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1. Introduction

Competition is central not only to human interactions in economic systems but also

to nature. Coupled with competition, is the construct of equilibrium, which provides a

benchmark against which the state of a natural or economic system can be evaluated. For

example, in ecology, equilibrium is in concert with the “balance of nature,” in that, since an

ecosystem is a dynamical system, we can expect there to be some persistence or homeostasis

in the system (Odum (1971), Egerton (1973), Cuddington (2001), and Mullon, Shin, and

Cury (2009)).

Equilibrium implies that there are multiple decision-makers or agents, who, typically, seek

to optimize their decisions, subject to the underlying resource constraints, and who compete

with one another until they cannot improve upon their situation through unilateral action.

Although the formulation, analysis, and solution of such problems may be challenging, such

notable methodologies as variational inequalities and projected dynamical systems have now

been successfully applied for the analysis and computation of solutions to a plethora of

equilibrium problems in transportation and logistics; economics and finance, and energy and

the environment (cf. Nagurney (1999, 2006), Nagurney and Zhang (1996a), Zhang (2006),

Yang and Zhang (2007), Nagurney et al. (2007), Cruz and Wakolbinger (2008), Nagurney

and Qiang (2009), Daniele (2010), and the references therein).

Moreover, it is now being increasingly recognized that seemingly disparate equilibrium

problems, in a variety of disciplines, possess a network structure. Nevertheless, although

deep connections and equivalences have been made (and continue to be discovered) be-

tween/among different systems through the network formalism, the majority of such systems,

to-date, have been exclusively of a socio-technical-economic variety. For example, equiva-

lences have been established between electric power generation and distribution networks

and transportation network equilibrium problems as well as between transportation network

equilibrium problems and financial networks with intermediation. Such connections enrich

both theory and practice (cf. Nagurney et al. (2007) and Liu and Nagurney (2007)).

In this paper, we propose a dynamical systems model of predator-prey food networks and

prove that its stationary points coincide with the set of equilibria through the corresponding

variational inequality formulation. We consider multitiered predator-prey networks in which

the top tier consists of primary prey and the bottom tier consists of the predators, whereas

the middle tier acts as both prey and predator. For example, such ecological food webs

may correspond to a fish ecosystem, where the top tier of network nodes would, in this case,

consist of plankton populations, the middle tier of small pelagic populations, and the bottom
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tier would be the marine predators.

The development of a dynamic model for predator-prey networks is important since it

enables the tracking of dynamic trajectories over time and reinforces the importance of

the equilibrium state. Here, we, for the first time, synthesize predator-prey networks with

projected dynamical systems to construct a framework for the formulation, analysis, and

computation of solutions to ecological food webs that captures the dynamic behavior and

biology of predator-prey interactions.

This paper is organized as follows. In Section 2, we first extend the predator-prey model

of Mullon, Shin, and Cury (2009) to capture both congestion as well as dynamics, with a

focus on multi-tiered food webs consisting of primary prey, intermediate species, who can be

both prey and predators, and primary predators. We then propose a dynamic adjustment

process, whose set of stationary points coincides with the set of solutions to the variational

inequality problem governing the predator-prey equilibrium conditions. In addition, we

establish stability analysis results. We also specialize the model to two-tiered ecological food

webs consisting of only prey and predator species.

In Section 3, we highlight the relationships between the ecological predator-prey network

models and existing models in the literature but from different disciplines. In particular,

we compare these models to both spatial price equilibrium models in regional science and

economics, and to supply chain network equilibrium models in logistics, and establish equiv-

alences. In Section 4, we propose an algorithmic scheme that iteratively tracks the evolution

of biomass flows until an equilibrium is achieved and we provide convergence results. We

also apply the algorithm to a fisheries application. In Section 5 we conclude with a summary

and suggestions for future research.
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Figure 1: The Predator-Prey Ecosystem Network

2. The Dynamic Predator-Prey Network Model

In this Section, we develop the dynamic predator-prey network model, whose structure

is given in Figure 1. Our work is inspired by the path-breaking paper of Mullon, Shin, and

