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Abstract: In this paper, a multitiered supply chain network equilibrium model is con-

structed, consisting of multiple humanitarian organizations, who seek to purchase services

from multiple competing freight (logistic) service providers, for transportation of disaster

relief supplies to multiple points of demand for distribution to victims. The freight service

providers are faced with capacities associated with the volume of shipments that they can

transport. We capture the behavior of the humanitarian organizations who individually

minimize the total cost associated with payments for the freight transportation and their

transaction costs. We also identify the profit-maximizing behavior of the freight service

providers. The governing supply chain network equilibrium conditions are formulated as a

variational inequality problem and conditions for existence given. We propose an algorithm

for the computation of the equilibrium disaster relief item flows and Lagrange multipliers

associated with the freight capacity constraints and provide conditions for convergence. The

algorithm is then applied to several numerical examples comprising a case study focusing on

an international healthcare crisis. In the case study, we explore the impacts of the addition

of a freight service provider as well as that of a humanitarian organization on the profits of

freight service providers and on the costs incurred by the humanitarian organizations. The

theoretical and numerical results in this paper advance game theory frameworks for human-

itarian operations and disaster relief, an area in which there is only a limited literature.

Keywords: humanitarian operations, disaster relief, game theory, freight service provision,

logistics, supply chain networks, variational inequalities
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1. Introduction

Freight service provision is an essential component of disaster relief since only with the

effective transportation of the critical needs supplies can the suffering of victims be reduced

and lives saved. At the same time, transportation portals and possible routes may be dis-

rupted and severely compromised following a disaster, creating additional challenges for

transportation services associated with disaster relief.

Although large humanitarian organizations may have acquired their own freight services

and, hence, means of transportation of the needed supplies, which can include, for example,

water, food, medicines, shelter items, etc., many humanitarian organizations do not have

the financial resources to maintain freight fleets. Hence, they need to purchase such services.

Freight service providers, in turn, are profit-maximizers, unlike humanitarian organizations

and other nongovernmental organizations (NGOs), which are nonprofits. In addition, they

compete among one another to acquire business. Hence, their behavior is distinct from that

of humanitarian organizations, who not only must responsibly utilize the financial resources

donated to them but also are under pressure to deliver a timely response post disasters. Given

the fundamental importance of freight service provision post disasters, costs associated with

transportation are second only to personnel for humanitarian organizations (see Pedraza

Martinez, Stapleton, and Van Wassenhove (2011)).

In this paper, we construct what we believe is the first general multitiered supply chain

network equilibrium model for disaster relief. The model can handle as many humanitarian

organizations as needed by the disaster application under investigation; similarly, the number

of freight service providers as well as the number of demand points for distribution of the

supplies is not fixed but, rather, is as mandated by the disaster. The cost-minimizing

behavior of the individual humanitarian organizations is captured and that of the profit-

maximizing freight service providers, who are capacitated. The humanitarian organizations

have a fixed amount of supplies that they need delivered to the various points of demand.

The governing supply chain network equilibrium conditions are formulated as a variational

inequality problem and conditions for existence provided. The solution of the model, for

which an algorithm, is proposed, yields the equilibrium disaster relief item shipments from

the humanitarian organizations via the freight service providers, along with the Lagrange

multipliers associated with the freight service providers’ capacity constraints. The algorithm

decomposes the problem into specially structured network subproblems in the disaster relief

item flows, and in the Lagrange multipliers. For the latter, we provide closed form expressions

for the iterates. Convergence results are also given. We also demonstrate how to recover

the prices the freight service providers charge the humanitarian organizations. In order
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to demonstrate the efficacy and applicability of the game theory framework, we apply the

algorithm to several numerical examples comprising a case study inspired by the international

healthcare crisis of the Ebola outbreak in 2014 and 2015.

This paper builds on the work of Nagurney (2016), who constructed a game theory model

for disaster relief with a single humanitarian organization and multiple competing freight ser-

vice providers, also commonly referred to as logistics service providers. The new model in this

paper significantly extends the one therein by capturing the behavior of multiple competing

humanitarian organizations and by including capacities associated with the freight service

providers. Moreover, a distinct algorithm is proposed with less restrictive conditions for con-

vergence, which, nevertheless, exploits, at each iteration, the specially structured underlying

network structure associated with the required amounts of disaster relief item shipments be-

tween the humanitarian organization nodes and the points of demand. The lineage of supply

chain network equilibrium models, which, nevertheless, assumed profit-maximizing decision-

makers at each tier of the supply chain network, originated with the paper of Nagurney,

Dong, and Zhang (2002). A spectrum of supply chain network equilibrium models, static

as well as dynamic, can be found in the book by Nagurney (2006)). Supply chain network

equilibrium models with a freight sector have recently incorporated price and quality com-

petition among manufacturers and freight service providers (see Nagurney et al. (2015)) and

time-based supply chain network competition (see Nagurney et al. (2014)). Here, in con-

trast, the model developed in this paper includes the humanitarian sector and the quantities

demanded are no longer elastic and price-sensitive but, rather, fixed, since, post-disaster,

the critically needed product supplies must be delivered.

