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Abstract: We develop a Generalized Nash Equilibrium network model for post-disaster

humanitarian relief by nongovernmental organizations (NGOs). NGOs derive utility from

providing relief supplies to victims of the disaster at demand points in a supply chain context

while competing with each other for financial funds provided by donations. The shared con-

straints consist of lower and upper bounds for demand for relief items at the demand points

to reduce materiel convergence or congestion. This game theory problem is reformulated as

an optimization problem and numerical examples and a theoretical case study on Hurricane

Katrina given.
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1. Introduction

The number of disasters has doubled globally since the 1980s with the associated costs

of the damage and losses estimated at an average $100 billion a year since the turn of the

century (Watson et al. (2015)). Notable natural disasters have included Hurricane Katrina

in 2005, the Haiti earthquake in 2010, the triple disaster in Fukushima, Japan in 2011,

consisting of an earthquake, followed by a tsunami and a nuclear meltdown technological

disaster, the second worst nuclear disaster since Chernobyl in 1986; Superstorm Sandy in

2012, tropical cyclone Haiyan in 2013, and the earthquake in Nepal in 2015 (cf. Nagurney,

Masoumi, and Yu (2015)). Slow-onset, long-lasting disasters have included the political and

humanitarian disaster of the Syrian refugee migration crisis, which escalated in 2015 and is

continuing (The Economist (2015)). The Ebola crisis in West Africa, which peaked in 2015,

and was the largest such outbreak in history, is an example of a health response disaster (cf.

Boseley (2015)).

The number of people that are being affected by disasters is also increasing (see Nagurney

and Qiang (2009)), posing challenges to disaster relief organizations, including nongovern-

mental organizations (NGOs). According to Kopinak (2013), humanitarian aid represents a

commitment to support vulnerable populations that have experienced a sudden emergency

and require assistance. She notes that distinct humanitarian relief organizations may have

individual mandates, goals, strategies, and associated activities, but the majority operate

under a single, common, humanitarian principle: to protect the vulnerable by decreasing

morbidity and mortality, to reduce suffering, and support the quality of life. Nevertheless,

Kopinak (2013) recognizes that many stakeholders believe that humanitarian aid has not

been successful in delivering on these due to a lack of coordination, which results in du-

plication of services. Moreover, NGOs, such as the Red Cross, rely on donors for financial

support and, hence, compete with one another for financial donations. Consequently, there

are unique challenges in the important humanitarian aid for disaster relief domain. On the

supply side, the main challenge is to secure the donations needed for disaster response and

the sustainability of their organizations; whereas, on the demand side, the challenge presents

itself as fulfilling the victims’ needs while avoiding wasteful duplication and congestion in

terms of logistics (cf. Nagurney, Yu, and Qiang (2011, 2012) and the references therein).

For example, Barrett and Novack (2015) in the compilation of the Forbes list of the 50

largest charitable organizations in the United States, noted that the Salvation Army, was the

second largest charitable organization, and received private donations of $2.12 billion, in its

last reported fiscal year, ending September 30, 2014. World Vision, number 11 on the Forbes

list, received $832 million in the fiscal year prior, and the American Red Cross, number 16
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on the list, received $736 million in private donations. According to Zhuang, Saxton, and

Wu (2014), approximately $300 billion are donated to charities in the US each year.

Interestingly, and, as noted by Ortuño et al. (2013), although the importance of donations

is a fundamental difference of humanitarian logistics with respect to commercial logistics,

this topic has “not yet been sufficiently studied by academics and there is a wide field for

future research in this context.” Toyasaki and Wakolbinger (2014) developed perhaps the

first models of financial flows that captured the strategic interaction between donors and

humanitarian organizations using game theory and also included earmarked donations.

In this paper, we construct what we believe is the first Generalized Nash Equilibrium

(GNE) model for post-disaster humanitarian relief, which contains both a financial com-

ponent and a supply chain component. The Generalized Nash Equilibrium problem is a

generalization of the Nash Equilibrium problem (cf. Nash (1950, 1951)) in that the players’

strategies, as defined by the underlying constraints, depend also on their rivals’ strategies.

We utilize a network perspective and focus on decentralized decision-making due to the

competition among NGOs for financial funds from donations. Given that the number of

registered US nonprofit organizations increased from 12,000 in 1940 to more than 1.5 million

in 2012, competition for financial funds is clearly an important issue (cf. Muggy (2015)).

Moreover, individual decisions of NGOs as to the delivery of resources affect the entire

disaster relief system. For example, within three weeks following the 2010 Haiti earthquake

there were 1,000 NGOs operating in that country (Schear (2015)).

At the same time, as noted in Arnett and Zobel (2015), research has shown that non-

priority flows in the aftermath of disaster can exceed 50%. The flow of supplies, general

donations (solicited or unsolicited), and equipment that travels to the site of the disaster is

known as materiel convergence (Fritz and Mathewson (1957)). For example, weeks following

the 2004 tsunami, the Colombo airport in Sri Lanka was flooded with humanitarian cargo,

much of which was nonpriority cargo, which negatively impacted both airport operations and

created pressures on warehousing storage. Months afterwards, many of the items remained

unclaimed (Thomas and Fritz (2006)). Having superfluous supplies also poses hardship on

relief workers (see Hechmann and Bunde-Birouste (2007)). Holguin-Veras, Jaller, and Wach-

tendorf (2012), in turn, noted that post the Haiti 2010 earthquake, news media attention of

insufficient water supplies in Haiti resulted in massive donations of water to the Dominican

Red Cross, resulting in a depreciation of such local goods. Port-au-Price was also saturated

with both cargo and gifts-in-kind, so that shipments from the Dominican Republic had to

be halted for multiple days. Following the once in 1,000 year flood that hit South Carolina
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in mid October 2015, resulting in more than 19 deaths, a call for bottled water, resulted in

too much bottled water donated, shortly thereafter. As a consequence, rescue workers strug-

gled with surplus pallets of it (GoUpstate.com (2015)). The flood of donated inappropriate

materiel in response to a disaster is sometimes called the second disaster.

Importantly, our GNE model ensures that demands are met at demand points but not at

the expense of overprovision, which results in waste, and an ineffective allocation of resources

(Fritz and Mathewson (1957), Thomas and Fritz (2006)) and congestion (Haghani and Oh

(1996), Nagurney, Masoumi, and Yu (2015)). We accomplish this through the imposition

of common, that is, shared, constraints among the NGOs with respect to the amounts of

the relief item needed at the demand points, in the form of lower and upper bounds on the

demands. Such constraints may be imposed by a regulating body in the form of a government

or a higher level coordinating humanitarian organization.

The novelty of our GNE network framework captures the following:

1. The nongovernmental (NGO) relief organizations compete for financial funds from

donors who respond to the visibility of the organizations at the disaster points. Their utility

functions consist of a financial component and a supply chain component.

2. The NGOs, in addition to their individual constraints, face common upper and lower

bound demand constraints at each demand point so as to reduce both congestion and materiel

convergence, while satisfying the demand.

3. We demonstrate that the GNE model, because of its special structure, can be trans-

formed into an optimization problem, and one does not need to utilize, for example, qua-

sivariational inequality theory (cf. Bensoussan (1974), von Heusinger (2009), and Fischer,

Herrich, and Schonefeld (2014), and the references therein) for formulation, analysis, and

computations.

4. We provide an easy to implement and effective computational procedure, which yields

closed form expressions for the product flows and the Lagrange multipliers associated with

the supply and demand bound constraints at each iteration.