Cury (2009) which introduced variational inequality theory to this application domain by

utilizing the novel network economics approach inspired by Nagurney (1999). We consider

an ecosystem in which there are m distinct types of primary prey and o distinct types of

predators with n intermediate species, which are both predators of the primary prey as well

as prey of the predator species. Note that m, n, and o are, typically, distinct. The biomass

of a species h is denoted by Bh. Eh denotes the inflow (energy and nutrients) of species h

with the autotroph species, that is, the primary prey, in Figure 1, having positive values of

Eh, whereas all predators have Eh = 0. The parameter γh denotes the trophic assimilation

efficiency of species h and the parameter µh denotes the coefficient that relates biomass to

somatic maintenance. The variable Xhl is the amount of biomass of species h preyed upon

by species l and we are interested in determining their equilibrium values for all prey and

predator species pairs (h, l) as well as the underlying dynamics of their interactions.

The prey equations that must hold for the top nodes in Figure 1 are:

γiEi = µiBi +
n∑

j=1

Xij, 1, . . . ,m. (1)

Equation (1) states that, for each top-tiered prey species i, the assimilated biomass must be

equal to its somatic maintenance plus the amount of its biomass that is preyed upon.
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The predator equations, in turn, that must hold for the bottom nodes in Figure 1 are:

γk

n∑
j=1

Xjk = µkBk, k = 1, . . . , o. (2)

Equation (2) signifies that for each bottom-tiered predator species k, its assimilated biomass

is equal to its somatic maintenance (which is represented by its coefficient µk times its

biomass).

In addition, the following equation must hold for each intermediate species:

γj

m∑
i=1

Xij −
o∑

k=1

Xjk = µjBj, j = 1, . . . , n, (3)

that is, the somatic maintenance of each such species is equal to its assimilated biomass

minus the amount that it is preyed upon.

Equations (1), (2), and (3) are the conservation of flow equations, in network parlance,

but from a biomass perspective.

In addition, there is a positive parameter φ̂hl for each prey/predator pair (h, l) that reflects

the distance (note the spatial component) between distribution areas of prey h and predator

l, with this parameter also capturing the transaction costs associated with handling and

ingestion.

According to Mullon, Shin, and Cury (2009), the predation cost between each prey h and

each predator l, denoted by Fhl, is given by:

Fhl = φ̂hl − κhBh + λlBl, (4a)

where −κhBh represents the easiness of predation due to the abundance of prey Bh and λlBl

denotes the intra-specific competition of predator species l. We group the species biomasses

and the biomass flows intro the respective m + n + o and mn + no dimensional vectors B∗

and X∗.

We now introduce the following extension. We assume that for each (h, l) there is now a

function φhl that is a strictly increasing function of the biomass flow between h and l; that

is, we assume that

φhl = φhl(Xhl), ∀, h, l, (4b)

where, for definiteness, we have that

φhl(Xhl) = ηhlXhl + φ̂hl, ∀h, l, (4c)
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where ηhl > 0, for all h, l. Such a function captures congestion. Consequently, the extended

predation cost, F̂hl, that we utilize is given by:

F̂hl = φhl(Xhl)− κhBh + λlBl, ∀h, l. (4d)

In view of (1), (2), (3), and (4d), we may write F̂hl = F̂hl(X) ≡ Fhl(X, B), ∀h, l. Follow-

ing then Mullon, Shin, and Cury (2009), we have the following definition of the governing

predator-prey equilibrium conditions:

Definition 1: Predator-Prey Equilibrium Conditions

A biomass flow pattern (X∗) ∈ Rmn+no
+ is said to be in equilibrium if the following conditions

hold for each pair of prey and predators (h, l):

F̂hl(X)

{
= 0, if X∗

hl > 0,
≥ 0, if X∗

hl = 0.
(5)

The equilibrium conditions (5) reflect that, if there is a biomass flow from h to l, then

there is an “economic” balance between the advantages (κhBh) and the inconveniences of

predation (φhl + λlBl), with the species biomasses Bh and Bl satisfying the corresponding

equations (1) – (3) for every h and l.

Clearly, the predator-prey equilibrium conditions (5) may be formulated as a variational

inequality problem, as given below.

