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Abstract: Over the past several decades, the electric power industry in the US and in several other

countries has been undergoing a fundamental transformation due to deregulation. This transfor-

mation has been accompanied by an increase in the number of market participants and changes

to the electricity flow patterns with system reliability being increasingly difficult to maintain. The

occurrence of several major power outages in 2003 in the US, Canada, England, Switzerland, and

Italy suggest that recent changes in the electric power markets require renewed and intense scrutiny.

Towards that end, in this paper, we develop a dynamic model for electric power generation, supply,

transmission, and consumption under risk and demand uncertainty. We consider the behavior of

the various multicriteria decision-makers, who operate in a decentralized manner and include power

generators, power suppliers, transmission service providers, as well as the consumers associated

with the demand markets. We derive a projected dynamical system that describes the behavior

of the entire system; introduce the speeds of adjustment for the adjustment processes associated

with the electric power transactions and the prices and prove that the equilibrium solution does not

change with a change in the adjustment speed(s). We also propose a computational procedure that

discretizes and tracks the continuous-time trajectories, and provide several illustrative numerical

examples, accompanied by graphs of the iterates over time.
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1 Introduction

Systems of electric power generation, supply, and transmission play an extremely important role

in modern society. Human civilization has reached the level at which in many aspects of daily life

electricity is one of the most widely used sources of energy. Modern society depends on electric

power as an essential resource for communication; transportation; for heating, cooling, and lighting;

and the powering of computers and electronics. Consumers have grown to expect electricity to be

available instantaneously with a flick of a switch.

At the same time, providing reliable electricity is a very complicated and technically challenging

task. It involves real-time assessment, coordination, and control of thousands of generating units,

the movement of electric power over networks of transmission lines and, finally, the delivery of

electric power to the consumers.

In the past couple of decades, several nations have deregulated, or have started the process of

deregulating, their electricity markets, with various approaches (see Chao and Hantington (1998)).

The deregulation process in the US, which started with the Public Utilities Regulatory Policies Act of

1978 that encouraged the development of nonutility power producers that used renewable energy, has

had a dramatic effect on the US power market. By the end of 2000, approximately 20 percent of all

electric utility generating capacity had been sold to unregulated companies or had been transferred

to unregulated subsidiaries which sell their power in competitive markets. In addition, by February

1, 2005, more than 1200 companies were eligible to sell wholesale power at market-based rates in the

US (Source: Federal Energy Regulatory Commission; http://www.ferc.gov/industries/electric/gen-

info/pm-over.asp).

With the growth in power marketing companies in the US, the volume of power trades has in-

creased significantly in recent years. For example, in the first quarter of 1995, power marketers

traded 1.8 million megawatthours of electricity. By the first quarter of 1999, trade by power mar-

keters had increased to over 400 million megawatthours (source: http://www.eia.doe.gov).

The main motivation behind deregulation is to improve the efficiency and profitability of the

electricity market. However, the dramatic increase in the number of market participants trading over

the past few years, as well as changes to electricity trading patterns, have made system reliability

more difficult to maintain. The North American Electric Reliability Council (NERC) (see North

American Electric Reliability Council (1998)) reported that, “[in recent years] the adequacy of

the bulk power transmission system has been challenged to support the movement of power in

unprecedented amounts and in unexpected directions.” Moreover, a US Department of Energy Task

Force noted that “there is a critical need to be sure that reliability is not taken for granted as
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the industry restructures, and thus does not fall through the cracks”(Secretary of Energy Advisory

Board’s (SEAB) Task Force on Electric System Reliability (1998)).

All these concerns and the level of importance that reliable electric power has for everyday life

(as well as for national security) have helped to stimulate and propel significant research activity in

the area of electric power supply systems modeling and analysis. Several models have been proposed

for simulating the interaction of competing generation companies (see Kahn (1998) and Hobbs et

al. (2000)), as well as those that simulate the exercising of market power (Day et al. (2002)). Bolle

(1992), Green and Newbery (1992), von der Fehr and Harbord (1993), Green (1996), Newbery and

Pollitt (1997), Newbery (1998), and Wolfram (1998, 1999) have all analyzed electricity generation in

Great Britain, where two generating companies have dominated the market and, therefore, market

power may exist due to a small number of suppliers. A wide range of proposed models is focused

on different degrees of decentralization of the electricity market (see, e.g., Schweppe et al. (1988),

Hogan (1992), Chao and Peck (1996), Wu et al. (1996), and Willems (2002)). Some researchers,

in turn, have proposed model-based comparisons of different market mechanisms (see, for example,

Bower and Bunn (2000)).

Although the research and analytical effort has been quite impressive, during August – September

2003 major outages occurred in Northern America and Europe. First, on August 14, 2003, large

portions of the Midwest, the Northeastern United States, and Ontario, Canada, experienced an

electric power blackout. The outage affected an area with an estimated 50 million people and

61,800 megawatts (MW) of electric load in the states of Ohio, Michigan, Pennsylvania, New York,

Vermont, Massachusetts, Connecticut, New Jersey, and the Canadian province of Ontario. Parts of

Ontario suffered rolling blackouts for more than a week before full power was restored. Estimates

of the total associated costs in the United States ranged between $4 billion and $10 billion (U.S.

dollars). In Canada, the gross domestic product was down 0.7% in that August; there was a net

loss of 18.9 million work hours, and manufacturing shipments in Ontario were down by $2.3 billion

(Canadian dollars) (U.S.-Canada Power System Outage Task Force (2004)). In addition, two other

significant outages occurred during the month of September 2003 – one in England and one, initiated

in Switzerland, that cascaded over much of Italy. These events clearly indicate that recent changes

in the electric power markets require deep and thorough analyses.

In this paper, we build upon the work of Nagurney and Matsypura (2004) which proposed a

supply chain network equilibrium model for electric power generation, supply, transmission, and

consumption, that allowed for decentralized decision-making. Here we take that theoretical frame-

work further by:

1. introducing dynamics into the electric power supply chain network in the form of adjustment
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processes that enable the analysis of the electric power flows (and prices) due to the coupled inter-

actions over time between power generators, power marketers, transmission service providers, and

the demand markets;

2. introducing risk minimization as an explicit criterion in the multicriteria decision-making setting;

3. allowing for random demands associated with the demand for electricity at the demand markets,

and

4. introducing a speed of adjustment, which may be distinct for each continuous-time adjustment

process associated with the electric power supply chain network.

Note that, in wholesale electricity markets, prices typically vary from hour to hour. The vast

majority of end-users, however, do not have their consumption metered by the hour. Instead, their

consumption is metered several times a year and they are billed on a monthly basis. Since the power

marketers must purchase electricity at hourly varying prices and sell it to consumers at flat rates,

this system of metering and billing end-users introduces considerable risk to the power marketers.

Hence, we believe that it is necessary to consider risk minimization as one of the criteria faced by

the decision-makers in the electric power supply network. We model the risk minimization explicitly

which makes our model significantly different from recent models (see, e.g., Jing-Yuan and Smeers

(1999), Takriti et al. (2000), Boucher and Smeers (2001), and Daxhelet and Smeers (2001)).

Moreover, since we allow for the demand of electricity to be random, our new model is closer

to reality for the following reasons. First, the consumption of electric power in residential and

commercial sectors is heavily influenced by weather conditions which can be random in nature.

Second, the consumption of electric power in industrial sectors is governed by the demands for

various goods and services, which may have random demand patterns.

Another issue we deem important in our understanding of the dynamics of the electric power

supply chain network is the sensitivity of this system to changes in supply and/or demand, and

prices. For example, changes in supply and demand, which lead to price fluctuations, will cause the

market to react to these changes. The question of interest to us is: how quickly? We address this

question in detail by introducing what we call speeds of adjustments and by obtaining associated

new theoretical results which are supported by several computational experiments that help to

further illuminate the electric power flow and price patterns over time.

The remainder of the paper is organized as follows. In Section 2, we develop the dynamic electric

power supply chain network model, describe the various decision-makers and their behavior, and

construct the projected dynamical system formulation. The projected dynamical system describes

how the electricity transactions evolve over time between the tiers of the supply chain network as
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well as how the prices associated with the power suppliers and the demand markets evolve. We

then prove that the set of stationary points of the projected dynamical system is independent of

the speeds of adjustment. In Section 3, we propose an algorithm, which we then apply to several

illustrative numerical examples in Section 4. We conclude the paper with Section 5 in which we

summarize our results and suggest directions for future research.

