took both proximity of

hospitals as well as annual demand data for each procedure and hospital into consideration

in constructing the below functions. We emphasize that here we are interested in “proof

of concept” and demonstrating the kinds of questions and issues that can be addressed via

our computable framework. In reporting the various functions, we suppress the parameter

vectors αi and βi, ∀i, for simplicity.

Demand functions for Procedure 1 at the four hospitals are:

d11(Q, p) = −.01p11+Q11+.02p41−.5Q41+90, d21(Q, p) = −.01p21+Q21+.03p11−.5Q11+65,

d31(Q, p) = −.02p31+Q31+.02p21−Q21+65, d41(Q, p) = −.03p41+1.5Q41+.03p21−Q21+100.

Demand functions for Procedure 2 at the four hospitals are:

d12(Q, p) = −.04p12+1.5Q12+.03p22−2Q22+60, d22(Q, p) = −.02p22+2Q22+.01p21−Q21+225.

d32(Q, p) = −.02p32+4.5Q32+.02p22−.5Q22+475, d42(Q, p) = −.04p42+2Q42+.02p22−2Q22+60.

Demand functions for Procedure 3 at the four hospitals are:

d13(Q, p) = −.03p13+3Q1+.02p23−3Q23+800, d23(Q, p) = −.01p23+4Q23+.03p13−2Q13+1080.

d33(Q, p) = −.02p33+2Q33+.04p32−3Q32+400, d43(Q, p) = −.04p43+2Q43+.03p23−4Q33+190.

The price bounds for Example Sets 1 and 2 are:

p
11

= 2412.26, p̄11 = 49149.54,

p
12

= 9118.80, p̄12 = 80282.20,

p
13

= 3365.32, p̄13 = 24304.56,

p
21

= 3091.44, p̄21 = 62987.76,

p
22

= 9726.72, p̄22 = 85633.28,

p
23

= 3535.00, p̄23 = 25530.00,

p
31

= 3068.02, p̄31 = 62510.58,

p
32

= 9574.74, p̄32 = 84295.26,

p
33

= 4213.72, p̄33 = 30431.76,

p
41

= 2178.06, p̄41 = 44377.74,

p
42

= 9574.74, p̄42 = 84295.26,

p
43

= 2686.60, p̄43 = 19402.80.
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Example 1 in Example Set 1

The demand for Example 1 in Example Set 1 is as above and so are the quality and price

bounds.

The cost functions for Example 1 in Example Set 1 for each hospital and procedure are

given below.

Cost functions for Hospital 1 for the three procedures are:

c11(Q) = .2Q2
11+10Q11+2810.29, c12(Q) = .3Q2

12+8Q12+791.52, c13(Q) = .4Q2
13+9Q12+2969.84.

Cost functions for Hospital 2 for the three procedures are:

c21(Q) = .2Q2
21+10Q21+3261.10, c22(Q) = .3Q2

22+9Q22+8318.39, c23(Q) = .5Q2
23+11Q23+3265.51.

Cost functions for Hospital 3 for the three procedures are:

c31(Q) = .3Q2
31+10Q31+3328.99, c32(Q) = .2Q2

32+11Q32+7855.20, c33(Q) = .4Q2
33+11Q33+3485.22.

Cost functions for Hospital 4 for the three procedures are:

c41(Q) = .3Q2
41+9Q41+2167.06, c42(Q) = .4Q2

42+9Q42+6358.03, c43(Q) = .3Q2
43+8Q43+2192.34.

We now report the computed equilibrium prices of the hospital procedures and the equi-

librium quality levels as well as the incurred demands.

For Hospital 1:

p∗11 = 16382.16, Q∗
11 = 87.32, d11(Q

∗, p∗) = 256.34,

p∗12 = 10868.41, Q∗
12 = 50.00, d12(Q

∗, p∗) = 111.53,

p∗13 = 24304.56, Q∗
13 = 86.11, d13(Q

∗, p∗) = 689.80.