5. We illustrate our framework with numerical examples that demonstrate the benefits

of this framework vis a vis a purely Nash Equilibrium approach. In addition, we present a

theoretical case study based on Hurricane Katrina, the costliest natural disaster to strike

the United States.

The results in this paper contribute to both game theory frameworks for disaster relief
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as well as to the modeling of financial flow of funds in this public sector domain. Although

there is now a rich literature on financial networks in the profit sector (see, e.g., Nagurney

and Siokos (1997), Nagurney (2003), and Nagurney and Qiang (2009), and the references

therein), the nonprofit sector, in terms of financial networks, remains only minimally explored

research-wise to-date.

Our disaster relief game theory framework entails competition for donors as well as media

exposure plus supply chain aspects. Hence, we now highlight some of the related literature on

these topics. We begin first with the literature on donors and media. Natsios (1995) contends

that the cheapest way for relief organizations to fundraise is to provide early relief in highly

visible areas. Balcik et al. (2010) note that the media is a critical factor affecting relief

operations with NGOs seeking visibility to attract more resources from donors. They also

review the challenges in coordinating humanitarian relief chains and describe the current and

emerging coordination practices in disaster relief. Olsen and Carstensen (2003) confirmed

the frequently repeated argument that media coverage is critical in relation to emergency

relief allocation in a number of cases that they analyzed. Van Wassenhove (2006) also

emphasizes the role of the media in humanitarian logistics and states that following appeals

in the media, humanitarian organizations are often flooded with unsolicited donations that

can create bottlenecks in the supply chain. Zhuang, Saxton, and Wu (2014) develop a model

that reveals the amount of charitable contributions made by donors is positively dependent

on the amount of disclosure by the NGOs. They also emphasize that there is a dearth of

existing game-theoretic research on nonprofit organizations. Our model attempts to help

to fill this void. Toyasaki and Wakolbinger (2015) develop optimization models to analyze

whether an NGO should establish a special fund after an emergency (in terms of earmarked

donations) or allow only unearmarked donations.

We now highlight several references to the humanitarian supply chain literature, again,

emphasizing that our framework integrates both financial funding aspects and supply chain

aspects. We focus on optimization models in disaster relief since our model considers the

maximization of each NGO’s utility associated with the delivery of relief supplies. Haghani

and Oh (1996) construct a multicommodity, multimodal network flow model for disaster

relief and conclude that a nonlinear formulation that can handle congestion is needed. Our

model cost functions are nonlinear and our model is also network-based. Sheu (2007) fo-

cuses on quick response to disasters and introduced a hybrid fuzzy clustering-optimization

approach to emergency logistics operations co-distribution for urgent relief. Sheu (2010), sub-

sequently, presents a novel dynamic relief demand management model for emergency logistics

consisting of multiple steps and considers imperfect information. Tzeng, Cheng, and Huang
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(2007) use multi-objective programming for the design of a real case relief delivery system

with criteria consisting of total cost minimization, total travel time minimization, and the

maximization of the minimal satisfaction during the planning period. Balcik, Beamon, and

Smilowitz (2008) focus on last mile distribution and propose a mixed integer programming

model for the equitable allocation of resources. Vitoriano et al. (2011) propose a multicri-

teria model for humanitarian aid distribution with criteria of time of response, equity, and

security. Huang, Smilowitz, and Balcik (2012) also consider multiple objectives of efficiency,

efficacy, and equity and impacts on vehicle routing and resource distribution of their model.

Nagurney, Masoumi, and Yu (2015) construct a supply chain network optimization model

for a disaster relief organization in charge of obtaining, storing, transporting, and distribut-

ing relief items to disaster-prone regions. The system-optimization approach minimizes the

total operational costs on the links of the supply chain network subject to the uncertain

demand for aid at the demand points being satisfied as closely as possible. Nagurney and

Nagurney (2016), subsequently, develop a mean-variance disaster relief supply chain network

model with stochastic link costs and time targets for the delivery of the relief supplies at

the demand points, under demand uncertainty. Our model, in contrast to the above ones,

integrates both financial donation aspects and supply chain aspects and utilizes game theory.

We now discuss some additional relevant literature, focusing on the Generalized Nash

Equilibrium problem, which captures shared constraints among the players in a game, as

is the case for our model. The Generalized Nash Equilibrium problem dates to Debreu

(1952) and Arrow and Debreu (1954), although it was not termed as such. Rosen (1965)

formalized the definition of a normalized Nash Equilibrium, provided qualitative properties,

along with an algorithm. Bensoussan (1974), subsequently, formulated the GNE problem

as a quasivariational inequality. Gabay and Moulin (1980), focusing on Nash equilibria (cf.

Nash (1950, 1951)) in oligopolistic market settings, demonstrated that such problems, in

which the feasible set underlying each player in the game depends only on his strategies,

and not on the strategies of the other players, could be directly formulated as variational

inequality problems, whereas GNE problems could not. Interestingly, the Generalized Nash

Equilibrium problem did not gain attention until many years after its formulation, and this

may be due to the challenges in solving such problems and perhaps due to a lack of pressing,

relevant applications. In the late 1990s, GNE models were constructed for the energy sector,

following an increasing interest in this sector (see, e.g., Contreras, Klusch, and Krawczyk

(2004), Krawczyk (2005), and the references therein). For background on the GNE problem,

see von Heusinger (2009) and the recent review by Fischer, Herrich, and Schonefeld (2014). It

is worth noting that the state of the art for Generalized Nash Equilibrium problems in terms

of both models and algorithms is not as advanced as that for Nash Equilibrium problems,
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which, especially in the commercial supply chain context, have a rich literature (see Nagurney

(2006), Liu, Woolley, and Cruz (2012), Nagurney et al. (2013), and Toyasaki, Daniele, and

Wakolbinger (2014)). Muggy and Stamm (2014), in turn, provide an excellent review of game

theory in humanitarian operations and emphasize that there are many untapped research

opportunities for modeling in this area.

The paper is organized as follows. In Section 2, we develop the GNE model for human-

itarian relief post disasters. We assume that the NGOs compete and yet must satisfy the

demand at the demand points, in terms of shared lower and upper bound constraints. We

then show how the model can be transformed into an optimization problem. In addition,

we derive a variational inequality formulation for the optimization problem, which enables

the application of an effective and easy to implement algorithm. We also provide existence

and uniqueness results. In Section 3, we recall the Euler method (cf. Dupuis and Nagurney

(1993) and Nagurney and Zhang (1996)) and provide the closed form expressions of its re-

alization for our model for the product flows and the Lagrange multipliers associated with

the supply and demand constraints, at each iteration. In Section 4, we present numerical

examples to illustrate our framework. For completeness, we also compare the solutions ob-

tained to those for the Nash Equilibrium counterpart. In Section 5, we present a theoretical

case study based on Hurricane Katrina. In Section 6, we summarize our results, present our

conclusions, and provide suggestions for future research.
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2. The Generalized Nash Equilibrium Model for Humanitarian Relief

In this section, we develop a Generalized Nash Equilibrium model for post-disaster hu-

manitarian relief. We assume that there are m NGOs involved in providing disaster relief to

n different locations as represented by the network in Figure 1. We denote a typical NGO

by i; i = 1, . . . ,m, and a typical demand point by j; j = 1, . . . , n. In the network in Figure

1, the downward links connecting the NGO nodes with the demand point nodes represent

the relief item flows. These flows in our model correspond to a specific relief item, such

as water, food, or medicines, etc. Since the NGOs are competing we expect them to be

providing similar goods. In the case of heterogeneous items, we assume that the items can

be approximated by that of a homogeneous item type. The links connecting the demand

point nodes with node D represent the financial donations given by those who respond to

the public visibility of the NGOs at various demand points through their relief efforts. The

upward arrows from node D, which is a supersink node (see Nagurney and Dong (2002)), to

the NGO nodes represent the financial flows obtained by the individual NGOs following the

relief efforts. 1

The relief item flow from NGO i to demand point j is denoted by qij. We group the

nonnegative relief item flows from each i; i = 1, . . . ,m, into the vector qi ∈ Rn
+ and then we

group the relief item flows of all the NGOs to all the demand points into the vector q ∈ Rmn
+ .