2 The Dynamic Electric Power Supply Chain Network Model

under Risk and Uncertainty

In this Section, we develop the dynamic electric power supply chain network model in which risk

minimization is included as one of the decision-making criteria. In particular, we consider an electric

power supply chain network economy in which goods and services are limited to electric energy and

transmission services. The economy under consideration is depicted as (cf. Figure 1) a three tiered

electric power supply chain network consisting of: power generators, power suppliers, demand mar-

kets, and transmission service providers with the first three classes of decision-makers associated,

respectively, with the top tier, the middle tier, and the bottom tier nodes of the network. Transmis-

sion service providers (TSP), in turn, are modeled as different modes of transaction (transmission

modes) corresponding to distinct links connecting a given supplier node to a given demand market

node in Figure 1.
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Figure 1: The Electric Power Supply Chain Network

The following description of the decision-making agents is adopted from our previous work (see
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Nagurney and Matsypura (2004)) and is included here for completeness.

Power generators are those decision-makers who own and operate electricity generating facilities

or power plants. They produce electric power which is then sold to the power suppliers. The

prices that generators charge for the electricity that they produce is determined by the competitive

wholesale market. There is a total of G power generators, with a typical power generator denoted

by g. Power suppliers, in turn, bear a function of an intermediary. They buy electric power from

power generators and sell it to the consumers in different demand markets. We denote a typical

supplier by s and consider a total of S power suppliers.

Note that every node in the top tier of nodes in Figure 1 is connected to every node in the middle

tier. This connectivity represents the assumption that every power supplier (a node in the middle

tier) can buy electric energy from any power generator (top tier nodes). In addition, power suppliers

do not physically possess electric power at any stage of the supplying process; they merely hold the

rights for the electric power. Therefore, the links between the top and the middle tiers of nodes

in the network do not represent a physical connectivity but rather a decision-making connectivity

between each such pair of nodes. Of course, if there is no possibility of a transaction between a pair

of nodes then that link can just be removed from the network.

Electric power, regardless of where and how it is generated, must be delivered to the point

of consumption and this service is provided by the transmission service providers. Transmission

service providers are those entities that own and operate the electric transmission and distribution

systems. These are the companies that transmit electricity from generators via suppliers to demand

markets (homes and businesses). We assume that power suppliers cover the direct cost of the

physical transaction of electric power from power generators to the demand markets and, therefore,

have to make a decision as to from where to acquire the transmission services (and at what level).

Hence, transmission service providers do not make decisions as to where the electric power will be

acquired and to whom it will be delivered. As a consequence, we do not include them in the model

explicitly as nodes. Instead, as was mentioned earlier, their presence in the market is modeled as

different modes of transaction (transmission modes) corresponding to distinct links connecting a

given supplier node to a given demand market node in Figure 1.

We assume that there are T transmission service providers operating in the market, with a typical

transmission service provider denoted by t. For the sake of generality, we assume that every power

supplier can transact with every demand market using any of the transmission service providers or

any combination there of. Therefore, there are T links joining every node in the middle tier of the

network with every node at the bottom tier (see Figure 1). Again, depending on the application,

certain links can be removed, as necessary.
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The fourth type of decision-making agent in the model consists of the demand markets (or con-

sumers). They generate demand for the electric power that drives the generation and transmission

in the entire system, and are depicted as the bottom tier of nodes in Figure 1. There is a total of K

demand markets, with a typical demand market denoted by k, and distinguished from the others

through the use of appropriate characteristics, such as geographic location; the type of consumer;

that is, whether a business or household; etc.

We assume a competitive electric power market, meaning that the demand markets can choose

between different electric power suppliers (power marketers, brokers, etc.). We also assume that

a given power supplier negotiates with the transmission service providers and makes sure that

the necessary electric power is delivered. These assumptions fit well into the main idea of the

restructuring of the electric power industry that is now being performed in the US, the European

Union, and many other countries (see http://www.ferc.gov and http://www.europarl.eu.int).

Clearly, and as already noted, in certain situations, some of the links in the supply chain network

for electric power in Figure 1 may not exist (due, for example, to various restrictions, regulations,

lack of physical connections, etc.). Such cases can be handled within our framework by eliminat-

ing the corresponding link(s) from the supply chain network or (see further discussion below) by

assigning an appropriately high transaction cost associated with those link(s).

We now turn to the description of the dynamic adjustment processes associated with the dise-

quilibrium dynamics as the various electric power supply chain decision-makers adjust their electric

power transactions between the tiers and the prices associated with the different tiers adjust as well.

We begin with a discussion of the price dynamics and then describe the dynamics of the electric

power transactions.

2.1 Demand Market Price Dynamics

We begin by describing the dynamics underlying the prices of the electricity associated with the

demand markets since the demand for the electric power drives both its generation and the dis-

tribution. Let ρ3k denote the price of a unit of electric power associated with demand market k.

We assume that the demand for electric power at each demand market k is elastic and depends

not only on the price at the corresponding demand market but may, in general, also depend on the

entire vector of prices in the electric power supply chain network. This level of generality allows

one to facilitate the modeling of competition on the consumption side. For simplicity of notation,

we group all such prices into a column vector ρ3 = (ρ31, . . . , ρ3k, . . . , ρ3K)T .

Apart from the price, the demand for electric power may depend on additional factors. In
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residential areas, for example, weather conditions play a significant role because large amounts of

electricity are used for heating or cooling. The consumption of electric power in industrial sectors,

in turn, is also influenced by the demand for various goods and services. Hence, in order to make

our model more realistic we will consider the demand for electric power to be random and we will

model it in the following way, as suggested by Nagurney et al. (2005) for commodities.

Let d̂k(ρ3) denote the demand for electric power (in watts) at the demand market k associated

with the vector of prices ρ3, where d̂k(ρ3) is a random variable with density function Φk(x, ρ3), with

ρ3 serving as a parameter. Hence, we assume that the density function may vary with the demand

market prices. Let Pk be the probability distribution function of d̂k(ρ3), that is, Pk(x, ρ3) = Pk(d̂k ≤
x) =

∫ x
0 Φk(x, ρ3)dx.

Using the most natural and popular among economists assumption about the forces that influence

the behavior of the prices in the market economy (see, for example, Samuelson (1941), Metzler

(1945), and Arrow and Hurwicz (1958)), we assume that the rate of change of the price ρ3k, denoted

by ρ̇3k, is proportional to the difference between the expected demand, where the expected demand

is dk(ρ3k) ≡ E(d̂k(ρ3k)), and the total amount transacted with the demand market. This function

is assumed to be continuous. Moreover, the rate of change of the price ρ3k has the same sign as the

difference between the expected demand and the total amount transacted with the demand market.

Let now φk denote the speed of adjustment associated with the price at demand market k. This

term or factor is assumed to be positive. Hence, we have that for each demand market k:

ρ̇3k =

{
φk(dk(ρ3)−∑S

s=1

∑T
t=1 qt

sk), if ρ3k > 0
max{0, φk(dk(ρ3)−∑S

s=1

∑T
t=1 qt

sk)} if ρ3k = 0,
(1)

where qt
sk denotes the amount of electric power transacted (in watts) between nodes s and k through

link t.

Note that φk may also be interpreted as the sensitivity of the specific demand market to the

changes in the supply of and/or demand for the electric power. Each demand market may have

its own unique sensitivity, which, as will be shown later in this Section and numerically in Section

4, affects the dynamics of this particular demand market (and, hence, the rest of the dynamical

system). However, the value of the speed of adjustment will not affect the equilibrium pattern, as

we shall establish theoretically and also illustrate computationally.