For Hospital 2:

p∗21 = 24782.72, Q∗
21 = 98.00, d21(Q

∗, p∗) = 362.98,

p∗22 = 19843.56, Q∗
22 = 92.02, d22(Q

∗, p∗) = 260.98,

p∗23 = 25530.00, Q∗
23 = 50.00, d23(Q

∗, p∗) = 1581.61.
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For Hospital 3:

p∗31 = 12426.94, Q∗
31 = 50.00, d31(Q

∗, p∗) = 264.12,

p∗32 = 59649.25, Q∗
32 = 98.00, d32(Q

∗, p∗) = 73.88,

p∗33 = 30431.76, Q∗
33 = 50.00, d33(Q

∗, p∗) = 1983.33.

For Hospital 4:

p∗41 = 13392.20, Q∗
41 = 50.00, d41(Q

∗, p∗) = 418.72,

p∗42 = 9797.56, Q∗
42 = 71.80, d42(Q

∗, p∗) = 24.54,

p∗43 = 13224.16, Q∗
43 = 70.39, d43(Q

∗, p∗) = 367.72.

The net revenue of Hospital 1 in this example for the three procedures for the year

is: 15,226,406.00 and its utility, which recall contains the altruism benefit component, is:

15,313,767.00 The net revenue for Hospital 2, in turn, is: 41,254,516.00, and its utility is:

41,393,184.00. The net revenue for Hospital 3 is: 56,047,404.00 and its utility: 56,167,016.00.

Finally, the net revenue of Hospital 4 in this example is: 7,518,522.00 and its utility:

7,567,104.50.

Observe that several of the hospital procedure quality levels are at their lower bounds,

specifically, Q∗
12, Q∗

23, Q∗
33, and Q∗

41, whereas only two are at their upper bounds: Q∗
21 and

Q∗
32. Provision of quality care is costly and it may be difficult for hospitals to provide

higher levels for certain procedures at their establishments. Also, note that three hospitals

(Hospitals 1, 2 and 3) charge at their respective upper bounds for Procedure 3, which, recall

is a Cesarean delivery. This makes sense given that multiple lives are involved and the stakes

(and even malpractice possibilities) also high.

For procedure 2, knee joint replacement, Hospitals 1 and 4 charged a 19.19% and 2.3%

increase from their lower price bounds, respectively. In contrast, Hospitals 2 and 3 charged

a 104.01% and 522.99% increase from their lower price bounds, respectively. Overall, Proce-

dure 2 shows the greatest variation in equilibrium price levels based on the percent increase

from their lower price bounds. Reasons for such a high price variation may be due to the

increasing demand for knee joint replacements in the country as the US population ages

and the percent population requiring knee surgeries increases. Studies have shown that knee

joint replacements vary greatly by region, with a 313% difference in price between the least

and most expensive price range in the Boston-Worcester market in Massachusetts (Melton

(2015)). This supports our findings for Procedure 2, knee joint replacement, which has
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the highest equilibrium price variation among the procedures on our study among the four

hospitals.

Example 2 in Example Set 1

Example 2 in Example Set 1 has the same data as Example 1 in this set except that now

we investigate the impact of the hospitals not having an altruism benefit component in their

utility functions so that: wi = 0, for i = 1, 2, 3, 4.

The computed equilibrium prices of the hospital procedures and the equilibrium quality

levels as well as the incurred demands are reported below.

For Hospital 1:

p∗11 = 16367.35, Q∗
11 = 85.18, d11(Q

∗, p∗) = 255.34,

p∗12 = 10913.13, Q∗
12 = 50.00, d12(Q

∗, p∗) = 110.90,

p∗13 = 24304.56, Q∗
13 = 85.18, d13(Q

∗, p∗) = 687.00.

For Hospital 2:

p∗21 = 24765.24, Q∗
21 = 98.00, d21(Q

∗, p∗) = 363.78,

p∗22 = 19775.65, Q∗
22 = 90.42, d22(Q

∗, p∗) = 258.97,

p∗23 = 25530.00, Q∗
23 = 50.00, d23(Q

∗, p∗) = 1583.48.

For Hospital 3:

p∗31 = 12485.10, Q∗
31 = 50.00, d31(Q

∗, p∗) = 262.60,

p∗32 = 59629.71, Q∗
32 = 98.00, d32(Q

∗, p∗) = 73.71,

p∗33 = 30431.76, Q∗
33 = 50.00, d33(Q

∗, p∗) = 1982.55.