Note that qi is the vector of strategies of NGO i.

We assume that each NGO i has, at its disposal, an amount si of the relief item that it

can allocate post-disaster. Hence, we have the following conservation of flow equation, which

must hold for each i; i = 1, . . . ,m:
n∑

j=1

qij ≤ si. (1)

In addition, we know that the product flows for each i; i = 1, . . . ,m, must be nonnegative,

that is:

qij ≥ 0, j = 1, . . . , n. (2)

Each NGO i encumbers a cost, cij, associated with shipping the relief items to location

1Hence, in terms of the sequence of events, the NGOs first decide on the level of relief items to be
provided at each demand point and deliver the amounts. Then they receive the corresponding financial
flows. Therefore, the financial flows are received after the supplies arrive. Empirically, these funds are
realized and made available quickly, and these two events are almost concurrent in many cases. Therefore, in
our model, we assume that the discount factor to be zero. The justification of this assumption is also provided
by the nature of the incentives of the decision-makers in our model, which is to provide humanitarian relief
as quickly as possible whenever a need arises.
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Ĵ

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

H
H

HHj?



























�

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
Z

Z
ZZ~?

�
�

�
�

�
�

�
�

�
�

�
�

�
��=

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

���

� II

����
D

Supersink Node

J
J

J
J

JĴ
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Figure 1: The Network Structure of the Game Theory Model

j, denoted by cij, where we assume that

cij = cij(qij), j = 1, . . . n, (3)

with these cost functions being strictly convex and continuously differentiable. These costs

also include transaction costs. Since we expect there to be congestion at the points of

demand, such assumptions are not unreasonable (see also Nagurney (1999)).

In addition, each NGO i; i = 1, . . . ,m, derives utility associated with providing the relief

items to j; j = 1, . . . , n, with its utility over all demand points given by
∑n

j=1 γijqij. Here γij

is a positive factor representing a measure of satisfaction/utility that NGO i acquires through

its supply chain activities to demand point j. Each NGO i; i = 1, . . . ,m, associates a positive

weight ωi with
∑n

j=1 γijqij, which provides a monetization of, in effect, this component of

the objective function. Such weight concepts are used in multicriteria decision-making; see,

e.g., Fishburn (1970), Chankong and Haimes (1983), Yu (1985), Keeney and Raiffa (1993),

and Nagurney and Toyasaki (2003) for an application to supply chains.

Finally, each NGO i; i = 1, . . . ,m, based on the media attention and the visibility of

NGOs at location j; j = 1, . . . , n, acquires funds from donors given by the expression

βi

n∑
j=1

Pj(q), (4)

where Pj(q) represents the financial funds in donation dollars due to visibility of all NGOs at
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location j. Hence, βi is a parameter that reflects the proportion of total donations collected

for the disaster at demand point j that is received by NGO i. Expression (4), therefore,

represents the financial flow on the link joining node D with node NGO i. Note that,

according to (4), there is competition among all the NGOs for financial donations. Also,

according to (4), an NGO may benefit from donations even through visibility of other NGOs

providing the product because of, for example, loyalty and support for a specific NGO. We

assume that the Pj functions are increasing, concave, and continuously differentiable. Hence,

we have positive but decreasing marginal utility of providing aid (in terms of the NGOs effect

on attracting donations).

We are now ready to formulate the optimization problem faced by each NGO. For addi-

tional background on utility functions for nonprofit and charitable organizations, see Rose-

Ackerman (1982) and Malani, Philipson, and David (2003). We will follow with the common

constraints.

Each NGO seeks to maximize its utility with the utility corresponding to the finan-

cial gains associated with the visibility through media of the relief item flow allocations,

βi

∑n
j=1 Pj(q), plus the utility associated with the supply chain aspect of delivery of the relief

items,
∑n

j=1 γijqij −
∑n

j=1 cij(qij). The optimization problem faced by NGO i; i = 1, . . . ,m,

is, hence,

Maximize βi

n∑
j=1

Pj(q) + ωi

n∑
j=1

γijqij −
n∑

j=1

cij(qij) (5)

subject to constraints (1) and (2).

Note that the above model, in the absence of any common constraints, is a Nash Equi-

librium problem, which we know can be formulated and solved as a variational inequality

problem (cf. Gabay and Moulin (1980) and Nagurney (1999)). However, the NGOs are faced

with several common constraints, which complexifies the problem and which also poses fur-

ther challenges in terms of formulation and computations. Later in this section, we establish

that, because of the special structure of the model, we can transform our Generalized Nash

Equilibrium model into an optimization problem and need not make use of quasivariational

inequalities (see von Heusinger (2009)).

The common constraints, which are imposed by an authority, such as a governmental one

or a higher level humanitarian coordination agency, ensure that the needs of the disaster

victims are met, while recognizing the negative effects of waste and material convergence.

These constraints are assumed to be common knowledge for the NGOs. The model is pre-

scriptive and the subsequent numerical examples and case study illustrate the benefits of the
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common constraints.

Specifically, we also have that, at each demand point j; j = 1, . . . , n:

m∑
i=1

qij ≥ dj, (6)

and
m∑

i=1

qij ≤ d̄j, (7)

where dj denotes a lower bound for the amount of the relief items needed at demand point

j and d̄j denotes an upper bound on the amount of the relief items needed post the disaster

at demand point j.

Expressions (6) and (7) provide flexibility for a regulatory or coordinating body, as it is

unlikely that the demand for the relief items will be precisely known in a disaster situation.

It is, however, reasonable to assume that, as represented in these equations, estimations for

total demand for relief items will be available at the local level.

We assume that
m∑

i=1

si ≥
n∑

j=1

dj, (8)

so that the supply resources of the NGOs are sufficient to meet the minimum financial re-

source needs at all the demand points following the disaster. Hence, we assume prepositioning

of supplies so that they are in stock and available. As noted in Roopanarine (2013), propo-

sitioning of supplies can make emergency relief more effective and this is a strategy followed

not only by the UNHRD (United Nations Humanitarian Response Depot) but also by the

Red Cross and even some smaller relief organizations such as AmeriCares. Indeed, Gatignon,

Van Wassenhove, and Charles (2010) also reported on the benefits of proper prepositioning

of supplies in the case of the International Federation of the Red Cross (IFRC) in terms of

cost reduction and a more timely response.

Hence, each NGO i; i = 1, . . . ,m, seeks to determine its optimal vector of relief items

or strategies, q∗i , that maximizes objective function (5), subject to constraints (1), (2), and

(6), (7). This is the Generalized Nash Equilibrium problem for our humanitarian relief post

disaster problem.