Hence, if the expected demand for the electricity in the demand market (at any given instant

in time) exceeds the amount available, the price of the electric power in that demand market will

increase with the speed φk; if the amount available exceeds the demand at a particular price, then

the price in the demand market will decrease with the same speed φk. Furthermore, we guarantee

that the prices do not become negative.
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2.2 The Dynamics of the Prices at the Power Suppliers

Distinct power suppliers may be willing to pay a different price for electric power. The price must

reflect the supply and demand conditions, similar to that in the case of the demand markets. We

denote this price by γs and emphasize that it may be interpreted as a clearing-type price for supplier

s. Let γ̇s denote the rate of change of this price. Thus, we assume that the price γs, associated with

power supplier s, evolves over time according to:

γ̇s =

{
φs(

∑K
k=1

∑T
t=1 qt

sk −
∑G

g=1 qgs), if γs > 0
max{0, φs(

∑K
k=1

∑T
t=1 qt

sk −
∑G

g=1 qgs)}, if γs = 0,
(2)

and that such dynamics hold true for all the power suppliers in the system. Here qgs denotes the

amount of electric power in watts being transmitted between nodes g and s. The term φs is the

speed of adjustment of the price for the electricity at power supplier s. This term is also assumed

to be positive for all s; s = 1, . . . , S.

In other words, if the amount of the electric power transacted by the demand markets (at any

given instant in time) exceeds that available from a power supplier, then the price associated with

the power supplier will increase with the speed φs; if the amount available is greater than that

desired by the demand market, then the price associated with the power supplier will decrease with

the speed φs. As in the case of the demand market prices, we guarantee that this price remains

nonnegative.

2.3 Precursors to the Dynamics of the Electric Power Transactions

Before we describe the dynamics of the electric power transactions, it is necessary to describe the

behavior of the top two tiers of decision-makers, that is, the power generators and the suppliers,

and also to introduce some additional notation.

Let qg denote the electric power generation output (in watts) of generator g, which is a nonnega-

tive quantity. We group the generation outputs of all generators into the column vector q ∈ RG
+ and

assume that each power generator g has a power generation cost function fg, which can depend, in

general, on the entire vector of production outputs, that is,

fg = fg(q), ∀g. (3)

Hence, we consider the general situation in which the generation cost of a particular power generator

can depend not only on his production output but also on the production outputs of the other

generators. This allows one to model competition.
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All power generating cost functions are assumed to be convex and continuously differentiable.

We let qgs denote the electric power transacted between generator g and supplier s. Then, due

to the conservation of electric power flows, we must have that:

qg =
S∑

s=1

qgs, ∀g. (4)

We group all the electric power flows (transactions) qgs between the first and the second tier of

nodes into a column vector Q1 ∈ RGS
+ . Without loss of generality, we can now write, in view of the

power generation cost functions (3) and the conservation of flow equations (4):

fg = fg(Q
1), ∀g. (5)

As the production output reaches the capacity of a given generator, we can expect the production

cost to become very large.

While the electric power is being transmitted from a point of generation (node g), there will be

transaction costs associated with the transmission process. Let cgs denote the g-th power generator’s

transaction cost function, associated with transacting with power supplier s. Since different power

generators may utilize the same physical lines for the energy transmission the transaction cost of a

particular power generator may be a function of not only the amount of power transacted by this

particular power generator, but also the amount of power transacted by all other power generators

and supplier combinations, sharing the same physical line(s). Hence, for the sake of generality, we

let

cgs = cgs(Q
1), ∀g. (6)

These transaction cost functions are assumed to be convex and continuously differentiable.

Multicriteria Decision-Making Behavior of the Power Generators

It is assumed that each power generator seeks to maximize his profit which is the difference between

his total revenue and the total costs incurred. Let ρ1gs denote the price per unit of electric power

transacted between generator g and supplier s. We allow the power generator to set different prices

for different power suppliers. Hence, the profit maximization problem of power generator g can be

expressed as follows:

Maximize
S∑

s=1

ρ1gsqgs − fg(Q
1)−

S∑

s=1

cgs(Q
1) (7)

subject to: qgs ≥ 0, ∀s.
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In addition to the criterion of profit maximization, we also assume that each power generator

is concerned with risk minimization. Here, for the sake of generality, we assume, as given, a risk

function rg, for generator g, which is assumed to be convex and continuously differentiable and a

function of not only the product transactions associated with the particular generator but also of

those of other generators. Hence, we assume that

rg = rg(Q
1), ∀g. (8)

Therefore, the second criterion of power generator g can be expressed as:

Minimize rg(Q
1), (9)

subject to: qgs ≥ 0, for all s. The risk function may be distinct for each power generator.

Each power generator g considers the risk minimization criterion to be of a certain level of im-

portance, but this level is not necessarily the same for all generators. Consequently, we associate

a nonnegative weight αg with the risk minimization criterion (9), with the weight associated with

the profit maximization criterion (7) serving as the numeraire and being set equal to 1. Thus,

we can construct a value function for each power generator (cf. Fishburn (1970), Chankong and

Haimes (1983), Yu (1985), Keeney and Raiffa (1993)) using a constant additive weight value func-

tion. Consequently, letting Ug denote the multicriteria objective function faced by generator g, the

decision-making problem for generator g, for g = 1, . . . , G, can be transformed into:

Maximize Ug =
S∑

s=1

ρ1gsqgs − fg(Q
1)−

S∑

s=1

cgs(Q
1)− αgrg(Q

1) (10)

subject to:

qgs ≥ 0, ∀s. (11)

We assume that the generators compete in a noncooperative manner according to Nash (1950,

1951). In this context, we will have that each generator will determine his optimal generation

quantity and transactions, given the optimal ones of his competitors. We ignore, for the time being,

the nonnegativity constraints on the transaction variables.

Let the gradient of power generator g’s multicriteria objective function Ug with respect to the

qg variables be denoted by: ∇qgUg = ( ∂Ug

∂qg1
, . . . , ∂Ug

∂qgS
). This gradient represents power generator g’s

idealized direction with respect to qg, with the gs-component of ∇qgUg being given by:

(
ρ1gs − ∂fg(Q

1)

∂qgs

− ∂cgs(Q
1)

∂qgs

− αg
∂rg(Q

1)

∂qgs

)
. (12)
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Subsequently, we will include the nonnegativity assumption on the electric power transactions, when

we construct the projected dynamical system that captures the dynamics of all the electric power

transactions and prices.

Multicriteria Decision-Making Behavior of the Power Suppliers

We now turn to the description of the behavior of the power suppliers. The term power supplier

refers to power marketers, traders, and brokers, who arrange for the sale and purchase of the output

of the generators to other suppliers or load-serving entities, or in many cases, serve as load-serving

entities themselves. They play a fundamental role in the model since they are responsible for

acquiring electricity from power generators and delivering it to the demand markets. Therefore,

power suppliers are involved in transactions with both power generators and the demand markets

through transmission service providers.

We assume that a typical power supplier s is faced with two kinds of costs. The first type of cost

is the operating cost associated with maintaining the office, licensing, etc. We denote this cost by

cs. Recall from our previous discussion that qt
sk denotes the amount of electricity being transacted

between power supplier s and demand market k via the link corresponding to the transmission

service provider t. We group all transactions associated with power supplier s and demand market

k into the column vector qsk ∈ RT
+. We then further group all such vectors associated with all the

power suppliers into a column vector Q2 ∈ RSTK
+ . For the sake of generality and to enhance the

modeling of competition, we assume that

cs = cs(Q
1, Q2), ∀s. (13)

Let ĉgs, in turn, denote the transaction cost associated with power supplier s acquiring electric

power from power generator g, where we assume that:

ĉgs = ĉgs(Q
1), ∀g, ∀s. (14)

Let ct
sk denote the transaction cost associated with power supplier s transmitting electric power

to demand market k via transmission service provider t, where:

ct
sk = ct

sk(Q
2), ∀t, ∀s, ∀k. (15)

We assume that all the above transaction cost functions are convex and continuously differen-

tiable.