The paper by Nagurney, Alvarez Flores, and Soylu (2016), in turn, considered multiple

competing humanitarian organizations engaged in disaster relief, who competed for financial

funds and provided needed supplies to the victims and demand points, which were subject

to upper and lower bounds. The model was a Generalized Nash Equilibrium model, and,

because of the structure of its financial donation functions, was amenable to reformulation

as an optimization problem. That model was, subsequently, extended to capture competi-

tion on the logistics side and to handle more general financial donation functions using the

concept of variational equilibrium by Nagurney et al. (2017). However, in both of these

models there was not an explicit tier of freight service providers. Muggy and Heier Stamm

(2014) provide a thorough review of game theory in humanitarian operations to that date

and emphasize that there are many untapped research opportunities for modeling in this

area. See also the dissertation of Muggy (2015). In these references, however, there are

no multitiered supply chain network equilibrium models that include the essential freight
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service provisioning tier of decision-makers. The relevance of game theory to disaster relief

provides new avenues for research, since, principally, centralized decision-making has been

modeled using optimization techniques in a variety of settings, especially in the context

of transportation, as in evacuation networks (cf. Sheffi, Mahmassani, and Powell (1982),

Miller-Hooks and Sorrel (2008), Vogiatzis and Pardalos (2016), and the references therein),

relief routing (cf. Huang, Smilowitz, and Balcik (2012)), and last mile distribution (see, e.g.,

Balcik, Beamon, and Smilowitz (2008) and the references therein). Nagurney, Masoumi,

and Yu (2015), in turn, developed a supply chain network optimization model for disaster

relief under demand uncertainty, whereas Nagurney and Nagurney (2016) also considered

cost uncertainty. Both of these models were formulated and solved as variational inequality

problems. For additional background on supply chain management and disaster relief, see

Van Wassenhove (2006). Our focus in this paper, in contrast, is on noncooperative game

theory (cf. Nash (1950a, 1951)). This framework can also serve in the future as the basis

for further research on cooperative game theory as in the case of Nash bargaining solutions

(cf. Nash (1950b, 1953)). For an application of noncooperative game theory and cooperative

game theory to cyber security investments, see Nagurney and Shukla (2017).

This paper is organized as follows. In Section 2, we present the multitiered supply chain

network equilibrium model for disaster relief with capacitated, competing freight service

providers. The behavior of both the humanitarian organizations and that of the freight

service providers is detailed and the governing supply chain network equilibrium conditions

defined. The variational inequality formulation is then derived and conditions for existence

of an equilibrium solution given. Section 3 presents the algorithm and identifies the special

network structure of the induced subproblems, along with conditions for convergence. In

Section 4 the case study is described. The case study is inspired by the recent Ebola health-

care crisis and focuses on the delivery of personal protective equipment (PPEs) needed by

the medical professionals who cared for those infected by this highly contagious disease in

western Africa. The case study builds on a dataset formulated by Nagurney (2016), to which

freight service provision capacities are added, as well as another freight service provider and,

subsequently, an additional humanitarian organization. Complete results are reported in

terms of the equilibrium solutions as well as the total costs incurred by the humanitar-

ian organizations, under the three distinct scenarios, and the profits of the freight service

providers. Prices that the humanitarian organizations are charged by the freight service

providers are also reported. We discuss the impacts of additional freight service providers

and humanitarian organizations as to who wins and who loses. In Section 5, we summarize

our results and present our conclusions.
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2. The Multitiered Supply Chain Network Equilibrium Model for Disaster Relief

We consider m humanitarian organizations involved in delivering relief supplies post a

disaster, with a typical organization denoted by i. The relief items can be food, water,

medicines, shelter supplies, as well as supplies needed by the emergency and healthcare

professionals responding to the disaster, etc. There are n competing freight service providers

that the organizations can avail themselves of for transporting the relief items, with a typical

freight service provider denoted by j. The humanitarian organizations are interested in

having the relief items delivered to o points of demand for distribution to the victims, with

a typical demand point denoted by k. The multitiered structure of the disaster relief supply

chain network is depicted in Figure 1.

The humanitarian organizations compete among themselves for the freight service provi-

sion and the freight service providers compete for their business. The humanitarian organi-

zations, which are non-profits, seek to individually minimize the total costs associated with

having their disaster relief supplies delivered by the freight service providers to the victims of

the disaster at the demand points. The freight service providers, in turn, seek to maximize

their profits and compete among one another for the transport of the relief items for the

humanitarian organizations.
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Figure 1: The Multitiered Disaster Relief Humanitarian Organization and Freight Service
Provision Supply Chain Network

We first describe the behavior of the humanitarian organizations and then that of the
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freight service providers. We, subsequently, state the network equilibrium conditions for

the disaster relief supply chain network and derive the variational inequality formulation.

Qualitative properties of the equilibrium pattern are also given. We assume that all vectors

are column vectors.

2.1 Behavior of the Humanitarian Organizations

Each humanitarian organization i; i = 1, . . . ,m, wishes to have an amount si
k of the

relief item, which it has in stock and has prepositioned, transported to demand points:

k = 1, . . . , o. Let Qi
jk denote the amount of the relief item that i contracts with freight

service provider j to have delivered to demand point k. We group the relief item shipments

of each humanitarian organization i into the vector Qi ∈ Rno
+ .

The per unit price that freight service provider j charges i for transport to k is denoted by

ρi∗
jk. These prices are revealed once the supply chain network equilibrium model for disaster

relief is solved. We demonstrate the procedure of how to recover these prices following the

derivation of the variational inequality of the governing supply chain network equilibrium

conditions.

Each humanitarian organization i is faced with a total cost ĉi
j associated with transacting

with freight service provider j. This cost includes the cost associated with handling the

product until pickup by provider j and interacting with provider j. The total cost ĉi
j;

i = 1, . . . ,m; j = 1, . . . , n, hence, includes all the costs associated with i contracting with a

respective freight service provider j. Observe that the cost associated with a humanitarian

organization in transacting with a freight service provider, can, in general, depend not only

on its own shipments associated with the freight service provider but also on those of other

humanitarian organizations and the same or other freight service providers. The freight

service providers guarantee delivery of the disaster relief items in a timely fashion, given

what is known about the disaster landscape, and charge accordingly.