Theorem 1: Optimization Formulation of the Generalized Nash Equilibrium

Model of Financial Flow of Funds
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The above Generalized Nash Equilibrium problem, with each NGO’s objective function (5),

can be rewritten as:

Minimize − βi

n∑
j=1

Pj(q)− ωi

n∑
j=1

γijqij +
n∑

j=1

cij(qij) (9)

and subject to constraints (1) and (2), with common constraints (6) and (7), is equivalent

to the solution of the following optimization problem:

Minimize −
n∑

j=1

Pj(q)−
m∑

i=1

n∑
j=1

ωiγij

βi

qij +
m∑

i=1

n∑
j=1

1

βi

cij(qij) (10)

subject to constraints: (1), (2), (6), and (7).

Proof: We observe that the above Generalized Nash Equilibrium problem consists of a sepa-

rable term for each decision-maker or player, NGO i in the game, given by: −ωi

∑n
j=1 γijqij +∑n

j=1 cij(qij), as well as a common parameterized term across all decision-makers or NGOs,

given by:
∑n

j=1 Pj(q), with the parameter βi being distinct for each NGO i; i = 1, . . . ,m.

Hence, it is precisely of the general structure considered in Li and Lin (2013). An application

of Theorem 2.3 therein, which established that the normalized stationary point of the GNE

problem coincides with the stationary point of the optimization problem, of the form above

for our model, yields the result. 2

Following the proof of Theorem 1, we have added the following paragraph: We know that

(5) is equivalent to (9). Moreover, the structure of (9), which has a separability feature in

that the second and third terms are specific for each NGO, but the first term for each NGO i;

i = 1, . . . ,m, consists of a common term Pj(q) and differs from one NGO to another only by

its coefficient βi is precisely of the structure of the Generalized Nash Equilibrium problems

considered by Li and Lin (2013), which can be transformed into optimization problems by

extending the normalized equilibrium concept to the stationarity sense, as they have done.

Remark: Existence and Uniqueness

A solution q∗ of product flows to the above optimization problem for humanitarian relief

is guaranteed to exist since the objective function consists of continuous functions and the

feasible set comprised of the constraints is compact. Moreover, under the assumptions that

the functions Pj, ∀j, are concave, and the functions cij(qij) are strictly convex for all i, j,

since we know that −ωiγij

βi
qij are convex for all i, j, the objective function (10) is strictly

convex, and, hence, uniqueness of the product flow pattern q∗ is also guaranteed.

12



In order to solve this problem, we can use the following variational inequality formulation

of the above optimization problem, since this will allow us to apply the Euler method (cf.

Dupuis and Nagurney (1993) and Nagurney and Zhang (1996)), which yields closed form

expressions in the financial flows and Lagrange multipliers associated with the supply and

the lower bound and upper bound demand constraints.

Variational Inequality Formulation

Specifically, it is straightforward to verify (see also Kinderlehrer and Stampacchia (1980)

and Nagurney (1999, 2006)) that the solution q∗ with associated Lagrange multipliers λ∗k;

k = 1, . . . ,m, for the supply constraints, the Lagrange multipliers: λ1
l
∗
; l = 1, . . . , n, for

the lower bound demand constraints, and the Lagrange multipliers: λ2
l
∗
; l = 1, . . . , n, for

the upper bound demand constraints, can be obtained by solving the variational inequality

problem: determine (q∗, λ∗, λ1∗, λ2∗) ∈ Rmn+m+2n
+ such that

m∑
k=1

n∑
l=1

[
−

n∑
j=1

(
∂Pj(q

∗)

∂qkl

)− ωkγkl

βk

+
1

βk

∂ckl(q
∗
kl)

∂qkl

+ λ∗k − λ1
l
∗
+ λ2

l
∗
]
× [qkl − q∗kl]

+
m∑

k=1

(sk −
n∑

l=1

q∗kl)× (λk − λ∗k) +
n∑

l=1

(
n∑

k=1

q∗kl − dl)× (λl − λ1
l
∗
)

+
n∑

l=1

(d̄l −
m∑

k=1

q∗kl)× (λ2
l − λ2

l
∗
) ≥ 0, ∀(q, λ, λ1, λ2) ∈ Rmn+m+2n

+ , (11)

where λ is the vector of Lagrange multipliers: (λ1, . . . , λm), λ1 is the vector of Lagrange

multipliers: (λ1
1, . . . , λ

1
n), and λ2 is the vector of Lagrange multipliers: (λ2

1, . . . , λ
2
n).

We now put variational inequality (11) into standard variational inequality form (see

Nagurney (1999)), that is: determine X∗ ∈ K ⊂ RN , such that

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (12)

where F is a given continuous function from K to RN , K is a closed and convex set, with

both the vectors F (X) and X being column vectors, and N = mn + m + 2n.

We define the (mn + m + 2n)-dimensional column vector X ≡ (q, λ, λ1, λ2) and the

(mn+m+2n)-dimensional column vector F (X) ≡ (F 1(X), F 2(X), F 3(X), F 4(X)) with the

(k, l)-th component, F 1
kl, of F 1(X) given by

F 1
kl(X) ≡ −

n∑
j=1

(
∂Pj(q)

∂qkl

)− ωkγkl

βk

+
1

βk

∂ckl(qkl)

∂qkl

+ λk − λ1
l + λ2

l , (13)
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the k-th component, F 2
k , of F 2(X) given by

F 2
k (X) ≡ sk −

n∑
l=1

qkl, (14)

the l-th component, F 3
l , of F 3(X) given by

F 3
l (X) ≡

n∑
k=1

qkl − dl, (15)

and the l-th component, F 4
l , of F 4(X) given by

F 4
l (X) ≡ d̄l −

m∑
k=1

qkl, (16)

with the feasible set K ≡ Rmn+m+2n
+ . Then, clearly, variational inequality (11) can be put

into standard form (12).

3. The Algorithm

Variational inequality (12); equivalently, variational inequality (11), can be solved via the

Euler method of Dupuis and Nagurney (1993), which, at each iteration, yields closed form

expressions for the financial flows and the Lagrange multipliers.

Specifically, iteration τ of the Euler method, where the variational inequality (11) is

expressed in standard form (12), is given by:

Xτ+1 = PK(Xτ − aτF (Xτ )), (17)

where PK is the projection on the feasible set K and F is the function that enters the

variational inequality problem (12), where recall that X ≡ (q, λ, λ1, λ2) and F (X) consists

of the components as defined in (13) – (16).

As established in Dupuis and Nagurney (1993), for convergence of the general iterative

scheme, which induces the Euler method, the sequence {aτ} must satisfy:
∑∞

τ=0 aτ = ∞,

aτ > 0, aτ → 0, as τ → ∞. Conditions for convergence for a variety of network-based

problems can be found in Nagurney and Zhang (1996) and Nagurney (2006).

Explicit Formulae for the Euler Method Applied to the Game Theory Model

The elegance of this algorithm for our variational inequality (17) for the computation of

solutions to our game theory model lies in the following explicit formulae. In particular, we
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have the following closed form expression for the product flows k = 1, . . . ,m; l = 1, . . . , n, at

each iteration:

qτ+1
kl = max{0, {qτ

kl + aτ (
n∑

j=1

(
∂Pj(q

τ )

∂qkl

) +
ωkγkl

βkl

− 1

βk

∂ckl(q
τ
kl)

∂qkl

− λτ
k + λ1

l
τ − λ2

l
τ
)}, (18)

the following closed form expressions for the Lagrange multipliers associated with the supply

constraints, respectively, for k = 1, . . . ,m:

λτ+1
k = max{0, λτ

k + aτ (−sk +
n∑

l=1

qτ
kl)}, (19)

the following closed form expressions for the Lagrange multipliers associated with the lower

bound demand constraints, respectively, for l = 1, . . . , n:

λ1
l
τ+1

= max{0, λ1
l
τ

+ aτ (−
n∑

k=1

qτ
kl + dl)}, (20)

andthe following closed form expressions for the Lagrange multipliers associated with the

upper bound demand constraints, respectively, for l = 1, . . . , n:

λ2
l
τ+1

= max{0, λ2
l
τ

+ aτ (−d̄l +
m∑

k=1

qτ
kl)}, (21)

In the next Section, we apply the Euler method to computer solutions to numerical

examples.