Let ρt
2sk denote the price associated with the transaction between power supplier s and demand

market k via transmission service provider t. The total revenue the power supplier obtains from his
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transactions is equal to the sum over all the modes of transmission and all the demand markets of

the price times the amount of electric power transacted with the demand market using the particular

transmission mode. Indeed, the total revenue of power supplier s can mathematically be expressed

as follows:
K∑

k=1

T∑

t=1

ρt
2skq

t
sk. (16)

It is assumed, as in the case of power generators, that each power supplier seeks to maximize

his profit which is the difference between his total revenue and the total costs incurred. Hence, the

optimization problem of the power supplier s can be expressed as follows:

Maximize
K∑

k=1

T∑

t=1

ρt
2skq

t
sk − cs(Q

1, Q2)−
G∑

g=1

ρ1gsqgs −
G∑

g=1

ĉgs(Q
1)−

K∑

k=1

T∑

t=1

ct
sk(Q

2) (17)

subject to:
K∑

k=1

T∑

t=1

qt
sk ≤

G∑

g=1

qgs (18)

qgs ≥ 0, ∀g (19)

qt
sk ≥ 0, ∀k, ∀t. (20)

Constraint (18) is a conservation of flow constraint and states that a power supplier cannot

transact more electric power than he has obtained from the various power generators. Constraints

(19) and (20), in turn, are nonnegativity assumptions.

We assume that power supplier s is faced with his own perception of risk associated with obtaining

and supplying the electric power, which we assume is incorporated into a continuous risk function

of a general form given by:

rs = rs(Q
1, Q2), ∀s. (21)

Note that we allow the risk function of a particular supplier to depend on the transactions to

and from all the power suppliers in the electric power supply chain network. Therefore, the second

criterion of power supplier s can be expressed as:

Minimize rs(Q
1, Q2), (22)

subject to: qgs ≥ 0, ∀g and qt
sk ≥ 0, ∀k, ∀t.

We assume also that each power supplier s associates a weight of 1 with the profit maximization

criterion (17) and a weight of βs with his risk level. Hence, the multicriteria decision-making problem

13



for supplier s; s = 1, . . . , S, faced now with a multicriteria objective function denoted by Us can be

transformed directly into the optimization problem:

Maximize Us =
K∑

k=1

T∑

t=1

ρt
2skq

t
sk − cs(Q

1, Q2)−
G∑

g=1

ρ1gsqgs −
G∑

g=1

ĉgs(Q
1)−

K∑

k=1

T∑

t=1

ct
sk(Q

2)−

βsrs(Q
1, Q2) (23)

subject to:
K∑

k=1

T∑

t=1

qt
sk ≤

G∑

g=1

qgs (24)

qgs ≥ 0, ∀g (25)

qt
sk ≥ 0, ∀k, ∀t. (26)

Objective function (23) represents a value function for power supplier s with βs having the

interpretation as a conversion rate in dollar value.

For simplicity of notation, we let qs = (q1s, . . . , qgs, . . . , qGs) and qs = (q1
s1, . . . , q

t
sk, . . . , q

T
sK).

Ignoring, for the time being, the nonnegativity constraints (as was done above for the generators),

and constraint (24), ∇qsUs = (∂Us

q1s
, . . . , ∂Us

qGs
) represents supplier s’s idealized direction in terms of qs,

where component gs is given by:

(
−∂cs(Q

1, Q2)

∂qgs

− ∂ĉgs(Q
1)

∂qgs

− ρ1gs − βs
∂rs(Q

1, Q2)

∂qgs

)
, (27)

whereas∇qsUs = (∂Us

q1
s1

, . . . , ∂Us

qT
sK

) represents supplier s’s idealized direction in terms of the qs variables,

with component tsk given by:

(
ρt

2sk −
∂cs(Q

1, Q2)

∂qt
sk

− ∂ct
sk(Q

2)

∂qt
sk

− βs
∂rs(Q

1, Q2)

∂qt
sk

)
. (28)

However, generator g and supplier s must agree on the volume of qgs in order for the transaction

to actually take place. Therefore, direction (12) of generator g must coincide with direction (27) of

supplier s, and also respond to the price signal γs, yielding, after algebraic simplification, a combined

direction, which signifies cooperation, given by:

(
γs − ∂fg(Q

1)

∂qgs

− ∂cgs(Q
1)

∂qgs

− αg
∂rg(Q

1)

∂qgs

− ∂cs(Q
1, Q2)

∂qgs

− ∂ĉgs(Q
1)

∂qgs

− βs
∂rs(Q

1, Q2)

∂qgs

)
. (29)

Moreover, (29) must hold for all g and s for the supply chain to allow for links between the top two

tiers of nodes.
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In addition from the consumers’ perspective, we have that idealized direction is one where the

amount of flow of the electric power between a supplier/demand market pair (s, k) transacted via

transmitter t is given by:

ρ3k − ρt
2sk − ĉt

sk(Q
2), ∀t, (30)

where the constraints are ignored for the time being.

Furthermore, since the consumers at demand market k must agree with the supplier s as to the

amount of flow qt
sk, adding (28) plus the term (30), and noting that they, in turn, must also be

responsive to the price signals at the suppliers, yields a combined direction of:

(
ρ3k − ĉt

sk(Q
2)− ∂cs(Q

1, Q2)

∂qt
sk

− ∂ct
sk(Q

2)

∂qt
sk

− βs
∂rs(Q

1, Q2)

∂qt
sk

− γs

)
. (31)

We are now ready to express the dynamics of the electric power transactions between the tiers

of decision-makers in the electric power supply chain network. Moreover, we now explicitly include

the nonnegativity constraints associated with the electricity transactions and note that (24) has

actually been subsumed within the power supplier price dynamics given by (2). We then provide a

unified expression in the form of a projected dynamical system for the dynamic evolution of all the

electric power transactions and the electricity prices simultaneously.

The adjustment assumptions to be introduced are in concert with what suggested by a number

of prominent economists (see, for example, Fisher (1961)) and are based on the following reasoning.

The rate of change in the amount of good (here, electric power) produced/transacted by a particular

decision-maker is proportional to his marginal profit and has the same sign. In other words, a typical

decision-maker will try to increase his output for as long as the marginal profit is nonnegative, and

will try to decrease his output for as long as the marginal profit is negative until the output is zero

(that is, hits the boundary for the variable). As was stated earlier, for any transaction to take place,

the decision-makers involved have to agree on the amount to be transacted. Thus, the marginal

profit of the transaction is represented by the combined direction. Therefore, we can expect that

the rate of change in the amount of product transacted between two particular decision-makers is

proportional to their combined optimal direction.

2.4 The Dynamics of the Electricity Transactions between Power Gen-
erators and Suppliers

Let φgs > 0 denote the speed of adjustment associated with the amount of electric power qgs trans-

acted between power generator g and power supplier s. In order to guarantee that the electricity
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transactions do not assume negative quantities, we propose the following dynamics for the transac-

tions between each power generator g and power supplier s with q̇gs denoting the rate of change of

qgs:

q̇gs =





φgs(γs − ∂fg(Q1)
∂qgs

− ∂cgs(Q1)
∂qgs

− αg
∂rg(Q1)

∂qgs

−∂cs(Q1,Q2)
∂qgs

− ∂ĉgs(Q1)
∂qgs

− βs
∂rs(Q1,Q2)

∂qgs
), if qgs > 0

max{0, φgs(γs − ∂fg(Q1)
∂qgs

− ∂cgs(Q1)
∂qgs

− αg
∂rg(Q1)

∂qgs

−∂cs(Q1,Q2)
∂qgs

− ∂ĉgs(Q1)
∂qgs

− βs
∂rs(Q1,Q2)

∂qgs
)}, if qgs = 0.

(32)

Another way of interpreting the above expression is the following. Whenever there is a positive

difference between the shadow price of the power supplier and the aggregated marginal costs and

risks associated with a transaction, the amount of flow on that particular link will increase. Oth-

erwise, the amount of flow will either decrease or remain the same; see also, Nagurney and Dong

(2002).

2.5 The Dynamics of the Electricity Transactions between Power Sup-
pliers and Demand Markets

The combined direction associated with a transaction between a power supplier and demand market

pair via a particular transmission service provider, in turn, is given by expression (31) but now we

guarantee that the evolution of the electric power transactions cannot yield negative values. We

also introduce a speed adjustment parameter φt
sk > 0 ∀s, k, t similar to the above. Hence, letting q̇t

sk

denote the rate of change of the electric power transaction between supplier s and demand market

k, through a transmission service provider t we obtain the following dynamics, which we assume

hold true for all power suppliers, all demand markets, and all transmission service providers:

q̇t
sk =





φt
sk(ρ3k − ĉt

sk(Q
2)− ∂cs(Q1,Q2)

∂qt
sk

− ∂ct
sk(Q2)

∂qt
sk

− βs
∂rs(Q1,Q2)

∂qt
sk

− γs), if qt
sk > 0

max{0, φt
sk(ρ3k − ĉt

sk(Q
2)− ∂cs(Q1,Q2)

∂qt
sk

− ∂ct
sk(Q2)

∂qt
sk

− βs
∂rs(Q1,Q2)

∂qt
sk

− γs)}, if qt
sk = 0.