The optimization problem faced by humanitarian organization i; i = 1, . . . ,m, with the

objective function representing total cost to be minimized, is:

Minimize
n∑

j=1

o∑
k=1

ρi∗
jkQ

i
jk +

n∑
j=1

ĉi
j(Q) (1)

subject to:
n∑

j=1

Qi
jk = si

k, k = 1, . . . , o, (2)

Qi
jk ≥ 0, j = 1, . . . , n; k = 1, . . . , o. (3)
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The first term preceding the plus sign in the objective function (1) corresponds to the

amount that i must pay to the freight service providers whereas the term following the plus

sign is the total costs associated with transacting with the freight service providers. Equation

(2) guarantees that the relief supplies are delivered to the points of demand. Equation (3)

is the nonnegativity assumption for the relief item flows. We define the feasible set Ki;

i = 1, . . . ,m, where Ki ≡ {Qi|Qi ≥ 0 and satisfies (2)}. We then define the feasible set

K ≡
∏m

i=1 Ki for all the humanitarian organizations.

Remark

In the case that humanitarian organization i; i = 1, . . . ,m, has to purchase some or all of

the disaster relief supplies then the total cost functions ĉi
j; j = 1, . . . , n, would include the

purchasing cost, in addition to the freight service provision transaction costs.

We assume that the total cost functions ĉi
j; i = 1, . . . ,m; j = 1, . . . , n, are continuously

differentiable and convex. Under these assumptions, and the fact that K is convex, we know

that a solution to the above optimization problems for the m humanitarian organizations,

who compete for freight service provision, simultaneously, coincides with a solution to the

variational inequality problem: determine Q∗ ∈ K, such that

m∑
i=1

n∑
j=1

o∑
k=1

[
n∑

l=1

∂ĉi
l(Q

∗)

∂Qi
jk

+ ρi∗
jk

]
×

[
Qi

jk −Qi∗
jk

]
≥ 0, ∀Q ∈ K. (4)

This result follows from the connection between Nash equilibria (cf. Nash (1950a, 1951))

and variational inequalities (cf. Gabay and Moulin (1980) and Nagurney (1999)).

2.2 Behavior of the Freight Service Providers

Since the freight service providers are profit-maximizers, they must cover their costs. The

cost associated with freight service provider j delivering the relief items from i to demand

point k is denoted by cj
ik, where, here we assume, for the sake of generality, and in order to

effectively capture competition, that

cj
ik = cj

ik(Q), j = 1, . . . ,m, (5)

with the freight service provider cost functions assumed to be continuously differentiable and

convex. Note that the cost functions in (5) depend, in general, not only on the freight service

provider’s shipment quantities but also on those of the other freight service providers, since

there may be congestion, competition for labor, etc.
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In our model each humanitarian organization is providing a similarly-sized relief item.

Also, each freight service provider can consolidate the shipments from the various human-

itarian organizations, if need be, and then transport to points of demand, as inferred by

the topology of the network in Figure 1. Each freight service provider j; j = 1, . . . , n, has

an associated capacity, denoted by uj. Hence, the following constraint must hold for each

provider j:
m∑

i=1

o∑
k=1

Qi
jk ≤ uj. (6)

We make the assumption that the total shipment capacity availability is sufficient to meet

the total demand, that is,
m∑

i=1

o∑
k=1

si
k ≤

n∑
j=1

uj.

The optimization problem faced by freight service provider j; j = 1, . . . , n, with the

objective function corresponding to the profits to be maximized, is:

Maximize
m∑

i=1

n∑
k=1

ρi∗
jkQ

i
jk −

m∑
i=1

n∑
k=1

cj
ik(Q) (7)

subject to (6) and:

Qi
jk ≥ 0, k = 1, . . . , n. (8)

As in Nagurney (2016), but in a simpler, single humanitarian organization competitive

freight service provider supply chain, and without capacities, we assume that the freight

service providers j; j = 1, . . . , n, compete noncooperatively for the disaster relief items, each

one seeking to maximize its profits. We associate a nonnegative Lagrange multiplier λj with

capacity constraint (6) for each freight service provider j; j = 1, . . . , n, and we group the

Lagrange multipliers for all freight service providers into the vector λ ∈ Rn
+.

The optimality conditions of all freight service providers holding simultaneously, which

correspond to a Nash equilibrium, must satisfy the variational inequality problem (cf. Gabay

and Moulin (1980), Nagurney (1999, 2006)): determine Q∗ ∈ Rmn
+ and λ∗ ∈ Rn

+, such that:

n∑
j=1

[
m∑

i=1

o∑
k=1

[
m∑

h=1

n∑
l=1

∂cj
hl(Q

∗)

∂Qi
jk

− ρi∗
jk + λ∗j

]]
×

[
Qi

jk −Qi∗
jk

]
+

n∑
j=1

[
uj −

m∑
i=1

o∑
k=1

Qi∗
jk

]
×

[
λj − λ∗j

]
≥ 0, ∀Q ∈ Rmn

+ ,∀λ ∈ Rn
+. (9)

The network equilibrium conditions for the multitiered disaster relief supply chain network

model are given below.
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Definition 1: Supply Chain Network Equilibrium for Disaster Relief

A supply chain network equilibrium for disaster relief is said to be established if the disaster

relief flows between the two tiers of decision-makers coincide and the flows, prices, and

Lagrange multipliers satisfy the sum of variational inequalities (4) and (9).

According to Definition 1, the humanitarian organization and the freight service providers

must agree on the amounts of the relief items that they deliver to the demand points.

This agreement is accomplished through the prices ρi∗
jk; i = 1, . . . ,m; j = 1, . . . , n; k =

1, . . . , o. We first present the variational inequality formulation of the supply chain network

equilibrium conditions and then discuss how to recover the equilibrium prices.