For Hospital 4:

p∗41 = 13441.43, Q∗
41 = 50.00, d41(Q

∗, p∗) = 416.71,

p∗42 = 9816.37, Q∗
42 = 71.09, d42(Q

∗, p∗) = 24.20,

p∗43 = 13180.91, Q∗
43 = 68.77, d43(Q

∗, p∗) = 366.20.
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The net revenue of Hospital 1 in Example 2 of Set 1 for the three procedures for the

year is: 15,239,808.00. The net revenue for Hospital 2 is: 41,293,612.00, that for Hospital 3:

56,021,276.00, and that for Hospital 4: 7,520,433.50. The utilities of the hospitals coincide

with their net revenues since the component of the utility associated with altruism benefit,

with an associated weight of zero, is not included in this example.

We note that the same quality levels as in Example 1 are at their bounds.

Observe that, in the case of the elimination of altruism, which benefits the consumers/patients,

the quality levels of all three procedures at all four hospitals remain the same or are lower

(Q∗
11, Q

∗
13, Q

∗
42, Q

∗
43) than for their counterpart in Example 1, except for one. Only Q∗

22 is

now greater, although, not substantially. Moreover, the net revenues for Hospitals 1, 2, and

4 are now higher than in Example 1 but the net revenue of Hospital 3 is lower, although not

significantly.

Reasons for Hospitals 1 and 4 suffering a reduction in quality without altruism may

be due to their smaller sizes as acute hospitals and availability of resources compared to

Hospitals 2 and 3. Compared to Brigham and Womens and MGH (Hospitals 2 and 3), Beth

Israel and Mount Auburn (Hospitals 1 and 4) have fewer staffed beds and resources. As a

result, altruism benefit is more important for Hospitals 1 and 4 to remain competitive and

to maintain a high quality of care. By comparing situations with and without altruism, we

can further understand how hospitals in our case study compete in both price and quality.

Example Set 2

In Example Set 2 we consider the following scenario. We assume that the costs associated

with quality have been reduced, through, for example, enhanced education, the application of

operations research techniques for processes, innovations in surgical procedures, etc. Specif-

ically, we assume that the coefficient in each hospital procedure cost function in Example

1, Set 1, associated with the second power quality level term, has now been reduced by a

factor of 10.

Example 1 in Example Set 2

Hence, the cost functions for Example 1 in Example Set 2 for each hospital and procedure

are as given below.

Cost functions for Hospital 1 for the three procedures are:

c11(Q) = .02Q2
11+10Q11+2810.29, c12(Q) = .03Q2

12+8Q12+791.52, c13(Q) = .04Q2
13+9Q12+2969.84.
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Cost functions for Hospital 2 for the three procedures are:

c21(Q) = .02Q2
21+10Q21+3261.10, c22(Q) = .03Q2

22+9Q22+8318.39, c23(Q) = .05Q2
23+11Q23+3265.51.

Cost functions for Hospital 3 for the three procedures are:

c31(Q) = .03Q2
31+10Q31+3328.99, c32(Q) = .02Q2

32+11Q32+7855.20, c33(Q) = .04Q2
33+11Q33+3485.22.

Cost functions for Hospital 4 for the three procedures are:

c41(Q) = .03Q2
41+9Q41+2167.06, c42(Q) = .04Q2

42+9Q42+6358.03, c43(Q) = .03Q2
43+8Q43+2192.34.

The remainder of the data, that is, the bounds, the weights, wi; i = 1, 2, 3, 4, which, recall

were set to 1, as well as the demand functions, are as in Example 1 of Set 1. Hence, here we

wish to evaluate the impact of a major cost reduction associated with quality delivery of all

procedures in all the hospitals under study.

We now report the computed equilibrium prices of the hospital procedures and the equi-

librium quality levels as well as the incurred demands.

For Hospital 1:

p∗11 = 17201.04, Q∗
11 = 98.00, d11(Q

∗, p∗) = 272.08,

p∗12 = 11713.31, Q∗
12 = 98.00, d12(Q

∗, p∗) = 150.37,

p∗13 = 23849.75, Q∗
13 = 98.00, d13(Q

∗, p∗) = 595.11.