Theorem 1

A biomass flow pattern X∗ ∈ Rmn+no
+ is an equilibrium according to Definition 1 if and only

if it satisfies the variational inequality problem: determine X∗ ∈ Rmn+no
+ such that

∑
h,l

F̂hl(X
∗)× (Xhl −X∗

hl) ≥ 0, ∀X ∈ Rmn+no
+ , (6)

or, equivalently, the variational inequality: determine X∗ ∈ Rmn+no
+ such that

m∑
i=1

n∑
j=1

κi

µi

n∑
j=1

X∗
ij −

κiγi

µi

Ei + φij(X
∗
ij) + λj(

γj
∑m

i=1 X∗
ij −

∑o
k=1 X∗

jk

µj

)

 × [
Xij −X∗

ij

]

+
n∑

j=1

o∑
k=1

κj

µj

o∑
k=1

X∗
jk −

κjγj

µj

m∑
i=1

X∗
ij + φjk(Xjk) +

λkγk

µk

n∑
j=1

X∗
jk

×[
Xjk −X∗

jk

]
≥ 0, ∀X ∈ Rmn+no

+ .

(7)
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Proof: Recall, as noted following (4d), that, for any predator-prey network, in view of

equations (1) – (3), we may re-express Bh and Bl in terms of X and substitute the resultants

into (4d) so that F̂hl = F̂hl(X), ∀h, l. The equivalence between an equilibrium solution

according to Definition 1 and variational inequality (6) then follows directly from using

standard arguments as in Nagurney (1999) with the feasible set consisting solely of the

nonnegative orthant since the constraints (1) – (3) have been embedded into the F̂hl for all

h, l.

With notice to Figure 1, we obtain, specifically, using (1), (3), and (2), repectively:

Bi =
γiEi −

∑n
j=1 Xij

µi

, i = 1, . . . ,m; (8)

Bj =
γj

∑m
i=1 Xij −

∑o
k=1 Xjk

µj

, j = 1, . . . , n, (9)

and

Bk =
γk

∑n
j=1 Xjk

µk

, k = 1, . . . , o. (10)

Hence, with the use of (4d) and (8) – (10), we have that

F̂ij(X) =
κi

µi

n∑
j=1

Xij −
κiγi

µi

Ei + φij(Xij) + λj(
γj

∑m
i=1 Xij −

∑o
k=1 Xjk

µj

), ∀i, j, (11)

and

F̂jk(X) =
κj

µj

o∑
k=1

Xjk −
κjγj

µj

m∑
i=1

Xij + φjk(Xjk) +
λkγk

µk

n∑
j=1

Xjk, ∀j, k, (12)

and variational inequality (7) follows. 2

Remark

The above conservation of flow equations (1) – (3) hold, in fact, for any food web ecosystem of

multiple tiers, and are not limited to the three-tiered network depicted in Figure 1. However,

here, we focus on the ecosystem of the form in Figure 1 since we wish to relate predator-prey

networks to existing supply chain network models as well as, in the bipartite case, to classical

spatial price equilibrium problems.

We now present the dynamic model. In particular, due to the variational inequality

formulation (6) (and (7)), we may exploit the connection between the set of solutions to

a variational inequality problem and the set of solutions to a projected dynamical system
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(cf. Dupuis and Nagurney (1993) and Nagurney and Zhang (1996a)). In so doing, a natural

dynamic adjustment process becomes:

Ẋhl = max{0,−F̂hl(X)}, ∀h, l. (13)

According to (8), the rate of change of biomass flow between a prey and predator pair (h, l)

is in proportion to the difference between the advantage of predation and the inconvenience,

as long as the biomass flow, Xhl, between the pair is positive; that is, if Xhl > 0, then

Ẋhl = −F̂hl(X). (14)

However, since the biomass flows must be nonnegative, we must ensure that, when Xhl = 0,

the flow does not become negative and, therefore, (8) must hold true.