Theorem 1: Variational Inequality Formulation of Supply Chain Network Equi-

librium for Disaster Relief

A disaster relief item shipment pattern Q∗ ∈ K and Lagrange multiplier vector λ∗ ∈ Rn
+ is a

supply chain network equilibrium for disaster relief with capacitated freight service provision

if and only if it satisfies the variational inequality problem:
m∑

i=1

n∑
j=1

o∑
k=1

[
n∑

l=1

∂ĉi
l(Q

∗)

∂Qi
jk

+
m∑

h=1

n∑
l=1

∂cj
hl(Q

∗)

∂Qi
jk

+ λ∗j

]
×

[
Qi

jk −Qi∗
jk

]
+

n∑
j=1

[
uj −

m∑
i=1

o∑
k=1

Qi∗
jk

]
×

[
λj − λ∗j

]
≥ 0, ∀Q ∈ K, ∀λ ∈ Rn

+. (10)

Proof: We first establish necessity, that is, if Q∗ ∈ K, λ∗ ∈ Rn
+, is a supply chain network

equilibrium according to Definition 1 then it also satisfies variational inequality (10). In-

deed, summation of (4) and (9) yields variational inequality (10) with the shipment flows

coinciding.

We now establish sufficiency. We rewrite variational inequality (10) as:

m∑
i=1

n∑
j=1

o∑
k=1

[
n∑

l=1

∂ĉj
i (Q

∗)

∂Qi
jk

+
m∑

h=1

n∑
l=1

∂cj
hl(Q

∗)

∂Qi
jk

− ρi∗
jk + ρi∗

jk + λ∗j

]
×

[
Qi

jk −Qi∗
jk

]
n∑

j=1

[
uj −

m∑
i=1

o∑
k=1

Qi∗
jk

]
×

[
λj − λ∗j

]
≥ 0, ∀Q ∈ K, λ ∈ Rn

+. (11)

But (11) may be expressed as:

m∑
i=1

n∑
j=1

o∑
k=1

[
n∑

l=1

∂ĉi
l(Q

∗)

∂Qi
jk

+ ρi∗
jk

]
×

[
Qi

jk −Qi∗
jk

]
9



+
n∑

j=1

m∑
i=1

o∑
k=1

[
m∑

h=1

n∑
l=1

∂cj
hl(Q

∗)

∂Qi
jk

− ρi∗
jk + λ∗j

]
×

[
Qi

jk −Qi∗
jk

]
+

n∑
j=1

[
uj −

m∑
i=1

o∑
k=1

Qi∗
jk

]
×

[
λj − λ∗j

]
≥ 0, ∀Q ∈ K, ∀λ ∈ Rn

+. (12)

(12) corresponds to Definition 1 holding for the prices and shipment pattern Q∗ ∈ K and

the vector of Lagrange multipliers λ∗ ∈ Rn
+. 2

Note that in order to recover the equilibrium prices ρi∗
jk, ∀i, j, k, one sets, according to (9):

ρi∗
jk =

∑m
h=1

∑n
l=1

∂cj
hl(Q

∗)

∂Qi
jk

+ λ∗j , ∀i, j, k with Qi∗
jk > 0. By setting the freight delivery prices

thus, variational inequality (9) holds, so each freight service provider has maximized his

profits. Furthermore, we know that the variational inequality (4) governing the humanitarian

organizations’ noncooperative behavior also holds under these prices.

We now put variational inequality (10) into standard form (cf. Nagurney (1999)): deter-

mine X∗ ∈ K, such that

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (13)

where F (X) is an N -dimensional vector which is a continuous function from K to RN ,

X is an N -dimensional vector, K is closed and convex, and 〈·, ·〉 denotes the inner prod-

uct in N -dimensional Euclidean space. We define K ≡ K × Rn
+, X ≡ (Q, λ). Also, we

define F (X) ≡ (F 1(X), F 2(X)) where F 1(X) consists of components F i
jk with F i

jk(X) ≡[∑n
l=1

∂ĉj
l (Q)

∂Qi
jk

+
∑m

h=1

∑n
l=1

∂cj
hl(Q)

∂Qi
jk

+ λj

]
; i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , o. Also,

F 2(X) consists of components: F 2
j (X) ≡

[
uj −

∑m
i=1

∑o
k=1 Qi

jk

]
; j = 1, . . . , n. Here N =

mno + n. Then variational inequality (10) takes on the standard form (13).

We emphasize that, in this paper, we sometimes will express 〈x, y〉 as xT · y, where the

superscript T denoted transpose.

2.3 Qualitative Properties of the Equilibrium Pattern for Disaster Relief

We now turn to the examination of qualitative properties of the equilibrium pattern, that

is, the solution to variational inequality (10), equivalently, (13).

Since the feasible set K for our model is unbounded, due to the presence of the Lagrange

multipliers, we impose a coercivity condition.
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Theorem 2: Existence of an Equilibrium Pattern

If the function F (X) in (13) is coercive, that is,

lim
X∈K

‖X‖→∞

〈F (X), X〉
‖X‖

= ∞, (14)

then variational inequality (13) has a solution.

Proof: Follows from the classical theory of variational inequalities (Kinderlehrer and Stam-

pacchia (1980) and Nagurney (1999)).

3. The Computational Procedure

Before we proceed to our case study, which is on Ebola in western Africa, we discuss the

computational procedure that we will utilize to solve the numerical examples. The algorithm

that we will apply in the next section to compute the solution to variational inequality (10),

using the standard form (13), is the modified projection method of Korpelevich (1977).

The requirements for convergence are that F (X) is monotone and Lipschitz continuous,

since we know that a solution to our model exists. Below we provide their definitions, for

completeness.