4. Numerical Examples

In this Section, we present numerical examples to illustrate our Generalized Nash Equi-

librium framework. The Euler method was implemented in FORTRAN and the system uti-

lized for the computations was a Linux system at the University of Massachusetts Amherst.

The sequence {aτ} that we used and which satisfies the requirements for convergence was:

.1(1, 1
2
, 1

2
.1
3
, 1

3
, 1

3
, ...}. We initialized the Euler method with all the initial relief item flows

equal to 1 and all the Lagrange multipliers equal to zero. The Euler method was deemed

to converge when the absolute value of all the relief item flows and Lagrange multipliers

differed from one iteration to the next by no more than 10−5.

Example 1

The first example consists of two NGOs and a single demand point, as depicted in Figure 2
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Figure 2: The Network Topology for Example 1

The data are as follows:

ω1 = 1, ω2 = 2,

γ11 = 1000, γ21 = 400,

c11(q11) = q2
11 + 10q11, c21(q21) = q2

21 + 20q21.

Hence, NGO 2 is located further from the demand point for the relief items than NGO

1. Also, these functions are nonlinear to capture congestion. Also, NGO 1 derives greater

utility from providing for the victims than NGO 2.

In this example,

P1(q) = 5

√√√√ 2∑
i=1

qi1,

with

β1 = .5, β2 = .5.

Therefore, the donors split the donations equally between the two NGOs.

NGO 1 has a supply s1 = 10000 whereas NGO 2 has a supply s2 = 20000.

The lower bound for the demand is d1 = 500 and the upper bound is d̄1 = 600.

The computed equilibrium solution is:

q∗11 = 352.5, q∗21 = 247.5,

so that total amount of supplies shipped to the demand point is 600.0. Note that this amount

is at the upper bound of the demand.
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Also, the computed equilibrium Lagrange multipliers are:

λ∗1 = 0.00, λ∗2 = 0.00,

and

λ1
1
∗

= 0.00, λ2
1
∗

= 570.0.

NGO 1 receives a utility of: 224786.4 and NGO 2 receives a utility of: 131860.6.

The total donations, that is, the financial flows from the demand points to node D in

Figure 2 are 122.48, with 61.24 of these flowing back to NGO 1 and the same amount flowing

back to NGO 2.

We then proceeded to compute the solution to the Nash Equilibrium counterpart of

this model, which has the same utility functions, supply constraints, and nonnegativity

constraints on the relief item flows but no upper bound and lower bound demand constraints

(which recall are the shared constraints imposed by a higher regulatory or coordinating body

to reduce materiel convergence, for example, and to minimize waste). This model can also be

solved using the Euler method. Indeed, one just eliminates Steps (20) and (21) and removes

the Lagrange multipliers associated with the demand bounds in expression (18). The so-

modified Step (18) and Step (19) then can be applied to compute the Nash Equilibrium

solution as we have done.

The Nash Equilibrium solution is:

q11 = 495.0, q21 = 390.0,

with the total amount of the relief item shipped to the demand point equal to 885.0. Note

that, without the demand bounds, each NGO provides more than 140% of the relief item

under the Nash Equilibrium solution than it does under the Generalized Nash Equilibrium

solution. There is an excess of 285 units of the relief item, which demonstrates the benefit

of the Generalized Nash Equilibrium approach. Not surprisingly, the NGOs enjoy a higher

utility with NGO 1 having a utility of 2450899.4 under the Nash Equilibrium concept and

NGO 2 having a utility of 152174.4. The total amount of financial donations is now 148.75

with 74.37 flowing to NGO 1 and the same amount to NGO 2.

Example 2

Example 2 is constructed from Example 1 and has the same data except for the added data

corresponding to Demand Point 2, which represents a new location that the two NGOs have

found out also needs supplies for relief. The network topology is as depicted in Figure 3.
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Figure 3: The Network Topology for Example 2

The new data are:

γ12 = 1000, γ22 = 400,

c12(q12) = q2
12 + 20, c22(q22) = q2

22 + 30.

Note that Demand Point 2 is further away from both NGOs than is Demand Point 1.

Also, we have that

P2(q) = 6

√√√√ 2∑
i=1

qi2

and

d2 = 700, d̄2 = 800.

Hence, the lower and upper bounds for the demand at Demand Point 2 are higher than those

for Demand Point 1.

The Euler method yields the following equilibrium solution:

q∗11 = 352.5, q∗12 = 452.5, q∗21 = 247.5, q∗22 = 347.5,

with equilibrium Lagrange multipliers:

λ∗1 = 0.00, λ∗2 = 0.00,

λ1
1
∗

= 0.00, λ1
2
∗

= 0.00, λ2
1
∗

= 570.0, λ2
2
∗

= 150.1.

The total amount of relief item shipments to Demand Point 1 is: 600 and to Demand

Point 2: 800. Both these demands are at the respective upper bounds for the demand at

those demand points.
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The utility of NGO 1 is: 463565.4 and that of NGO 2: 278764.6.

The total financial donations that flow from the demand point nodes to node D in Figure

3 are: 292.19 with half flowing back to NGO 1 and half to NGO 2.

As in Example 1, we then proceeded to compute the solution to the Nash Equilibrium

counterpart for this example.

The Nash Equilibrium flow pattern is:

q11 = 495.0, q12 = 490.0, q21 = 390.0, q22 = 385.0.

The amount of supplies shipped to Demand Point 1 is: 885.0 and the amount shipped

to Demand Point 2 is: 875.0. These shipments exceed the demand upper bounds by a large

margin, demonstrating, again, that NGOs may oversupply materiel to victims post a disaster

if interventions such as regulations or enhanced coordination are lacking. The total amount

of donations is: 326.24, with half going to NGO 1 and half to NGO 2.

Example 3

The third example has the topology given in Figure 4. The data are as in Example 2 but

with new data added for the third demand point. Hence, there are two NGOs in this example

and three demand points.
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Figure 4: The Network Topology for Example 3

The new data are:

γ13 = 700, γ23 = 300,

and since Demand Point 3 is closer to the two NGOs than the other two demand points, the
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transportation cost functions to the third demand point are:

c13(q13) = q2
13 + 5, c23(q23) = q2

23 + 10.

Also, we have that:

P3(q) = 10

√√√√ 2∑
i=1

qi2

and

d2 = 1000, d̄2 = 1500.

Hence, the demand range is larger at Demand Point 3 than at the other two demand points

and the values of the bounds are also higher signifying a greater need for relief supplies there.

Also, we modified the βi parameters so that now the NGOs do not get an equal allocation

of the donations:

β1 = .25, β2 = .75.

The Euler method yields the following equilibrium relief item flow solution:

q∗11 = 423.8, q∗12 = 471.3, q∗13 = 436.9,

q∗21 = 176.3, q∗22 = 328.8, q∗23 = 563.1,

and the following Lagrange multipliers:

λ∗1 = 0.00, λ∗2 = 0.00,

λ1
1
∗

= 0.00, λ1
2
∗

= 0.00, λ1
3
∗

= 714.8,

λ2
1
∗

= 570.0, λ2
2
∗

= 150.1, λ2
3
∗

= 0.00.