Also, according to (13), if the advantage of preying on species h exceeds the inconvenience

for predator l then the amount of biomass flow between h and l will increase; if, on the other

hand, the inconvenience exceeds the advantage, then the biomass flow between this prey and

predator pair will decrease. If the biomass flow between a pair is reduced to zero then it

stays unchanged until the next positive signal, at which it increases at a rate given by (13).

The adjustment process in vector form for all prey and predator pairs is given by (15)

below, where F̂ is the mn + no-dimensional vector with components {Fhl}. Indeed, we can

now write the following pertinent ordinary differential equation (ODE) for the adjustment

process of biomass flows in vector form as (see also Nagurney and Zhang (1996a)):

Ẋ = ΠK(X,−F̂ (X)), (15)

where F̂ is the vector with components F̂hl; ∀h, l, and

ΠK(X, v) = lim
δ→0

(PK(X + δv)−X)

δ
, (16)

where

PK(X) = arg min
z∈K

‖X − z‖. (17)

Note that, in the predator-prey network model, K ≡ Rmn+no
+ .

A direct application of Theorem 2.4 in Nagurney and Zhang (1996a) yields the following

result, since the feasible set K here is a convex polyhedron.
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Theorem 2

X∗ solves variational inequality (6)(equivalently, (7)), if and only X∗ it is a stationary point

of the ODE (15), that is,

0 = ΠK(X∗, F̂ (X∗)). (18)

Theorem 2 establishes that the necessary and sufficient condition for a biomass flow

pattern X∗ to be in equilibrium in the predator-prey network is that X∗ is a stationary

point of the biomass flow adjustment process defined by ODE (15).

Note that for any X0 ∈ K as an initial value, we associate with ODE(F̂ ,K) an initial

value problem IVP(F̂ ,K, X0) defined as:

Ẋ = ΠK(X,−F̂ (X)), X(0) = X0. (19)

We now investigate stability properties of the above projected dynamical system (15).

We first establish that F̂ (X) is strictly monotone under the assumption that λj = κjγj;

j = 1, . . . , n. We note that the ecologists Mullon, Shin, and Cury (2009) refer to this

assumption as the strong equilibrium assumption.

Theorem 3

F̂ (X) is strictly monotone, that is,

∑
h,l

[
F̂hl(X

1)− F̂hl(X
2)

]
×

[
X1

hl −X2
hl)

]
> 0, ∀X1, X2 ∈ K, X1 6= X2. (20)

Proof: Note that

∑
h,l

[
F̂hl(X

1)− F̂hl(X
2)

]
×

[
X1

hl −X2
hl)

]
=

∑
h,l

[
Fhl(X

1, B1)− Fhl(X
2, B2)

]
×

[
X1

hl −X2
hl

]

=
m∑

i=1

n∑
j=1

[
φij(X

1
ij)− φij(X

2
ij)

]
×

[
X1

ij −X2
ij

]
m∑

i=1

−κi(B
1
i −B2

i )×

 n∑
j=1

X1
ij −

n∑
j=1

X2
ij


+

n∑
j=1

λj(B
1
j −B2

j )×
[

m∑
i=1

X1
ij −

m∑
i=1

X2
ij

]
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+
n∑

j=1

o∑
k=1

[
φjk(X

1
jk)− φjk(X

2
jk)

]
×

[
X1

jk −X2
jk

]

+
n∑

j=1

−κj(B
1
j −B2

j )×
[

o∑
k=1

X1
jk −

o∑
k=1

X2
jk

]

+
o∑

k=1

λk(B
1
k −B2

k)×

 n∑
j=1

X1
jk −

n∑
j=1

X2
jk

 . (21)

Using now equations (1), (2), and (3), the right-hand-side of equation (21) may be rewrit-

ten as:
m∑

i=1

−κi(B
1
i −B2

i )×
[
−µi(B

1
i −B2

i )
]

+
n∑

j=1

λj(B
1
j −B2

j )×
µj

γj

(B1
j −B2

j ) +
n∑

j=1

λj(B
1
j −B2

j )× (

∑o
k=1 X1

jk −
∑o

k=1 X2
jk

γj

)

+
n∑

j=1

−κj(B
1
j −B2

j )×
[

o∑
k=1

X1
jk −

o∑
k=1

X2
jk

]