Definition 2: Monotonicity

The function F (X) as in (13) is said to be monotone on K if the following property holds:

〈F (X1)− F (X2), X1 −X2〉 ≥ 0, ∀X1, X2 ∈ K. (15)

Definition 2: Lipschitz Continuity

The function F (X) in (13) is said to be Lipschitz continuous on K if the following property

holds:

‖F (X1)− F (X2)‖ ≤ L‖X1 −X2‖, ∀X1, X2 ∈ K. (16)

Specifically, the statement of the modified projection method is as follows.
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The Modified Projection Method

Step 0: Initialization

Initialize with an X0 ∈ K. Set τ = 1 and select α, such that 0 < α < 1
L
, where L is the

Lipschitz constant for the function F (X) in the variational inequality problem (13).

Step 1: Construction and Computation

Compute X̄τ−1 by solving the variational inequality subproblem:[
X̄τ−1 + (αF (Xτ−1)−Xτ−1)

]T ·
[
X − X̄τ−1

]
≥ 0, ∀X ∈ K. (17)

Step 2: Adaptation

Compute Xτ by solving the variational inequality subproblem:[
Xτ + (αF (X̄τ−1)−Xτ−1)

]T · [X −Xτ ] ≥ 0, ∀X ∈ K. (18)

Step 3: Convergence Verification

If |Xτ −Xτ−1| ≤ ε, for ε > 0, a prespecified tolerance, then, stop; else, set τ = τ + 1 and go

to Step 1.

Note that the iterate X̄τ−1 in (17) is actually the solution to the following quadratic

programming problem:

Minimize
1

2
XT ·X + (αF (Xτ−1)−Xτ−1)T ·X, (19)

subject to: X ∈ K.

It is straightforward, given the above, to also construct the quadratic programming for-

mulation that will yield the solution X̄τ−1 to variational inequality subproblem (18).

The modified projection method has nice features for our model. In particular, the

relief item flows can be computed using an exact equilibration algorithm highlighted in

Nagurney (2016), wherein, however, only one humanitarian organization was modeled and

there were no capacities associated with the freight service providers. Indeed, the structure

of the induced network subproblems for the relief item flows, in both Steps 1 and 2 of

the modified projection method, is as depicted in Figure 2. These are equivalent to fixed

demand transportation network equilibrium problems of special structure (cf. Nagurney
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(1999)) in that the paths connecting each origin/destination pair of nodes corresponding to

the humanitarian organization and demand point pairs have no links in common with any

other path.
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JĴ

J
J

J
JĴ?
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Figure 2: The Special Network Structure of the Relief Item Subproblems at Each Iteration
of the Modified Projection Method

The Lagrange multipliers, at each iteration, can be solved exactly and in closed form, as

detailed below for subproblem (17). An analogous expression can be obtained also for (18).

Explicit Formulae for the Modified Projection Method for the Lagrange Multi-

pliers

The elegance of this algorithm for our variational inequality (10) for the computation of solu-

tions to our model is apparent also from the following explicit formulae, which provide exact

solutions for the Lagrange multipliers in subproblem (17). Indeed, we have the following

closed form expression for the Lagrange multipliers for j = 1, . . . , n, at iteration τ + 1:

λ̄τ+1
j = max{0, λτ−1

j + α(
m∑

i=1

o∑
k=1

Qiτ−1
jk − uj)}, j = 1, . . . , n. (20)

For results on the linear convergence rate of the modified projection method, see Tseng

(1995), where references on variants of this algorithm can also be found.

We apply the above modified projection method, with the embedded equilibration algo-

rithm in the next section.

13



4. An Ebola Case Study

For our case study, we revisit the Ebola crisis which impacted western Africa in 2014 and

2015. It captured the world’s attention because of the suffering of those with the disease and

the fear of this highly contagious disease (cf. Ap (2015)). This was the worst outbreak of

Ebola since it was first identified in 1976. 21 months after the first reported case in March

2014, 11,315 people were reported as having died from Ebola, out of 28,637 cases, in the

countries of: Liberia, Sierra Leone, and Guinea, as well as in Nigeria, Mali, and even the US

(see BBC.com (2016)). There were eight cases in Nigeria, six in Mali, and one in the US.

In August 2014, according to Agence France-Presse (2014), the World Health Organi-

zation declared the Ebola epidemic ravaging parts of west Africa an international health

emergency. The World Health Organization (2015) reported that over 800 healthcare work-

ers contracted Ebola during this crisis. There were numerous logistical challenges, as well,

including that many healthcare facilities had shortages of needed supplies in addition to their

workers contracting the disease (see O’Byrne (2014)).

Wilson (2015) provided a medical professional perspective on this crisis from the front-

lines. Wilson (2016), in turn, emphasized the importance of logistics and logisticians in

battling this disease. Essential items needed by the healthcare workers caring for those

stricken with Ebola included personal protective equipment (PPEs), which is the relief item

in our case study (see also Fischer, Hynes, and Perl (2014)).

This disease even affected commercial shipping because of the fear of contagion of freight

crews (cf. Saul (2014)) and, hence, freight provision was under added stress as well as added

risk.

Scenario 1: Single Humanitarian Organization, Two Freight Service Providers

(Without Capacities and With Capacities), and Three Demand Points

In scenario 1, we consider the supply chain network in Figure 3. There is a single humani-

tarian organization considering two freight service providers and requiring shipment of the

PPEs to each of the three major Ebola impacted countries, that is, to Liberia, Sierra Leone,

and Guinea. These countries correspond to demand points 1, 2, and 3, respectively. We first

recall the results for the analogous example in Nagurney (2016), which is uncapacitated,

but serves as the baseline for our case study, and then we investigate the impacts of the

imposition of capacities on the freight service providers.

We utilize the data constructed by Nagurney (2016), but here we update our notation to
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Figure 3: Supply Chain Network Topology for the Ebola Case Study Scenario 1

conform to that in this paper. Therein, The World Bank (2016) data was used to identify

the cost of transport of a container of 20 feet, which can hold 1360 cubic feet of supplies,

via ship from the US to these countries. The cost was then multiplied by 14, as per the

United States Department of Commerce (2016), to obtain an estimated cost for air freight

since speed of delivery was essential, given all the existing challenges.