Interestingly, the shipments to Demand Point 1 are at the demand upper bound as are

those to Demand Point 2. However, the relief item shipments to Demand Point 3 are at the

demand lower bound for that demand point.

NGO 1 has a utility of 592620.44 whereas NGO 2 has a utility of 267093.16. The total

amount of financial funds given by donors is: 608.41, with NGO 1 receiving 152.1 and NGO

2 receiving 456.3.

The Nash Equilibrium solution is the following:

q∗11 = 495.0, q∗12 = 490.0, q∗13 = 347.5,

q∗21 = 390.0, q∗22 = 385.0, q∗23 = 295.1.
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Interestingly, there is an oversupply of relief items at Demand Points 1 and 2. However,

there is an undersupply of relief items at Demand Point 3 since the lower bound there was

1000 and only 642.6 were delivered. Also, interestingly, the total donations drop and are

now: 579.7, with NGO 1 receiving 144.9 and NGO 2 receiving 434.8. This example illustrates

that imposed shared constraints clearly benefits victims of a disaster and can even help the

NGOs in terms of financial donations, as this example reveals.

Example 4

Example 4 was constructed from Example 3 to show that the framework can be used in the

case that the demands at all the demand points are known. The algorithm (and model) can

handle such a situation by just having each demand point lower bound equal to the upper

bound, which is equal to the fixed demand.

Hence, for Example 4, we doubled the upper bounds for each demand point and set the

demand lower bounds to the midpoint of the respective demand bounds in Example 3 so

that:

d1 = 550, d̄1 = 550, d2 = 750, d̄2 = 750, d3 = 1250, d̄3 = 1250.

The Euler method yields the following equilibrium relief item flow solution:

q∗11 = 411.3, q∗12 = 458.8, q∗13 = 499.4,

q∗21 = 138.8, q∗22 = 291.3, q∗23 = 750.6.

The total donations are now: 635.12 with NGO 1 receiving 158.78 and NGO 2 receiving

476.34. The utility of NGO 1 is 574991.2 and that of NGO 2: 108392.6.

5. A Case Study on Hurricane Katrina

In this section, we demonstrate further the model by presenting a theoretical case study

on Hurricane Katrina, the costliest disaster in the history of the United States (U.S. House

of Representatives (2006)). Making landfall in August of 2005, Katrina caused extensive

damages to property and infrastructure, left 450,000 people homeless, and took 1,833 lives

in Florida, Texas, Mississippi, Alabama, and Louisiana (Louisiana Geographic Information

Center (2005)). Given the hurricane’s trajectory, most of the damage was concentrated in

Louisiana and Mississippi. In fact, 63% of all insurance claims were in Louisiana, a trend

that is also reflected in FEMA’s post-hurricane damage assessment of the region (FEMA

(2006)). The total damage estimates range from $105 billion (Louisiana Geographic Infor-

mation Center (2005)) to $150 billion (White (2015)), making Hurricane Katrina not only
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a far-reaching and costly disaster, but also a very challenging environment for providing

humanitarian assistance.

In Louisiana alone, over 1.3 million people were affected, with Katrina being responsi-

ble for 300,000 jobs lost, 200,000 people left homeless, and over 1,500 fatalities (Louisiana

Geographic Information Center (2005)). For comprehensive studies on the impacts of Hurri-

cane Katrina in Louisiana, we refer the reader to Louisiana Geographic Information Center

(2005), U.S. House of Representatives (2006), FEMA (2006), and Logan (2006). In addition,

Erikson and Peek (2011) provide a bibliography on Hurricane Katrina research that includes

topics ranging from its effects on children and schools to healthcare and even media.

Unfortunately, the U.S. government’s response to Hurricane Katrina was insufficient and

was widely criticized by media outlets (cf. Moynihan (2009)). In fact, the criticism towards

the government’s, and, in particular, FEMA’s response, was so strong, that Congress cre-

ated the Select Bipartisan Committee to Investigate the Preparation for and Response to

Hurricane Katrina. In its final 2006 report (see U.S. House of Representatives (2006)), the

Committee goes as far as saying that “if 9/11 was a failure of imagination, then Katrina was

a failure of initiative. It was a failure of leadership.” Interestingly enough, that same report

provides a list of failures including inadequate infrastructure and planning, inefficient and

late execution of the National Response Plan, a general lack of coordination, and even that

charitable organizations faced challenges due to the scale of the disaster, inadequate logis-

tics, and disorganized processes. Indeed, the Congressional report points out what our game

theoretical model for post-disaster humanitarian relief predicts: that a lack of coordination

in humanitarian operations can lead to inefficient supply chain operations, which have a

direct effect on the vulnerable population. For this reason, the rest of this section analyzes

the nongovernmental sector’s response to Hurricane Katrina through the model developed

in Section 2.

Before describing the implementation of the model to Hurricane Katrina, we note that

governmental analyses and qualitative accounts published by the media suggest that the ac-

tual behavior of decision-makers can be described with good precision based on the proposed

framework, which includes both a Generalized Nash Equilibrium model and, in the absence

of common constraints, a Nash Equilbrium model. For example, The New York Times re-

ported that the Red Cross mismatched supplies with the victim’s needs; thereby, leading

to obsolete inventory (Strom (2006)). Similarly, there was extensive media coverage during

the response phase, propelling donations to NGOs providing aid to record numbers, with

estimates ranging from three to four billion dollars (U.S. House of Representatives (2006)).
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The Generalized Nash Equilibrium formulation for the humanitarian response to Hurri-

cane Katrina follows the same general functional form as in the examples provided in Section

4, though it requires a few additional assumptions. Given the limited amount of data on

the donations received by NGOs for their response to Hurricane Katrina or the cash that

they had available at the time, we assume that NGOs had an initial supply equal to the

donations that they received. For example, the Red Cross and the Salvation Army received

$2.2 billion (American Red Cross (2010)) and $382 million (The Salvation Army Interna-

tional (2015)), respectively. We group the rest of the donations as a third player, termed,

‘Others’, that plays the role of all other NGOs for which data is not readily available. While

we previously stated that the donations are made available after the NGOs decide on their

strategic variables qi; i = 1, . . . ,m, the fact that donations are received in a short period

of time allows for, the purpose of exposition, that nonprofits had the capacity to provide at

least that amount in aid.

As far as demand is concerned, there are some limitations in the data that was made public

through governmental agencies and other reports. The most obvious of these limitations is

the lack of a temporal component to the estimates; that is to say, that the reported figures of

$150 billion and $105 billion do not specify how much of that need corresponds to emergency

relief in the immediate aftermath of Hurricane Katrina. Hence, in order to estimate the

upper and lower bounds on the demand one must first estimate the proportion of total

needs corresponding to humanitarian emergency relief. According to an analysis conducted

by the Greater New Orleans Community Center (cf. Plyer (2013)), the U.S. government

allocated roughly $75 billion to emergency relief and $45 billion to the areas affected by

Hurricane Katrina. Under the assumption that the proportion the government allocated to

emergency relief is representative of the total of emergency relief needs, we estimate that the

total amount of emergency relief needed for Hurricane Katrina is approximately $94 billion

dollars. Given that the government allocated $75 billion for emergency relief, nonprofit

organizations are left with a gap of $18.75 billion dollars in needed emergency relief.