+
o∑

k=1

λk(B
1
k −B2

k)×
µk

γk

(B1
k −B2

k)

+
m∑

i=1

n∑
j=1

[
φij(X

1
ij)− φij(X

2
ij)

]
×

[
X1

ij −X2
ij

]

+
n∑

j=1

o∑
k=1

[
φjk(X

1
jk)− φjk(X

2
jk)

]
×

[
X1

jk −X2
jk

]
. (22)

The first, second, and fifth summands in (22) are nonnegative whereas the sum of the

third and fourth summands is equal to zero under the assumption that λj = κjγj, ∀j.
Furthermore, due to (4c), we know that each of the last two summands in (22) is strictly

greater than zero if X1 6= X2. Hence, we have established that F̂ (X) is strictly monotone.

2

We now state the following result.

Theorem 4

Since F̂ (X) is strictly monotone, X∗ is a strictly global monotone attractor, that is, there

exists a δ > 0 such that for all X ∈ B(X∗, δ):

d(X, t) = ‖X · t−X∗‖ (23)
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Figure 2: The Bipartite Network of an Ecosystem with Prey and Predators

is monotonically decreasing to zero in t for all X ∈ K, where B(X, r) denotes the open

ball with radius r and center X and X · t is the solution path of the initial value problem

IVP(F̂ ,K, X) (19) that passes through X at time t = 0, that is, X · 0 = X(0) = X.

Proof: Follows from Theorem 3.6 in Nagurney and Zhang (1996a).2

Since we have established strict monotonicity of F̂ (X) the following result is immedi-

date from the fundamental theory of variational inequalities (cf. Nagurney (1999) and the

references therein).

Theorem 5

The equilibrium X∗ that satisfies variational inequality (6) in unique since F̂ (X) is strictly

monotone in X.

It is important to emphasize that the projected dynamical systems model is non-classical

since the right-hand-side in (10) is not continuous. A complete theory to handle such realistic

dynamical systems which apply to systems in which there are constraints (as in numerous

applications) has been developed by Dupuis and Nagurney (1993) and Nagurney and Zhang

(1996) and the references therein. It is also worth emphasizing that there has been a long tra-

dition in ecological modeling of dynamical systems, as in the classical work of Lotka-Volterra

models (see also Odum (1971) and Scheffer and Carpenter (2003)). However, our work in

this paper couples not only projected dynamical systems, which can handle constraints (such

as nonnegativity of biomass flows), with network structure, but also economics and biology

plus logistics.

It is worth mentioning that the above models collapse to a bipartite predator-prey network

model (in static and dynamic forms, respectively), if there are no intermediary species. In this

special case, the network is as depicted in Figure 2 and the variational inequality simplifies
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to: determine X̂∗ ∈ Rmo
+ , such that

m∑
i=1

o∑
k=1

[
κi

µi

0∑
k=1

X∗
ik −

κi

µi

γiEi + φik(X
∗
ik) +

λkγk

µk

m∑
i=1

X∗
ik

]
× [Xik −X∗

ik] ≥ 0, ∀X̂ ∈ Rmo
+ ,

(24)

where X̂ ≡ {{Xik}|; i = 1, . . . ,m; k = 1, . . . , o}.

3. Relationships to Spatial Price Equilibrium Problems and Supply Chaiin Net-

work Equilibrium Problems

First, we establish the relationship between the bipartite predator-prey network model

discussed in the preceding section and spatial price equilibrium problems, which have served

as the foundation for a plethora of applications in regional science and economics (dating from

the contributions of Samuelson (1952) and Takayama and Judge (1971)) from agriculture to

energy and even finance (see, e.g., Labys and Yang (1997) and Nagurney (1999)).