The demands are 10,000 PPE items to each of the three destinations; hence, s1
1 = s1

2 =

s1
3 = 10, 000.

The data are as follows.

The humanitarian organization is faced with the following total costs associated with

transacting with the two freight service providers, respectively:

ĉ1
1 = 4.50× (Q1

11 + Q1
12 + Q1

13), ĉ1
2 = 4.25× (Q1

21 + Q1
22 + Q1

23).

The humanitarian organization has to purchase the PPE items, so that the ĉ1
j ; j = 1, 2,

cost functions include the purchase cost. The total cost associated with freight service

provider 1, ĉ1
1, is higher than that for freight service provider 2, ĉ1

2, since it does not have as

much experience with the former provider and the transfer cost is higher per unit.

The freight service provider total costs are as follows:
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For freight service provider 1:

c1
11 = .0001Q1

11
2
+ 18.48Q1

11, c1
12 = .001Q1

12
2
+ 16.59Q1

12, c1
13 = .001Q1

13
2
+ 12.81Q1

13;

For freight service provider 2:

c2
11 = .001Q1

21
2
+ 18.48Q1

21, c2
12 = .0001Q1

22
2
+ 16.59Q1

22. c2
13 = .01Q1

23
2
+ 12.81Q1

23.

As noted in Nagurney (2016), the nonlinear terms in the cost functions faced by the

freight service provider capture the risk associated with transporting the supplies to the

points of demand.

The computed equilibrium solution via the projection method, as reported in Nagurney

(2016), but adapted here to our new notation, which can handle multiple humanitarian

organizations, is:

Q1∗
11 = 8, 976.31, Q1∗

12 = 796.43, Q1∗
13 = 9, 079.99,

Q1∗
21 = 1, 023.69, Q1∗

22 = 9, 203.57, Q1∗
23 = 920.01.

The prices charged by the freight service providers are:

ρ1∗
11 = 20.28, ρ1∗

12 = 18.18, ρ1∗
13 = 30.97,

ρ1∗
21 = 20.53, ρ1∗

22 = 18.43, ρ1∗
23 = 31.23.

The value of the objective function of the humanitarian organization (cf. (1)) is: 829,254.38.

The humanitarian organization pays the freight service providers an amount: 697,041.25,

which, as noted in Nagurney (2016), corresponds to 84% for transport. This is reasonable

since, as also noted in the Introduction, approximately 80% of humanitarian organizations’

budgets are towards transportation in disasters. The value of freight service provider 1’s

objective function (cf. (6)), which coincides with its profits, is: 91,137.94 and that of freight

service provider 2 is: 17,982.72. From the results, we see that freight service provider 1

delivers the bulk (the majority) of the PPE supplies to Liberia and Guinea, whereas freight

service provider 2 delivers the majority of the supplies to Sierra Leone. Freight service

provider 1 carries a total of 18,852.73 of the PPEs whereas freight service provider 2 carries

an amount: 11,147.27.

We now assume that upper bounds are imposed on freight service provision with

u1 = 10, 000, u2 = 20, 000.
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In particular, freight service provider 1 has suffered a major disruption in terms of its freight

provision in that certain crew members are refusing to deliver the supplies to the Ebola-

stricken countries.

Note that the total supply of the PPEs to be delivered is still 30,000 and that is the com-

bined capacity of the two freight service providers. In the original, uncapacitated example,

freight service provider 1 delivered almost 19,000 of the PPE items with the remainder being

delivered by freight service provider 2.

The modified projection method, as described above, was implemented in FORTRAN and

a Linux system at the University of Massachusetts Amherst used for this and the subsequent

numerical examples. The algorithm was initialized with s1
k; k = 1, 2, 3, equally divided

between the two freight service providers, for each demand point k, to construct the initial

disaster relief item shipments. Also, the two Lagrange multipliers associated with the freight

service provider capacity constraints were initialized to zero. The convergence tolerance was

10−5, that is, the absolute value of two successive iterates of each of the shipments and

each of the Lagrange multipliers differed by no more than this value. We set α = .3 in the

modified projection method for this scenario.

The modified projection method yielded the following equilibrium shipment and Lagrange

multiplier vector solution:

Q1∗
11 = 1652.60, Q1∗

12 = 0.00, Q1∗
13 = 8347.40,

Q1∗
21 = 8347.40, Q1∗

22 = 10000.00, Q1∗
23 = 1652.60,

λ∗1 = 1616.76, λ∗2 = 1600.64.

The prices charged by the freight service providers are now:

ρ1∗
11 = 1635.57, ρ1∗

12 = 1633.35, ρ1∗
13 = 1646.26,

ρ1∗
21 = 1635.82, ρ1∗

22 = 1619.23, ρ1∗
23 = 1646.50.

The humanitarian organization now pays an amount: 49,013,128.00 to the freight service

providers. It encumbers a total cost of 49,143,128, which includes its transaction costs. The

profit of freight service provider 1 now is: 16,237,542.00 and that of freight service provider

2: 32,119,844.00.

Note that both freight service providers are operating at their respective capacity with

freight service provider 1 transporting a total of 10,000 PPEs and freight service provider
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2 transporting a total of 20,000 PPEs. Hence, their associated Lagrange multipliers are

positive.

Interestingly, the amounts of the PPEs shipped to Liberia have essentially flipped be-

tween the two freight service providers as compared to the respective shipment values in the

uncapacitated version. Also, interestingly, freight service provider 2 now satisfies the entire

demand for PPEs in Sierra Leone, with freight service provider 1 not even servicing this

affected country. The prices charged now escalate tremendously because the freight service

providers are both at their physical capacities.