The next consideration that needs to be made is concerning the allocation of these needs

to specific geographic locations. One way to do this is to calculate the per-capita need and

then use population densities to estimate the demand at each location. According to the

National Academy of the Sciences, a total of 1.7 million people were affected by Hurricane

Katrina, which computes to a demand of 11,029.41 in emergency relief per capita (Goldman

and Coussens (2007)). However, due to the fact that people are evacuated from compromised

areas, one cannot assume that the populations are the same in the immediate aftermath of

the disaster. Instead, a better estimate of the demand can be made by calculating the amount
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of people who stay and multiplying it by the per-capita demand. Recall that the demand

levels are disseminated by the coordinating authority, which implies that they can only use

data on historical evacuation rates to estimate the demand at different geographies for this

disaster. At this point, the analysis is limited by the availability of data. Nevertheless, the

state of Louisiana, where most of the damage was sustained by Hurricane Katrina, conducted

a study after Hurricane Ivan, roughly 1 year before Katrina. While this satisfies the logical

requirements outlined above, complete data is only available for 10 Parishes in Louisiana

and no data is available for the other affected states (Howell and Bonner (2005)). Despite

the limitations due to the lack of granular data, using these data still provides a reasonable

use-case for the model, considering that 63% of the total damages were in Louisiana.

Under the above stated conditions, one can construct upper and lower demand estimates.

Since the evacuation rates were estimated by sampling a population and the report provides

the number of people interviewed, one can construct a confidence interval to estimate the

amount of people who evacuated the region. Thus, upper bound demand is calculated by

multiplying the per-capita demand by the base population density, obtained through the

Census Bureau, at a demand point minus the lower tail of a 99% confidence interval. The

lower bound demand estimate is then calculated in a similar manner.

We assume that the Pj(q) functions for j = 1, . . . , 10, take on the same form as they

did in the previous numerical examples; that is, Pj(q) = kj

√∑m
i qij. Such functions are

concave and continuously differentiable. Although there is no clear way in which to estimate

these coefficients due to the lack of granular data, certain assumptions can be made for

these coefficients. First, we wish to select kj such that the total donations made available

are approximately $4 billion and such that the NGOs decide to provide flows qij that result

in the donations observed in actuality. The parameters kj; j = 1, . . . , n, have to be chosen

in a way that the demand points that were likely to receive more media attention have

higher coefficients. These coefficients were changed until this behavior was observed, while

ensuring that demand point with higher damages and populations had the largest values.

A summary of these estimates is given in Table 1 with how the parameters were obtained

described further below. The pj term in Table 1 for j = 1, . . . , 10, denotes the percentage

of homes with major or severe damage, as given by FEMA estimates, for demand point j.

Also, the network representation for the Hurricane Katrina case study, consisting of three

NGOs and ten demand points, is depicted in Figure 5.

The Generalized Nash Equilibrium problem for humanitarian relief; therefore, has upper
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Hurricane Katrina Demand Point Parameters
Parish Demand Node j kj dj d̄j pj (in %)
St. Charles 1 8 16.45 50.57 2.4
Terrebonne 2 16 752.26 883.82 6.7
Assumption 3 7 106.36 139.24 1.9
Jefferson 4 29 742.86 1,254.89 19.5
Lafourche 5 6 525.53 653.82 1.7
Orleans 6 42 1,303.99 1,906.80 55.9
Plaquemines 7 30 33.28 62.57 57.5
St. Barnard 8 42 133.61 212.43 78.4
St. James 9 9 127.53 166.39 1.2
St. John the Baptist 10 7 19.05 52.59 6.7

Table 1: Demand Point Data for the Generalized Nash Equilibrium Problem for Hurricane
Katrina
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Figure 5: Hurricane Katrina Relief Network Structure

and lower bounds on the demand points for which the State of Louisiana could have reason-

ably had estimates at the time of Katrina, as in Table 1, in millions of aid-units. In addition,

we assume that the three NGOs in the game, the Red Cross, the Salvation Army, and Others,

have supply levels equal to the donations that they actually received for Hurricane Katrina

in millions of dollars. In addition, we assume that all three players derive the same utility of

γij = 950 from providing aid to the different Parishes and that ω1 = ω2 = ω3 = 1. Since there

is limited data, there is no concrete way in which to estimate differences in these parameters

and it is best to assume that the NGOs value helping people equally. For this example, the
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coefficients for βi are calculated as the percentage of total donations received, as summarized

in Table 2.

Data Parameters for NGOs Providing Aid
NGO Name NGO Node

i
πi γij βi si

Others 1 .82 950 .355 1,418
Red Cross 2 .83 950 .55 2,200
Salvation Army 3 .81 950 .095 382

Table 2: NGO Data for the Generalized Nash Equilibrium Problem for Hurricane Katrina

We then estimate the cost of providing aid to the Parishes as a function of the total

damage in the area and the supply chain efficiency of each NGO. We assume that these

costs follow the structures observed by Van Wassenhove (2006) and randomly generate a

number based on his research with a mean of p̂ = .8 and standard deviation of s =
√

.8(.2)
3

.

We denote the corresponding coefficients by πi. Thus, each NGO i; i = 1, 2, 3, incurs costs

according the the following functional form:

cij(qij) =
(
πiqij +

1

1− pj

)2
.

The models in this section were solved using SAS Studio to demonstrate that optimization

software can also be used, given our reformulation. The tolerance for convergence of the

nonlinear programming solver was set to 10−7.

The computed flow pattern solution of the Generalized Nash Equilibrium problem for

humanitarian relief for Hurricane Katrina is given in Table 3.

Generalized Nash Equilibrium Product Flows
Demand Point Others Red Cross Salvation Army
St. Charles 17.48 28.89 4.192
Terrebonne 267.023 411.67 73.57
Assumption 49.02 77.26 12.97
Jefferson 263.69 406.68 72.45
Lafourche 186.39 287.96 51.18
Orleans 463.33 713.56 127.1
Plaquemines 21.89 36.54 4.23
St. Barnard 72.31 115.39 16.22
St. James 58.67 92.06 15.66
St. John the Baptist 18.2 29.99 4.40

Table 3: Flows to Demand Points under Generalized Nash Equilibrium
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The total utility obtained through the above flows for the Generalized Nash Equilibrium

for Hurricane Katrina is 9, 257, 899, with the Red Cross capturing 3,022,705, the Salvation

Army 3,600,442.54, and Others 2,590,973. It is interesting to see that, despite having the

lowest available supplies, the Salvation Army is able to capture the largest part of the total

utility. This is due to the fact that the costs of providing aid grow at a nonlinear rate, so even

if the Salvation Army was less efficient and used all of its available supplies, it will not be

capable of providing the most expensive supplies. In addition, we have that the Red Cross,

the Salvation Army, and Others receive 2,200.24, 1418.01, and 382.31 million in donations,

respectively. Also, notice how the flows meet at least the lower bound, even if doing so is

very expensive due to the damages to the infrastructure in the region. Furthermore, the

above flow pattern behaves in a way that, after the minimum requirements are met, any

additional supplies are allocated in the most efficient way. For example, only the minimum

requirements are met in New Orleans Parish, while the upper bound is met for St. James

Parish.

If we then remove the shared constraints from the optimization problem for Hurricane

Katrina, we can compare the outcomes of the humanitarian relief efforts for Hurricane Kat-

rina, as we have also done for the previous numerical examples. The results are reported in

in Table 4.