(33)

2.6 The Projected Dynamical System

Consider now a dynamical system in which all the demand market prices evolve according to (1); all

the prices at the power suppliers evolve according to (2); the amounts of electric power transacted
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between power generators and suppliers evolve according to (32), and those between suppliers and

demand markets via transmission service providers all evolve according to (33).

Let now X denote the aggregate column vector (Q1, Q2, γ, ρ3) in the feasible setK≡RGS+SKT+S+K
+ .

Define the column vector

F (X) ≡ (Fgs, F
t
sk, Fs, Fk)g=1,...,G;s=1,...,S;t=1,...,T ;k=1,...,K ,

with components: −Fgs given by (29), ∀g, s; −F t
sk given by (31), ∀s, k, t; −Fs≡φs(

∑K
k=1

∑T
t=1 qt

sk −∑G
g=1

∑S
s=1 qgs), ∀s; −Fk ≡ φk(dk(ρ3)−∑S

s=1

∑T
t=1 qt

sk), ∀k.

Then the dynamic model described by (1), (2), (32), and (33) for all g, s, k, t, can be rewritten

as a projected dynamical system (PDS) (see Nagurney and Zhang (1996)) defined by the following

initial value problem:

Ẋ = ΠK(X,−F (X)), X(0) = X0, (34)

where ΠK is the projection operator of −F (X) onto K at X and X0 = (Q10, Q20, γ0, ρ0
3) is the initial

point corresponding to the electric power flow and price pattern. Note that since the feasible set K
is simply the nonnegative orthant the projection operation takes on a very simple form as revealed

through (1), (2), (32), and (33).

A Stationary/Equilibrium Point

Recall that a stationary point of a dynamical system is that point where Ẋ = 0 and, hence, in

the context of our model, when there is no change in the electric power transactions in the electric

power supply chain network and no change in the prices.

The following result is immediate from the results in Dupuis and Nagurney (1993).

Theorem 1: Set of Stationary Points Coincides with the Set of Solutions of a Variational

Inequality Problem

Since the feasible set K is a convex polyhedron, the set of stationary points of the projected dynamical

system given by (34), that is, X∗ such that 0 = ΠK(X∗,−F (X∗)), coincides with the set of solutions

to the variational inequality problem given by: determine X∗ ∈ K, such that

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (35)

where F (X) and X are as defined above and 〈·, ·〉 denotes the inner product in N-dimensional

Euclidian space where here N = GS + SKT + S + K, or, explicitly, we have that an electric power

transaction and price pattern X∗ ≡ (Q1∗, Q2∗, γ∗, ρ∗3) ∈ K is a stationary point of the projected
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dynamical system (34) if and only if it satisfies the variational inequality problem:

G∑

g=1

S∑

s=1

φgs

[
∂fg(Q

1∗)
∂qgs

+
∂cgs(Q

1∗)
∂qgs

+ αg
∂rg(Q

1)

∂qgs

+
∂cs(Q

1∗, Q2∗)
∂qgs

+
∂ĉgs(Q

1∗)
∂qgs

+

βs
∂rs(Q

1, Q2)

∂qgs

− γ∗s

]
× [qgs − q∗gs]

+
S∑

s=1

K∑

k=1

T∑

t=1

φt
sk

[
∂cs(Q

1∗, Q2∗)
∂qt

sk

+
∂ct

sk(Q
2∗)

∂qt
sk

+ ĉt
sk(Q

2∗) + βs
∂rs(Q

1, Q2)

∂qt
sk

+ γ∗s − ρ∗3k

]
× [qt

sk − qt∗
sk]

+
S∑

s=1

φs




G∑

g=1

q∗gs −
K∑

k=1

T∑

t=1

qt∗
sk


× [γs − γ∗s ] +

K∑

k=1

φk

[
S∑

s=1

T∑

t=1

qt∗
sk − dk(ρ

∗
3)

]
× [ρ3k − ρ∗3k] ≥ 0,

∀(Q1, Q2, γ, ρ3) ∈ K. (36)

We now present several properties of the PDS defined by the initial value problem (34) that

follow from the theory of projected dynamical systems.

Theorem 2: Existence and Uniqueness

Assume that function F that enters the initial value problem (34) is Lipschitz continuous. Then,

for any X0 ∈ K, there exists a unique solution X0(t) to the initial value problem (34).

Proof: Follows from Theorem 2.5 in Nagurney and Zhang (1996).

Definition 1: Stability of the System

The system defined by (38) is stable if, for every X0 and every equilibrium point X∗, the Euclidean

distance ‖X∗ −X0(t)‖ is a monotone nonincreasing function of time t.

Using Definition 1, a global stability result for the dynamical system (34) can be stated as follows:

Theorem 3: Stability of the Electric Power Supply Chain Network

Assume that function F that enters the initial value problem (34) is monotone. Then the dynamical

system (34) underlying the electric power supply chain network with risk and uncertainty is stable.

Proof: F (X) is monotone and, hence, the conclusion follows directly from Theorem 4.1 of Zhang

and Nagurney (1995).
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2.7 More Theoretical Results

We now investigate the following question: what can be said regarding the set of stationary points

of the projected dynamical system (34), which coincides with the set of solutions to variational

inequality (35), and the set of stationary points associated with the projected dynamical system in

which all of the speeds of adjustment are identical, with the special case being that all speeds are

equal to one (and the equivalent equilibria)? In other words, do the speeds of adjustment affect the

solutions?

We provide the answer in the form of the following theorem, but, first, we need to introduce

some notation. We express the components of F (X) above, for simplicity, as F1, . . . , FN and recall

that the feasible set is the nonnegative orthant. We denote variational inequality (35) by VI(F,K).

Theorem 4

Assume that K is the convex polyhedron given by RN
+ and that φ ≡ (φ1, . . . , φN) is a vector of

positive terms. Then, the set of stationary points of the projected dynamical system given in (34),

which coincides with the set of solutions X∗ to variational inequality (35), is equivalent to the set

of solutions to the variational inequality VI(F ′,K) where:

F ′ ≡ (F ′
1, . . . , F

′
N)

and

F ≡ (φ1F
′
1, . . . , φnF

′
N). (37)

Proof: From Theorem 1 we know that the set of stationary points of (34) coincides with the set of

solutions to VI(F,K). We now prove that the solutions to VI(F,K) coincide with the solutions to

VI(F ′,K), that is, when the speeds of adjustment are all identically equal to one.

We first prove that if X∗ solves VI(F,K) then it also solves VI(F ′,K). Since X∗ ≡ (X∗
1 , X

∗
2 , . . . , X

∗
N)

is a solution to VI(F,K), the following must hold, by definition:

N∑

i=1

[Fi(X
∗)]× [Xi −X∗

i ] = F1(X
∗)× [X1 −X∗

1 ] + . . . + FN(X∗)× [XN −X∗
N ]

= φ1F
′
1(X

∗)×[X1−X∗
1 ]+φ1F

′
2(X

∗)×[X2−X∗
2 ]+. . .+φ1F

′
N(X∗)×[XN−X∗

N ] ≥ 0, ∀X ∈ K. (38)

Setting now X2 = X∗
2 , . . . , XN = X∗

N and substituting the resultants into (38), yields:

φ1F
′
1(X

∗)× [X1 −X∗
1 ] ≥ 0 ⇔ F ′

1(X
∗)× [X1 −X∗

1 ] ≥ 0, ∀X1 ∈ R+, (39)
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and for any scalar φ1 > 0.

In a similar manner, we may set X1 = X∗
1 , X3 = X∗

3 , . . . , XN = X∗
N with substitution into (38)

yielding:

φ2F
′
2(X

∗)× [X2 −X∗
2 ] ≥ 0 ⇔ F ′

2(X
∗)× [X2 −X∗

2 ] ≥ 0, ∀X2 ∈ R+, (40)

for any scalar φ2 > 0.