For Hospital 2:

p∗21 = 26687.76, Q∗
21 = 98.00, d21(Q

∗, p∗) = 363.15,

p∗22 = 20263.27, Q∗
22 = 98.00, d22(Q

∗, p∗) = 283.59,

p∗23 = 25530.00, Q∗
23 = 98.00, d23(Q

∗, p∗) = 1736.19.

For Hospital 3:

p∗31 = 13951.58, Q∗
31 = 98.00, d31(Q

∗, p∗) = 319.72,

p∗32 = 59331.55, Q∗
32 = 98.00, d32(Q

∗, p∗) = 85.63,

p∗33 = 30431.76, Q∗
33 = 98.00, d33(Q

∗, p∗) = 2066.63.
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For Hospital 4:

p∗41 = 15254.30, Q∗
41 = 98.00, d41(Q

∗, p∗) = 492.00,

p∗42 = 9574.74, Q∗
42 = 98.00, d42(Q

∗, p∗) = 82.28,

p∗43 = 11078.17, Q∗
43 = 98.00, d43(Q

∗, p∗) = 316.77.

The net revenue of Hospital 1 in this example for the three procedures for the year is:

15,712,297.00 and its utility, which contains the altruism benefit component, is: 15,812,017.00.

The net revenue for Hospital 2, in turn, is: 47,087,584.00, and its utility is: 47,321,112.00.

The net revenue for Hospital 3 is: 59,956,932.00 and its utility: 60,199,188.00. Lastly, the

net revenue of Hospital 4 in this example is: 8,498,926.00 and its utility: 8,586,249.00. Each

hospital now enjoys a significantly higher net revenue than it did in Example 1 in Set 1, and

a higher overall utility.

With the reduction in cost associated with quality, all hospitals achieve the upper bound

of quality for each of the three procedures. Also as compared to the results for Example 1

in Set 1, p∗13 and p∗23 are, again, at their respective upper bounds, but p∗33 is no longer at its

upper bound.

In addition, the demand for all procedures at all hospitals increases, except for two: the

demand for Procedure 3 at Hospital 1 and the demand for Procedure 3 at Hospital 4.

This example illustrates the situation that, by reducing costs associated with quality

of procedures, which can occur, for example, through innovations in surgical procedures

(see, e.g., Costa-Navarro, Jimenez-Fuertes, and Illan-Riquelme (2013)), hospitals, as well as

patients can gain, creating a win-win situation.

Example 2 in Example Set 2

Example 2 has the same data as Example 1 except that now we set all the weights w1;

i = 1, 2, 3, 4, equal to zero.

The computed equilibrium prices of the hospital procedures, the equilibrium quality levels,

as well as the incurred demands are reported below.

For Hospital 1:

p∗11 = 17252.40, Q∗
11 = 98.00, d11(Q

∗, p∗) = 272.50,

p∗12 = 11797.87, Q∗
12 = 98.00, d12(Q

∗, p∗) = 148.19,
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p∗13 = 23898.58, Q∗
13 = 98.00, d13(Q

∗, p∗) = 593.64.

For Hospital 2:

p∗21 = 26697.24, Q∗
21 = 98.00, d21(Q

∗, p∗) = 364.60,

p∗22 = 20303.56, Q∗
22 = 98.00, d22(Q

∗, p∗) = 282.88,

p∗23 = 25530.00, Q∗
23 = 98.00, d23(Q

∗, p∗) = 1737.66.

For Hospital 3:

p∗31 = 13970.94, Q∗
31 = 98.00, d31(Q

∗, p∗) = 319.53,

p∗32 = 59284.91, Q∗
32 = 98.00, d32(Q

∗, p∗) = 87.37,

p∗33 = 30431.76, Q∗
33 = 98.00, d33(Q

∗, p∗) = 2064.76.

For Hospital 4:

p∗41 = 15301.00, Q∗
41 = 98.00, d41(Q

∗, p∗) = 490.89,

p∗42 = 9575.59, Q∗
42 = 98.00, d42(Q

∗, p∗) = 83.05,

p∗43 = 11125.95, Q∗
43 = 98.00, d43(Q

∗, p∗) = 314.86.