Scenario 2: Single Humanitarian Organization, Three Freight Service Providers

With Capacities, and Three Demand Points

In scenario 2, the data are as in the capacitated example in scenario 1 except that we add one

more freight service provider. Hence, the supply chain network topology is now as in Figure

4. We investigate the impact of enhanced competition among the freight service providers

on the humanitarian organization as well as on the original freight service providers.
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Figure 4: Supply Chain Network Topology for the Ebola Case Study Scenario 2

The added data are as follows.

The cost associated with the humanitarian organization transacting with freight service

provider 3 is:

ĉ1
3 = 4.75(Q1

31 + Q1
32 + Q2

33)
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and the costs associated with freight service provider 3 and the three demand points are:

c3
11 = .0001Q1

31
2
+ 12Q31, c3

12 + .0001Q1
32

2
+ 12.5Q1

32, c3
13 = .0001Q1

33
2
+ 11.5Q1

33.

According to the above data, the humanitarian organization has higher transaction costs

in dealing with the new freight service provider, since it has not done business with it in the

past. However, freight service provider 3 is more cost efficient in terms of the three demand

points as compared to the original two freight service providers, since it has experience in

the western part of Africa.

Also, the capacity of freight service provider 3, u3 = 10000.

We set α = .1 in the modified projection method for this example. In order to construct

the initial disaster relief item shipments, we divided the supplies needed at each demand point

equally among the freight service providers. All three Lagrange multipliers were initialized

to zero.

The modified projection method yielded the following equilibrium shipment and Lagrange

multiplier vector solution for scenario 2:

Q1∗
11 = 5, 571.19, Q1∗

12 = 796.68, Q1∗
13 = 3, 395.15,

Q1∗
21 = 682.25, Q1∗

22 = 9, 203.32, Q1∗
23 = 351.42,

Q1∗
31 = 3, 746.56, Q1∗

32 = 0.00, Q1∗
33 = 6, 253.44.

λ∗1 = 0.00, λ∗2 = 0.00, λ∗3 = 6.60.

The prices charged by the freight service providers are:

ρ1∗
11 = 19.59, ρ1∗

12 = 18.18, ρ1∗
13 = 19.60,

ρ1∗
21 = 19.84, ρ1∗

22 = 18.43, ρ1∗
23 = 19.84,

ρ1∗
31 = 24.09, ρ1∗

32 = 23.85, ρ1∗
33 = 24.10.

Freight service provider 1 transports 9,763.02 PPEs; freight service provider 2, in turn,

transports 10,236.98 PPEs, whereas freight service provider 3 transports 10,000.00 PPEs,

which is its capacity. Observe that freight service provider 3 charges the highest prices.

The humanitarian organization pays out 621,281.88 to the freight service providers for

transportation. It is now faced with a total cost of 756,222.63, which includes its transaction

19



costs. The percentage of total cost for freight is 82%, which is, again, in line with what one

sees in practice.

The profit of freight service provider 1 is now: 15,265.55; that of freight service provider

2: 10,170.52, and that of freight service provider 3: 118,765.33. Both original freight service

providers suffer financially from enhanced competition. However, the humanitarian organi-

zation greatly reduces its total cost. Also, it is interesting to see that freight service provider

3 only transports the PPEs to Liberia and Guinea and delivers no PPE shipments to Sierra

Leone. Clearly, humanitarian organizations benefit (and implicitly so do the donors) by

having additional freight service providers interested in transporting their relief item cargos.

Scenario 3: Two Humanitarian Organization, Three Freight Service Providers

With Capacities, and Three Demand Points

Scenario 3 consists of two humanitarian organization, three freight service providers, and

three demand points as illustrated in Figure 5.
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Figure 5: Supply Chain Network Topology for the Ebola Case Study Scenario 3

In particular, this example has the same data as Scenario 2 but now we add data associ-

ated with the second humanitarian organization as detailed below. There is now increased

demand for additional PPEs, which the second humanitarian organization is willing to pro-

vide.

The second humanitarian organization has worked closely with all the freight service

providers in previous disasters and, hence, its transaction costs are lower than those for hu-
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manitarian organization 1. The costs associated with the second humanitarian organization

transacting with the three freight service providers are:

ĉ2
1 = 3(Q2

11 + Q2
12 + Q2

13), ĉ2
2 = 3.5(Q2

21 + Q2
22 + Q2

23), ĉ2
3 = 3(Q2

31 + Q2
32 + Q2

33).

The freight service providers, in turn, incur the following costs associated with transporting

the disaster relief supplies from humanitarian organization 2:

c1
21 = .0002Q2

11
2
+ 10Q2

11, c1
22 = .0001Q2

12
2
+ 8Q2

12, c1
23 = .0002Q2

13
2
+ 9Q2

13.

c2
21 = .0001Q2

21
2
+ 8Q2

21, c222 = .0002Q2
22

2
+ 7Q2

22, c2
23 = .0001Q2

23
2
+ 6Q2

23,

c3
21 = .0002Q2

31
2
+ 9Q2

31, c3
22 = .0001Q2

32
2
+ 7Q2

32, c3
23 = .0001Q2

33
2
+ 6Q2

33.

Also, the amount of the supplies that humanitarian organization 2 wishes to have delivered

are:

s2
1 = 3000, s2

2 = 3000, s2
3 = 4000.

Observe that, now, the total demand for shipments is exactly equal to the total capacity of

the three freight service providers.