Proceeding in the same fashion with all the remaining Xi variables, we obtain:

F ′
1(X

∗)× [X1 −X∗
1 ] ≥ 0, ∀X1 ∈ R+, F ′

2(X
∗)× [X2 −X∗

2 ] ≥ 0, ∀X2 ∈ R+,

. . . F ′
N(X∗)× [XN −X∗

N ] ≥ 0, ∀XN ∈ R+. (41)

Summation of all the inequalities in (41) yields:

N∑

i=1

F ′
i (X

∗)× [Xi −X∗
i ] = 〈F ′(X∗), X −X∗〉 ≥ 0, ∀X ∈ K ≡ RN

+ . (42)

Hence, we have shown that X∗ is also a solution to VI(F ′,K).

We now establish the converse, that is, if X ′ solves VI(F ′,K), it also solves VI(F,K). Let X ′ be

a solution to VI(F ′,K). Then the following must hold:

N∑

i=1

[F ′
i (X

′)]× [Xi −X ′
i] = F ′

1(X
′)× [X1 −X ′

1] + . . . + F ′
N(X ′)× [XN −X ′

N ] ≥ 0, ∀X ∈ K. (43)

Setting now: X2 = X ′
2, . . . , XN = X ′

N (all the variables except for the first) and substituting the

resultants into (43), we obtain:

F ′
1(X

′)× [X1 −X ′
1] ≥ 0 ⇔ φ1F

′
1(X

′)× [X1 −X ′
1] = F1(X

′)× [X1 −X ′
1] ≥ 0, ∀X1 ∈ R+, (44)

for any scalar φ1 > 0.

In a similar manner, we set: X1 = X ′
1; X3 = X ′

3,. . .; XN = X ′
N with substitution into (43)

yielding:

F ′
2(X

′)× [X2 −X ′
2] ≥ 0 ⇔ φ2F

′
2(X

′)× [X2 −X ′
2] = F2(X

′)× [X2 −X ′
2] ≥ 0, ∀X2 ∈ R+, (45)

for any scalar φ2 > 0.

Proceeding in the same manner with all the remaining variables, we conclude that

F1(X
′)× [X1 −X ′

1] ≥ 0, ∀X1 ∈ R+, F2(X
′)× [X2 −X ′

2] ≥ 0, ∀X2 ∈ R+,
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. . . FN(X ′)× [XN −X ′
N ] ≥ 0, ∀XN ∈ R+, (46)

which leads us to conclude that

N∑

i=1

Fi(X
′)× [Xi −X ′

i] = 〈F (X ′), X −X ′〉 ≥ 0, ∀X ∈ K ≡ RN
+ . (47)

Therefore, X ′ solves VI(F,K).

Hence, we have established that the set of stationary points of:

Ẋ = ΠK(X,−F (X)), X(0) = X0 ∈ K,

that is, X∗ satisfying:

0 = ΠK(X∗,−F (X∗)), (48)

coincides with the set of solutions of VI(F ′,K).

In other words we have proven that the set of equilibria of the electric power supply chain network

are independent of the speeds of adjustment. We explore this issue computationally in Section 4.

3 The Euler Method

In this Section, we consider the computation of the stationary points of (34). Recall that the

projected dynamical system (34) is a continuous-time adjustment process. However, in order to

provide a means of “tracking” the trajectory, a discrete-time adjustment process is proposed, which

is a special case of a general iterative scheme of Dupuis and Nagurney (1993) and is, in fact, an

Euler method. It has been applied to-date to solve a plethora of dynamic network models (see,

e.g., Nagurney and Zhang (1996), Nagurney and Dong (2002), Nagurney and Matsypura (2003)).

Specifically, the complete statement of this method in context of our model takes the following form.

The Euler Method

Step 0: Initialization

Set X0 = (Q10, Q20, γ0, ρ0
3) ∈ K. Let T denote an iteration counter and set T = 1. Set the

sequence {αT } so that
∑∞
T =1 αT = ∞, αT > 0, and αT → 0, as T → ∞ (which is a requirement for

convergence).
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Step 1: Computation

Compute XT = (Q1T , Q2T , γT , ρT3 ) ∈ K by solving the variational inequality subproblem:

〈XT + αT F (XT −1)−XT −1, X −XT 〉 ≥ 0, ∀X ∈ K. (49)

Step 2: Convergence Verification

If |XT −XT −1| ≤ ε, with ε > 0, a pre-specified tolerance, then stop; otherwise, set T := T +1, and

go to Step 1.

Convergence results for the Euler method can be found in Dupuis and Nagurney (1993). See the

book by Nagurney and Dong (2002) for applications of this algorithm to other network problems

in the context of dynamic supply chains and financial networks with intermediation.

Due to the fact that the feasible set underlying the dynamic electric power supply chain network

model is that of the nonnegative orthant, the solution of (49) takes on a very simple form for

computational purposes, which we state explicitly below.

Computation of Electric Power Transactions between Tiers Using Explicit Formulae

In particular, we have that the electric power transactions between tiers of decision-makers in the

electric power supply chain network can be computed explicitly and in closed form as follows for a

given iteration T :

qTgs = max{0, qT −1
gs −αT φgs

(∂fg(Q
1(T −1))

∂qgs

+
∂cgs(Q

1(T −1))

∂qgs

+αg
∂rg(Q

1(T −1))

∂qgs

+
∂cs(Q

1(T −1), Q2(T −1))

∂qgs

+

∂ĉgs(Q
1(T −1))

∂qgs

+ βs
∂rs(Q

1(T −1), Q2(T −1))

∂qgs

− γT −1
s

)
}, ∀g, s; (50)

and

qtT
sk = max{0, qt(T −1)

sk − αT φt
sk

(
γT −1

s + ĉt
sk(Q

2(T −1)) +
∂cs(Q

1(T −1), Q2(T −1))

∂qt
sk

+
∂ct

sk(Q
2(T −1))

∂qt
sk

+

βs
∂rs(Q

1(T −1), Q2(T −1))

∂qt
sk

− ρT −1
3k

)
}, ∀s, k, t. (51)

Computation of Electricity Prices Using Explicit Formulae

Similarly, the prices associated with the middle tier and the bottom tier of nodes of the dynamic

electric power supply chain network can also be computed explicitly and in closed form, at a given
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iteration T , according to:

γTs = max{0, γT −1
s − αT φs




G∑

g=1

qT −1
gs −

K∑

k=1

T∑

t=1

q
t(T −1)
sk


}, ∀s, (52)

and

ρT3k = max{0, ρT −1
3k − αT φk

(
S∑

s=1

T∑

t=1

q
t(T −1)
sk − dk(ρ

T −1
3 )

)
}, ∀k. (53)

Moreover, the above computations can be done simultaneously and independently. The Euler

method, hence, provides us with a discrete-time adjustment process by which the network decision-

makers adjust their electric power transactions and the prices associated with the middle and bottom

tiers of the network also adjust.

4 Numerical Examples

In this Section, we apply the Euler method to several numerical examples. The Euler method

was coded in Java and Matlab, and the computer used was a Dell Latitude X200 system. The

convergence criterion utilized was that the absolute value of the electric power transactions and

prices between two successive iterations differed by no more than 10−4. The parameter αT in the

Euler method was set to {1, 1
2
, 1

2
, 1

3
, 1

3
, 1

3
, ...} for all the examples.

The structure of the electric power supply chain network for the numerical examples is given

in Figure 2. Specifically, we assumed that there were three power generators, two power suppliers,

one transmission service provider, and three demand markets. Hence, we had that G = 3, S = 2,

T = 1, and K = 3.

In all the examples, we assumed that the demands associated with the demand markets followed

a uniform distribution. In particular, we assumed that the random demand d̂k(ρ3k) associated with

demand market k is uniformly distributed in
[
0, bk

ρ3k+1

]
, with bk > 0; k = 1, 2, 3. Therefore, we have

that

Pk(x, ρ3k) =
x(ρ3k + 1)

bk

; k = 1, 2, 3, (54)

Fk(x, ρ3k) =
ρ3k + 1

bk

; k = 1, 2, 3, (55)

dk(ρ3k) = E(d̂k) =
1

2

bk

(ρ3k + 1)
; k = 1, 2, 3. (56)
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Figure 2: Electric Power Supply Chain Network for the Numerical Examples

It is straightforward to verify that the expected demand function dk(ρ3k) associated with demand

market k is a decreasing function of the price at this demand market.