Under the Nash Equilibrium, the NGOs also obtain a higher utility than under the

Generalized Nash Equilibrium. Specifically, of the total utility 10, 346, 005.44, 2,804,650

units are received by the Red Cross, 5,198,685 by the Salvation Army, and 3,218,505 are

captured by all other NGOs. Under this product flow pattern, there are total donations of

3,760.73, of which 2,068.4 are donated to the Red Cross, 357.27 to the Salvation Army, and

1,355 to the other players. It is immediately clear that there is a large contrast between

the flow patterns under the Generalized Nash and Nash Equilibria. For example, the Nash

Equilibrium flow pattern results in about $500 million less in donations. While this has strong

implications about how collaboration between NGOs can be beneficial for their fundraising

efforts, the differences in the general flow pattern highlights a much stronger point.

Under the Nash Equilibrium, NGOs successfully maximize their utility. Overall, the Nash

Equilibrium solution leads to an increase of utility of roughly 21% when compared to the

flow patterns under the Generalized Nash Equilibrium. But they do so at the expense of

those in need. In the Nash Equilibrium, each NGO chooses to supply relief items such that

costs can be minimized. On the surface, this might be a good thing, but recall that, given

the nature of disasters, it is usually more expensive to provide aid to demand points with

the greatest needs. With this in mind, one can expect oversupply to the demand points
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Nash Equilibrium Product Flows
Demand Point Others Red Cross Salvation Army
St. Charles 142.51 220.66 38.97
Terrebonne 142.50 220.68 38.93
Assumption 142.51 220.66 38.98
Jefferson 142.38 220.61 38.74
Lafourche 142.50 220.65 38.98
Orleans 141.21 219.59 37.498
Plaquemines 141.032 219.28 37.37
St. Barnard 138.34 216.66 34.59
St. James 142.51 220.65 38.58
St. John the Baptist 145.51 220.66 38.98

Table 4: Flows to Demand Points under Nash Equilibrium

with lower demand levels, and undersupply to the most affected under a purely competitive

scheme. This behavior can be seen explicitly in the results summarized in Table 4. For

example, St. Charles Parish receives roughly 795% of its upper demand, while Orleans

Parish only receives about 30.5% of its minimum requirements. That means that much

of the 21% in ‘increased’ utility is in the form of waste. In contrast, the flows under the

Generalized Nash Equilibrium guarantee that minimum requirements will be met and that

there will be no waste; that is to say, as long as there is a coordinating authority that can

enforce the upper and lower bound constraints, the humanitarian relief flow patterns under

this bounded competition will be significantly better than under untethered competition.

In addition, changes to the values in the functional form result in changes in the product

flows, but the general behavioral differences are robust to changes in the coefficients: βi, γij,

kj, ∀i, j, and the bounds on upper and lower demand estimates.

In this section, we implemented the Generalized Nash Equilibrium Model for humanitar-

ian relief developed in Section 2 to a case study on Hurricane Katrina. Through the earlier

examples as well as the case study, we were able to observe the behavioral and numerical dif-

ferences between the Generalized and Nash Equilibrium models. In addition, these examples

provided both quantitative and qualitative reasons to conclude that the Generalized Nash

Equilibrium flow patterns, although still operating under competition, are socially preferable

to those under a Nash Equilibrium.

6. Summary, Conclusions, and Suggestions for Future Research

In this paper, we presented a network model consisting of multiple NGOs who seek

to supply multiple demand points with relief items post a disaster. Each NGO is faced
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with a utility function that has a supply chain component and a financial funds component

associated with donations post the disaster. The NGOs compete for financial funds and

visibility at the demand points and are subject to common, that is, shared, constraints in

the form of upper and lower bounds for the demands at the demand points. Such constraints

can reduce materiel convergence and even congestion associated with the demand points.

The model is a Generalized Nash Equilibrium model. We demonstrate that the equilibrium

problem can be transformed into an optimization problem because of its special structure,

which means that we do not need to make use of quasivariational inequality theory. Existence

of a solution is guaranteed and conditions for uniqueness given.

We provide an algorithm for the solution of the model, which yields closed form ex-

pressions for the relief item flows and the Lagrange multipliers associated with the supply

constraints and the demand bound constraints at each iteration. The algorithm is then

applied to compute solutions to numerical examples and the solutions compared to those

obtained in a pure Nash Equilibrium, in which the demand bound constraints are removed.

Through numerical examples and a case study on Hurricane Katrina, we show how the

Generalized Nash Equilibrium, which includes demand lower and upper bounds at demand

points, is capable of improving the results under a Nash Equilibrium, by reducing congestion

and eliminating the possibility of undersupply and material convergence.

This is the first Generalized Nash Equilibrium model developed for humanitarian relief

and, hence, this work adds to the growing literature on game theory in humanitarian oper-

ations. Another novelty of our framework is that both supply chain aspects and financial

funding aspects are explicitly included.

When comparing the outcomes under the Generalized Nash and Nash Equilibria, it be-

comes clear that coordination is critical to achieving better outcomes in humanitarian relief

operations. The Generalized Nash solution is not only capable of eliminating the possibility

of having under or oversupply, it guarantees - through competition- the efficient allocation

of resources once the minimum requirements are met. Therefore, it has benefits both for the

population in need and the NGOs. In addition, we also demonstrated that, under certain

circumstances, the Generalized Nash solution is capable of attracting more donations than

an unrestricted, competitive solution.

This research has a host of implications for both coordinating authorities, that is, govern-

ments and organizing bodies such as the United Nations, and managers in the public sector.

As far as coordinating authorities are concerned, this research provides a strong argument

for their importance in having successful humanitarian relief efforts. In fact, our research
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suggests that, if authorities can impose the constraints on upper and lower demand levels,

they can provide an effective mechanism for improving responses to disasters. In particular,

it is imperative that we stress the importance of having reliable statistics on the population

that can be used to create the estimates on the upper and lower bounds on the demand.

If NGOs do not believe that these estimates are reliable, it is highly unlikely that a coor-

dinating authority will be capable of imposing the associated constraints in practice. In

addition, governments and other authorities should include collaboration with and between

NGOs as part of their preparation before a disaster. It is easy to imagine that attempts to

perform large-scale coordination efforts during the response phase are likely to go awry or

to be ineffective. Coordinating authorities that are successful in doing so should be capable

of improving the outcomes of their relief efforts under the assumption that NGOs have the

goodwill to be part of this mechanism.

In addition, the Generalized Nash Equilibrium model has implications for managers of

nongovernmental organizations. First of all, the proposed model provides managers with a

strategic framework to analyze its interactions with other NGOs in the same sector, while

also providing insights into its operations. Furthermore, the framework we propose answers

two of the most important questions any NGO must answer: (1) How and where should

we provide aid? and (2) How can we fund those operations? A model that is capable

of answering these questions not only advances the economic theory of not-for-profits, but

it also provides an actionable framework for decision-makers within NGOs. But, perhaps

most importantly, this analysis suggests that, despite the competition between NGOs for

fundraising, there are strong reasons for them to collaborate and, thereby, achieve better

results for those they set out to help. In fact, our analysis suggests that cooperation may,

in fact, increase the amount of donations received by all NGOs in the game.

While these findings are significant and novel, they are only the initial steps of research

that could improve humanitarian responses to disasters. The model is formulated in a

way that allows for many functional forms (as long as it results in separable and shared

parameterized terms) and would benefit from exploring these possibilities. Another extension

of this research would be to find a solution methodology for functions that cannot be solved as

optimization problems. This would include, for example, cases in which the βis are extended

to βijs or may even depend on the product flows. Further developing the theory to account

for multiple time periods and pre- and post-disaster components would also be significant

improvements to the research presented herein. Finally, another interesting extension of this

research would be to include the possibility of coalition formation, and to explore how this

may have an effect on the relief item flows, as well as on the coordinating authority’s ability
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to impose the shared constraints.
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