We, again, set α = .1 in the modified projection method. The shipments and La-

grange multipliers were initialized as in Scenario 2 with the former being equally distributed,

given the supply/demand, for each humanitarian organization and demand point, among the

freight service providers. The modified projection method yielded the following equilibrium

shipment and Lagrange multiplier patterns:

Q1∗
11 = 5385.70, Q1∗

12 = 689.91, Q1∗
13 = 3415.49,

Q1∗
21 = 830.67, Q1∗

22 = 9310.09, Q1∗
23 = 368.14,

Q1∗
31 = 3783.63, Q1∗

32 = 0.00, Q1∗
33 = 6216.37,

Q2∗
11 = 0.00, Q2∗

12 = 508.91, Q2∗
13 = 0.00,

Q2∗
21 = 3000.00, Q2∗

22 = 2491.09, Q2∗
23 = 4000.00,

Q2∗
31 = 0.00, Q2∗

32 = 0.00, Q2∗
33 = 0.00,

λ∗1 = 1569.02, λ∗2 = 1568.71, λ∗3 = 1575.62.

The prices charged by the freight service providers are:

ρ1∗
11 = 1588.58, ρ1∗

12 = 1586.99, ρ1∗
13 = 1588.66,
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ρ1∗
21 = 1588.85, ρ1∗

22 = 1587.16, ρ1∗
23 = 1588.88,

ρ1∗
31 = 1593.13, ρ1∗

32 = 1592.87, ρ1∗
33 = 1593.11,

ρ2∗
11 = 1579.02, ρ2∗

12 = 1577.12, ρ2∗
13 = 1578.02,

ρ2∗
21 = 1577.31, ρ2∗

22 = 1576.71, ρ2∗
23 = 1575.51,

ρ2∗
31 = 1584.62, ρ2∗

32 = 1584.62, ρ2∗
33 = 1581.62.

Humanitarian organization 1 pays out 47,689,076.00 to the freight service providers and

encumbers a total cost of 47,823,948.00. Humanitarian organization 2 pays out 15,764,292.00

to the freight service providers and encumbers a total cost (which recall includes the trans-

action costs) of 15,799,038.00. The total disaster relief volume transported by freight ser-

vice provider 1 is: 10,000.00; the total amount transported by freight service provider 2 is:

20,000.00, and the total amount by freight service provider 3 is: 10,000.00. Hence, all freight

service providers are at their respective capacity and, therefore, the Lagrange multipliers

are all positive. Freight service provider 1 now enjoys a profit of 15,705,270.00, whereas

freight service provider has a profit of 31,388,628.00, and freight service provider a profit of

15,809,006.00.

It is interesting that humanitarian organization 2 does not utilize the services of freight

service provider 3 at all and that the majority of its shipments go via freight service provider

2. Humanitarian organization 1, on the other hand, relies primarily on the services of freight

service provider 1 for shipments to Liberia and Guinea and the services of freight service

provider 2 for shipments to Sierra Leone. With increased demand for their services, because

of the needs of humanitarian organization 2, all freight service providers have higher profits

than in Scenario 2. Because of the increased competition for freight service provision from

the added humanitarian organization, humanitarian organization 1 now has a substantially

higher total cost than in Scenario 2.

This example vividly illustrates that the humanitarian organizations might benefit from

cooperating rather than competing.

5. Summary and Conclusions

In this paper, a multitiered supply chain network equilibrium model for disaster relief was

constructed, which can handle as many humanitarian organizations as well as freight (logis-

tic) service providers engaged in the delivery of disaster relief supplies to multiple demand

points for distribution to the victims, as needed by the specific disaster relief application.

In addition, the model incorporates capacities associated with the freight service providers’
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transportation of the relief items. Previous freight service competitive modeling in disaster

relief considered only a single humanitarian organization and was uncapacitated (cf. Nagur-

ney (2016)). Hence, the new model is a significant extension on prior work and also a

contribution to the still very limited literature on game theory and disaster relief. Also, al-

though supply chain network equilibrium models have generated a rich literature, beginning

with the first model of Nagurney, Dong, and Zhang (2002), all, except for the above-noted

work and this paper, have focused on profit-maximization as the primary objective of the

various decision-makers associated with the supply chain network tiers. Here, in contrast,

since we are dealing with humanitarian organizations, which are nonprofit entities, their ob-

jective functions are comprised of cost minimization. Of course, the cost can also represent

a generalized cost, since these functions are nonlinear, and can capture risk, for example, or

even time, weighted accordingly.

In this paper, in addition to the new model, existence results were provided, as well

as an algorithm, which has less restrictive conditions for convergence than the previously

proposed projection method for the single humanitarian organization case and also results

in a decomposition of the disaster relief item flows at each step into network subproblems

of special structure and closed form expressions for the Lagrange multipliers associated

with the capacity constraints. The algorithm was then applied to a case study inspired by a

major international healthcare crisis - that of the Ebola outbreak, which devastated multiple

western African countries in 2014 and 2015. In particular, we first included capacities on

freight service provision from a dataset constructed in Nagurney (2016) associated with the

transportation of personal protective equipment needed by the medical professionals battling

Ebola. We then investigated the impact of the addition of a new freight service provider

and, subsequently, also the addition of a second humanitarian organization. We reported

the equilibrium disaster relief shipments for the three scenarios along with the Lagrange

multipliers as well as the payouts of the humanitarian organizations to the freight service

providers and their total costs, plus the profits of the freight service providers and the prices

that they charge the humanitarian organizations for freight service provision.

The numerical examples making up the case study demonstrate that humanitarian or-

ganizations benefit from the availability of a larger number of competitive freight service

providers (although this affects freight service providers negatively in terms of profits). Also,

the addition of humanitarian organizations competing for services from the freight service

providers results in higher prices since the capacities may be achieved. Hence, the case study

illustrates that cooperation may be a fruitful avenue for future research on game theory and

freight service provision for humanitarian organizations in disaster relief. In addition, it
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would be interesting to compute solutions to large-scale numerical examples and to explore

alternative algorithms for computational purposes. We leave such research for the future.
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