There are four experiments associated with each example. The experiments differ from one

another in the values of the vector of speed of adjustment parameters φ, where

φ ≡ {φ11, . . . , φGS, φ1
11, . . . , φ

T
SK , φ1, . . . , φS, φ1, . . . , φK}.

Table 1 presents the values of the φ’s that were used in each of the experiments for numerical

examples 1 through 4.

The Euler method was initialized as follows: all variables were set equal to zero, except for the

initial demand market prices ρ0
3k, which were set to 1 for all k. For completeness and illustrative

purposes, the graphs of the dynamic trajectories of the variables: q11. q12, q1
11, γ1, and ρ1

31 are given

in the Appendix for Examples 1 through 4. The behavior of the remaining variables is similar but

space limitations prevent us from including the trajectories of all the variables over time.

Example 1

The power generating cost functions for the power generators were given by:

f1(q) = 2.5q2
1 + q1q2 + 2q1, f2(q) = 2.5q2

2 + q1q2 + 2q2, f3(q) = .5q2
3 + .5q1q3 + 2q3.

The transaction cost functions faced by the power generators and associated with transacting

with the power suppliers were given by:

c11(Q
1) = .5q2

11 + 3.5q11, c12(Q
1) = .5q2

12 + 3.5q12, c21(Q
1) = .5q2

21 + 3.5q21, c22(Q
1) = .5q2

22 + 3.5q22,
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Associated
Variable Parameter Experiment 1 Experiment 2 Experiment 3 Experiment 4

q11 φ11 1 1 0.5 0.5
q12 φ12 1 1 1 0.7
q21 φ21 1 1 1 1
q22 φ22 1 1 1 1
q31 φ31 1 1 1 1
q32 φ32 1 1 1 1
q1
11 φ1

11 1 1 1 1
q1
12 φ1

12 1 1 1 1
q1
13 φ1

13 1 1 1 1
q1
21 φ1

21 1 1 1 1
q1
22 φ1

22 1 1 1 1
q1
23 φ1

23 1 1 1 1
γ1 φ1 1 1 1 0.5
γ2 φ2 1 1 1 0.3
ρ31 φ1 1 0.5 0.5 0.5
ρ32 φ2 1 0.5 0.5 0.5
ρ33 φ3 1 0.5 0.5 0.5

Table 1: Values of φ

c31(Q
1) = .5q2

31 + 2q31, c32(Q
1) = .5q2

32 + 2q32.

The operating costs of the power suppliers, in turn, were given by:

c1(Q
1, Q2) = .5(

3∑

i=1

qi1)
2, c2(Q

1, Q2) = .5(
3∑

i=1

qi2)
2.

The bks (cf. (54) – (56)) were set to 1000 for all k.

In Example 1, we set all the weights associated with risk minimization to zero, that is, we had

that αg = 0 for g = 1, 2, 3 and βs = 0 for s = 1, 2. This means that in the first example all the

generators and all the suppliers were concerned with profit maximization exclusively.

It is evident from Table 2 that in each of the four experiments the electric power supply chain

network system achieves the equilibrium state, as substantiated by Theorem 4. In other words,

the equilibrium electric power flow and price patterns are essentially the same, regardless of the

adjustment speeds.

Another interesting (but expected) feature (cf. Figures 3 through 7 in the Appendix) is that

the trajectories of the variables change depending on the values of the φ parameters. This behavior

is reasonable since, indeed, one would expect that larger, that is, faster speeds of adjustment (i.e.,
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Computed Equilibrium Values

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Number of Iterations 1101 892 794 2702

q∗11 2.12 2.12 2.12 2.12
q∗12 2.12 2.12 2.12 2.13
q∗21 2.12 2.12 2.12 2.12
q∗22 2.12 2.12 2.12 2.13
q∗31 8.99 8.98 8.98 8.99
q∗32 8.99 8.98 8.98 9.00
q∗111 4.41 4.41 4.41 4.41
q∗112 4.41 4.41 4.41 4.41
q∗113 4.41 4.41 4.41 4.41
q∗121 4.41 4.41 4.41 4.41
q∗122 4.41 4.41 4.41 4.41
q∗123 4.41 4.41 4.41 4.41
γ∗1 46.32 46.27 46.27 46.37
γ∗2 46.32 46.27 46.27 46.37
ρ∗31 55.73 55.68 55.68 55.78
ρ∗32 55.73 55.68 55.68 55.78
ρ∗33 55.73 55.68 55.68 55.78

Table 2: Solutions to Example 1

those with higher values of φ) would imply that the associated equilibrium value of the variable

involved would be reached “more quickly.”
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Computed Equilibrium Values

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Number of Iterations 1117 926 829 2732

q∗11 1.83 1.83 1.83 1.83
q∗12 1.83 1.83 1.83 1.83
q∗21 2.20 2.19 2.19 2.20
q∗22 2.20 2.19 2.19 2.20
q∗31 9.16 9.15 9.15 9.18
q∗32 9.16 9.15 9.15 9.18
q∗111 4.40 4.39 4.39 4.40
q∗112 4.40 4.39 4.39 4.40
q∗113 4.40 4.39 4.39 4.40
q∗121 4.40 4.39 4.39 4.39
q∗122 4.40 4.39 4.39 4.39
q∗123 4.40 4.39 4.39 4.39
γ∗1 46.51 46.46 46.46 46.57
γ∗2 46.51 46.46 46.46 46.57
ρ∗31 55.91 55.86 55.86 55.96
ρ∗32 55.91 55.86 55.86 55.96
ρ∗33 55.91 55.86 55.86 55.96

Table 3: Solutions to Example 2

Example 2

Example 2 was constructed from Example 1 as follows. We kept the data as in Example 1 but we

assumed now that the first generator was a multicriteria decision-maker and concerned with risk

minimization with his risk function being given by:

r1 = (
2∑

s=1

q1s − 2)2.

The weight associated with his risk measure was α1 = 1.

Addition of a risk minimization criterion to the optimization problem of power generator 1

resulted in an overall decrease of the amount of electric power generated and transacted by this

decision-maker (see Table 3). Consequently, the shortages in the supply were partially compensated

by power generators 2 and 3. As a result, the prices at demand markets and power suppliers

increased. Please refer to Figures 8 through 12 for the dynamic trajectories of selected electric

power flow and price variables.

Example 3

Example 3 was constructed from Example 2 as follows. We kept the data as in Example 2 but we
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Computed Equilibrium Values

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Number of Iterations 1120 936 841 2738

q∗11 1.87 1.87 1.87 1.87
q∗12 1.77 1.77 1.77 1.77
q∗21 2.24 2.24 2.24 2.24
q∗22 2.14 2.14 2.14 2.14
q∗31 9.19 9.18 9.18 9.20
q∗32 9.09 9.08 9.08 9.10
q∗111 4.43 4.43 4.43 4.43
q∗112 4.43 4.43 4.43 4.43
q∗113 4.43 4.43 4.43 4.43
q∗121 4.33 4.33 4.33 4.33
q∗122 4.33 4.33 4.33 4.33
q∗123 4.33 4.33 4.33 4.33
γ∗1 46.61 46.56 46.56 46.66
γ∗2 46.71 46.66 46.66 46.76
ρ∗31 56.04 55.99 55.99 56.10
ρ∗32 56.04 55.99 55.99 56.10
ρ∗33 56.04 55.99 55.99 56.10

Table 4: Solutions to Example 3

assumed now that the second supplier was a multicriteria decision-maker and concerned with risk

minimization with his risk function being given by:

r2 =
3∑

g=1

qg2.

The weight associated with his risk measure was β2 = 0.5. Table 4 presents computational results

for this Example.

From the results in Table 4 we can observe that an addition of the risk minimization criterion to

the optimization problem of power supplier 2 resulted in changes to the overall equilibrium electric

power flow pattern. More electric power is now being traded trough power supplier 1 whose overall

costs are lower than those of power supplier 2. Because all demand markets can satisfy their demand

for electric power through either of the power suppliers, the change in final prices is insignificant.