The net revenue of Hospital 1 in this example for the three procedures for the year is:

15,738,224.00. The net revenue for Hospital 2, in turn, is: 47,157,288.00. The net revenue

for Hospital 3 is: 59,996,940.00, and that for Hospital 4 is: 8,510,231.00. Each hospital now

enjoys a significantly higher net revenue than it did in Example 1 in Set 1, and a higher

overall utility.

The equilibrium prices of all procedures charged by all hospitals in this example, as

compared to the previous one, are all higher or the same (as in the case of p∗23, which is at

its upper bound) as in Example 1 in Set 2, except for p∗32, which is lower, but only slightly.

Again, the equilibrium quality levels remain at the upper bounds, which was also the case

for the previous example, due to the much reduced cost coefficients.

5. Summary and Conclusions

In this paper, we constructed a game theory model for hospitals that provide various

medical procedures and compete for patients through the quality levels as well as the prices
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that they charge to paying patients. The price and quality levels are subject to both lower and

upper bounds. The governing equilibrium concept for the model is that of Nash equilibrium.

The utility functions of the hospitals consist of a revenue component as well as a component

capturing altruism benefit, since hospitals are in healthcare, with a monetized weight for the

latter.

We formulated the equilibrium conditions as a variational inequality problem, established

existence of an equilibrium price and quality level pattern, and also provided a Lagrange

analysis for the equilibrium solutions when the variables achieve upper or lower bounds

or do not lie at the extremes. A computational procedure was proposed, which resolves

the game theory problem into subproblems in prices and quality levels, each of which can

be solved, at a given iteration, using a closed form expression, which we delineated. The

algorithm was then applied to compute the equilibria in a case study, inspired by four major

hospitals in Massachusetts, each of which offers three major medical procedures, which we

focused on. We report the incurred demands at the equilibrium patterns, the net revenues,

as well as the values of the utilities obtained by the hospitals. We find that the inclusion of

altruism benefit in the hospital utility functions can yield higher procedure quality levels as

well as lower prices.

This paper is the first to capture at this level of detail competition among hospitals in

both prices and quality of procedures from an operations research computable game theory

perspective. Future research might consider the incorporation of different payment schemes

for procedures, which may include, for example, fixed prices. In addition, the study of

demand elasticity for different procedures, in the context of sensitivity analysis, would be

worthwhile.
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Barbagallo, A., Daniele, P., Giuffré, S., Maugeri, A., 2014. Variational approach for a general

financial equilibrium problem: The deficit formula, the balance law and the liability formula.

A path to the economy recovery. European Journal of Operational Research 237(1), 231-244.

Brekke, K.R., Cellini, R., Siciliani, L., Straume, O.R., 2010. Competition and quality in

health care markets: A differential-game approach. Journal of Health Economics 29(4),

508-523.

Brekke, K.R., Siciliani, L., Straume, O.R., 2011. Hospital competition and quality with

regulated prices. The Scandinavian Journal of Economics 113(2), 444-469.

Brook, R.H., Kosecoff, J., 1988. Competition and quality. Health Affairs 7(3), 150161.

Colla, C., Bynum, J., Austin, A., Skinner, J., 2016. Hospital competition, quality, and

expenditures in the U.S. Medicare population. NBER Working Paper No. 2282, November,

Cambridge, Massachusetts.

Commins, J., 2016. Hospital consolidation 2016 forecast: ‘More of the same.’ Media Health-

Leaders; January 15; available at: http://www.healthleadersmedia.com/leadership/hospital-

consolidation-2016-forecast-more-same?nopaging=1

Cooper, Z., Gibbons, S., Jones, S., McGuire, A., 2011. Does hospital competition save lives?

Evidence from the NHS patient choice reforms. Economic Journal 121(554), 228-260.

Costa-Navarro, D., Jimenez-Fuertes, M., Illan-Riquelme, A., 2013. Laparoscopic appendec-

tomy: quality care and cost-effectiveness for today’s economy.World Journal of Emergency

Surgery8, 45.
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