If we define now

si ≡
m∑

k=1

Xik, i = 1, . . . ,m, (25)

dk ≡
m∑

i=1

Xik, k = 1, . . . , o, (26)

variational inequality (24) may be rewritten as: determine (s∗, X̂∗, d∗) ∈ K1, where K1 ≡
{(s, X̂, d)|X̂ ∈ Rmo

+ , and (25) and (26) hold}, such that

m∑
i=1

πi(s
∗
i )×(si−s∗i )+

m∑
i=1

o∑
k=1

φik(X
∗
ik)×(Xik−X∗

ik)−
0∑

k=1

ρk(d
∗
k)×(dk−d∗k) ≥ 0, ∀(s, X̂, d) ∈ K1,

(27)

where

πi(si) ≡
κi

µi

si −
κi

µi

γiEi, i = 1, . . . ,m, (28)

ρk(dk) ≡
−λkγk

µk

dk, k = 1, . . . , o. (29)

Variational inequality (27) is precisely the variational inequality of the classical spatial

price equilibrium conditions due to Samuelson (1952) and Takayama and Judge (1971), who,

nevertheless, assumed that the unit transaction costs φik were fixed, unlike the later work of

Florian and Los (1982) and Dafermos and Nagurney (1984). The spatial price equilibrium

conditions state that there will be a positive amount of commodity shipment between a

pair of supply and demand markets if the supply price at the supply market plus the unit

transportation cost is equal to the price at the demand market; if the former exceeds the latter
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then the equilibrium commodity shipment between the pair of supply and demand markets

will be equal to zero. Hence, expressions (25) and (26) correspond, respectively, to the

“supplies” at the “supply markets,” and “demands” at the “demand markets,” whereas the

functions (28) correspond to the “supply price” functions and the “demand price” functions,

respectively, with the φik playing the role of the unit transportation (or transaction cost).

Nagurney, Takayama, and Zhang (1995) proposed projected dynamical systems models of

spatial price network equilibria whereas Nagurney and Zhang (1996b) provided conditions

for stability of solutions.

Recently, Nagurney and Nagurney (2011) explored the relationships between spatial price

equilibrium problems and bipartite predator-prey networks but focused on models in which

the unit transaction costs were fixed and not flow-dependent. In that case the underlying

function that enters the variational inequality is monotone (and not strictly monotone).

They also presented numerical examples.

We now identify the relationship, which is, in fact an equivalence, between the multitiered

ecological predator-prey network equilibrium model and the supply chain network equilib-

rium model introduced in Nagurney, Dong, and Zhang (2002), which has formed the basis

of numerous extensions (cf. Nagurney (2006) and the references therein). Recall that this

model assumed that there are m competing, profit-maximizing manufacturers, n competing,

profit-maximizing retailers, and consumers located at o demand markets. We first note that

the model in Nagurney, Dong, and Zhang (2002) assumed that demand functions at the

demand markets were given. We now, for definiteness, write down directly the governing

variational inequality of supply chain network equilibrium (please refer to Nagurney, Dong,

and Zhang (2002) for the basic model and to Nagurney et al. (2002) for the dynamic ver-

sion). Our notation below follows that of Nagurney et al. (2002). In the Theorem below we

have used the demand price functions rather than the demand functions, as in the original

formulation, in order to make the connection to the predator-prey model more transparent.

Theorem 6 (Nagurney, Dong, and Zhang (2002))

A supply chain network equilibrium is equivalent to the solution of the variational inequality

problem given by: determine the equilibrium vectors of product shipments, shadow prices,

and retail shadow prices (Q1∗, Q2∗, ρ∗2) ∈ K2, satisfying:

m∑
i=1

n∑
j=1

[
∂fi(Q

1∗)

∂qij

+
∂cij(q

∗
ij)

∂qij

+
∂cj(Q

1∗)

∂qij

− ρ∗2j

]
×

[
qij − q∗ij

]

+
n∑

j=1

o∑
k=1

[
ρ∗2j + cjk(Q

2∗)− ρ∗3k(d
∗)

]
×

[
qjk − q∗jk

]
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+
n∑

j=1

[
m∑

i=1

q∗ij −
o∑

k=1

q∗jk

]
×

[
ρ2j − ρ∗2j

]
≥ 0, ∀(Q1, Q2, ρ2) ∈ K2, (30)

where K2 ≡ Rmn+no+n
+ .