Figures 13 through 17 provide illustrations of the dynamic trajectories for the same variables as the

displayed Figures for the preceding Examples.

Example 4

Example 4 was constructed from Example 3 as follows. We kept the data as in Example 3 except
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Computed Equilibrium Values

Experiment 1 Experiment 2 Experiment 3 Experiment 4
Number of Iterations 1186 706 323 2705

q∗11 2.14 2.14 2.14 2.14
q∗12 2.04 2.04 2.04 2.04
q∗21 2.63 2.63 2.63 2.63
q∗22 2.53 2.53 2.53 2.53
q∗31 10.71 10.70 10.70 10.72
q∗32 10.61 10.60 10.60 10.62
q∗111 7.50 7.50 7.50 7.50
q∗112 3.98 3.98 3.98 3.98
q∗113 3.98 3.98 3.98 3.98
q∗121 7.40 7.40 7.40 7.40
q∗122 3.88 3.88 3.88 3.88
q∗123 3.88 3.88 3.88 3.88
γ∗1 53.59 53.54 53.56 53.64
γ∗2 53.69 53.64 53.66 53.74
ρ∗31 66.09 66.04 66.06 66.14
ρ∗32 62.57 62.52 62.55 62.63
ρ∗33 62.57 62.52 62.55 62.63

Table 5: Solutions to Example 4

for the parameter bk (cf. (54) – (56)) for the first demand market which was changed to 2000. The

computational results are presented in Table 5.

An interesting fact to note here is that even though the change in demand appears only in the

first demand market, it affects the entire electric power supply chain network system and the prices

throughout the entire system rise. Figures 18 through 22 provide the dynamic trajectories for this

Example of the electric power flow and price variables as described above.

The changes in the equilibrium patterns described above may not be evident from the values

presented in Tables 2 through 5 due to the fact that the absolute differences are less than 1. For

example, the equilibrium price for demand market 1 in the Experiment 1 is equal to 55.73 in

Example 1 and 55.91 in Example 2. It may seem that this difference is insignificant and irrelevant

to the changes in the initial data. In order to support our previous conclusions and make the

changes in the equilibrium patterns more evident we constructed Examples 5, 6, 7, and 8 where the

maximum demand for each demand market was increased a hundredfold. This change led to the

overall increase in the magnitude of the computed equilibrium electric power flows and prices and

allowed us to observe previously discovered behavior more clearly.
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Computed Equilibrium Values

Example 5 Example 6 Example 7 Example 8
Number of Iterations 2513 2566 2566 2693

q∗11 24.07 18.02 18.07 20.76
q∗12 24.07 18.02 17.97 20.66
q∗21 24.07 25.59 25.64 29.52
q∗22 24.07 25.59 25.54 29.42
q∗31 96.78 100.35 100.37 115.50
q∗32 96.78 100.35 100.27 115.40
q∗111 48.30 47.99 48.02 80.29
q∗112 48.30 47.99 48.02 42.74
q∗113 48.30 47.99 48.02 42.74
q∗121 48.30 47.99 47.92 80.19
q∗122 48.30 47.99 47.92 42.64
q∗123 48.30 47.99 47.92 42.64
γ∗1 463.31 467.03 467.12 536.89
γ∗2 463.31 467.03 467.22 536.99
ρ∗31 516.61 520.02 520.15 622.18
ρ∗32 516.61 520.02 520.15 584.63
ρ∗33 516.61 520.02 520.15 584.63

Table 6: Solutions to Examples 5, 6, 7, and 8

Examples 5, 6, 7, and 8

Examples 5, 6, 7, and 8 were constructed from Examples 1 through 4 as follows. In Example 5 we

kept the data as in Example 1 except for the parameter bk (cf. (54) – (56)) for all demand markets,

which was increased a hundredfold. Similar changes were done to the data in Examples 2, 3, and

4 to derive the data for Examples 6, 7, and 8, respectively. The values of parameters φ were kept

equal to 1 for all these Examples. The results are presented in Table 6.

Clearly, the above examples are stylized but they, nevertheless, demonstrate the efficacy of

the model and the computational procedure. One may now conduct numerous simulations by

modifying the data as well as adding decision-makers with their associated functions and weights

and investigating the effects on the equilibrium product transactions and product prices.
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5 Summary and Conclusions

In this paper, we have developed a dynamic, multitiered electric power supply chain network model

consisting of power generators, suppliers, transmission service providers, and demand markets and

analyzed it both from theoretical and computational perspectives. The model handles decision-

making under risk and uncertainty. Specifically, the power generators as well as the suppliers are

assumed to be multicriteria decision-makers and concerned not only with profit maximization but

also with risk minimization. The demands for the electric power, in turn, are random.

The framework permits for the handling of as many power generators, power suppliers, trans-

mission service providers, and demand markets, as required by the specific application. Moreover,

the generality of the framework allows for the demand to have almost any distribution as long as it

satisfies certain technical conditions.

The dynamic model, which is formulated as a projected dynamical system, provides the evolu-

tion of the electric power transactions between tiers of the electric power supply chain network as

well as the prices associated with the electric power at different tiers of the network. The model

generalizes the recent work of Nagurney and Matsypura (2004) to include supply-side risk and

demand uncertainty. Moreover, it provides a natural dynamics as we illustrated through several

numerical examples. An important theoretical result, established in Theorem 4, states that the set

of equilibria of the electric power supply chain network are independent of the speeds of adjustment,

a result which was also validated computationally.

As was stated by the US Energy Information Administration: “It is unclear what effect the

introduction of competition at the retail level [in electricity markets] will have on future retail

prices.” (http://www.eia.doe.gov/cneaf/electricity/page/fact sheets/retailprice.html) With the de-

velopment of this model we have attempted to make one contribution towards understanding the

effects that the process of restructuring has had and will have on the electric power industry.
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6 Appendix

In this Appendix we provide graphs of the dynamic trajectories of some of the variables that appear

in Examples 1 through 4. In particular we show the dynamics of the flow of electric power between

power generator 1 and power supplier 1 (associated variable: q11); between power generator 1

and power supplier 2 (associated variable: q12); between power supplier 1 and demand market 1

(associated variable: q1
11); the price associated with power supplier 1 (associated variable: γ1); the

price associated with demand market 1 (associated variable: ρ31). These variables were selected for

illustrative/representative purposes only.
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Figure 3: Dynamics of electric power transaction q11 complete (left) and first 80 iterations (right).
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Figure 4: Dynamics of electric power transaction q12 complete (left) and first 80 iterations (right).
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Figure 5: Dynamics of electric power transaction q1
11 complete (left) and first 80 iterations (right).
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Figure 6: Dynamics of price γ1 complete (left) and first 600 iterations (right).
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Figure 7: Dynamics of price ρ31 complete (left) and first 150 iterations (right).
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Example 2
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Figure 8: Dynamics of electric power transaction q11 complete (left) and first 80 iterations (right).
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Figure 9: Dynamics of electric power transaction q12 complete (left) and first 80 iterations (right).
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Figure 10: Dynamics of electric power transaction q1
11 complete (left) and first 80 iterations (right).
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Figure 11: Dynamics of price γ1 complete (left) and first 150 iterations (right).
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Figure 12: Dynamics of price ρ31 complete (left) and first 150 iterations (right).
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Example 3
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Figure 13: Dynamics of electric power transaction q11 complete (left) and first 80 iterations (right).
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Figure 14: Dynamics of electric power transaction q12 complete (left) and first 80 iterations (right).
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Figure 15: Dynamics of electric power transaction q1
11 complete (left) and first 100 iterations (right).
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Figure 16: Dynamics of price γ1 complete (left) and first 150 iterations (right).
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Figure 17: Dynamics of price ρ31 complete (left) and first 150 iterations (right).
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Example 4
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Figure 18: Dynamics of electric power transaction q11 complete (left) and first 80 iterations (right).
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Figure 19: Dynamics of electric power transaction q12 complete (left) and first 80 iterations (right).
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Figure 20: Dynamics of electric power transaction q1
11 complete (left) and first 80 iterations (right).
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Figure 21: Dynamics of price γ1 complete (left) and first 150 iterations (right).
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Figure 22: Dynamics of price ρ31 complete (left) and first 150 iterations (right).
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