Note that, in order to connect the solution of variational inequality (30) with the solution

of variational inequality (7), we make the identifications:

Xij ≡ qij, i = 1, . . . ,m; j = 1, . . . , n, (31)

Xjk ≡ qjk, j = 1, . . . , n; k = 1, . . . , o, (32)

since biomass flows in the ecological network model correspond to commodity flows in the

supply chain network equilibrium model. Also, the marginal transportation/transaction

cost associated with pairs of manufacturers and retailers, denoted for (i, j) by ∂cij(Q
1∗)

∂qij
,

corresponds to the cost φij in the predator-prey model. Similarly, the unit transaction cost

between a retailer and demand market pair (j, k) given by cjk corresponds to φjk for each pair

(j, k), whereas the demand price function associated with a primary predator is then given

by ρ3k(d) = −λkγk

µk
dk for each k. Also, here we have that the marginal storage cost, denoted

for a retailer j by ∂cj(Q
1∗)

∂qij
, is precisely equal to zero for all j. The marginal production

cost associated with a manufacturer i corresponds to κi

µi
si − κi

µi
γiEi in the ecological network

model for each i.

The shadow prices ρ∗2j in (30), in turn, correspond to: λj(
γj

∑m

i=1
X∗

ij−
∑o

k=1
X∗

jk

µj
) for each

j and, fascinatingly, if γj = 1 for each j (which would mean that the trophic assimilation

factor is equal to 1 for each intermediary species j), then ρ∗2j is also precisely equal to:
κj

µj

∑o
k=1 X∗

jk−
κjγj

µj

∑m
i=1 X∗

ij for each j (under the assumption of strong equilibrium, in which,

as noted earlier, λj = κjγj for each j). Moreover, since we expect that the intermediary

species “clear” in economics terms, each of these prices would be positive and, therefore, the

last term in variational inequality (30) before the greater than equal to sign would be equal

to zero. Hence, we have established that ecological predator-prey networks act as nature’s

supply chain networks by establishing the equivalence between the variational inequality

governing supply chain network equilibrium given by (30) and the one governing ecological

predator-prey network equilibrium given by (7)!
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4. An Algorithm and Application

In this Section, we recall the Euler method which is induced by the general iterative

scheme of Dupuis and Nagurney (1993), and which is designed to compute the stationary

points of the projected dynamical system

Ẋ = ΠK(X − F̂ (X)), (33)

or, equivalently, according to Theorem 2, to determine solutions X∗ to the variational in-

equality problem:

〈F̂ (X∗)T , X −X∗〉 ≥ 0, ∀X ∈ K, (34)

where 〈·, ·〉 denotes the inner product in N -dimensional Euclidean space where here N =

mn + no.

In particular, the Euler method takes, at iteration τ , the form:

Xτ+1 = PK(Xτ − aτF (Xτ )). (35)

Here, for definiteness, we give the explicit formulae for (35) for the iterative computation

of the biomass flows, which are made possible because of the simplicity of the underlying

feasible set K.

In particular, with notice to (6) and (7), we have that:

Xτ+1
ij = max{0, aτ (−

κi

µi

n∑
j=1

Xij +
κiγi

µi

Ei − φij(Xij)− λj(
γj

∑m
i=1 Xij +

∑o
k=1 Xjk

µj

))},∀i, j,

(36)

and

Xτ+1
jk = max{0, aτ (−

κj

µj

o∑
k=1

Xjk +
κjγj

µj

m∑
i=1

Xij − φjk(Xjk)−
λkγk

µk

n∑
j=1

Xjk)},∀j, k. (37)

The expressions (36) and (37) provide a discrete-time approximation to the dynamic

trajectories associated with the continuous time evolution of the biomass flows according to

(33) on the links of the ecological network depicted in Figure 1.

We now establish convergence of the Euler method applied to our model but first we need

an assumption.
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Assumption 1

Suppose that there exists a sufficiently large M , such that

Fhl(X) > 0 (38)

for all predator-prey pairs (h, l) and all biomass flows X with Xhl ≥ M .

Under Assumption 1, existence of an equilibrium X∗ is guaranteed. We emphasize, how-

ever, that since F̂ (X) is strictly monotone and linear, is is, hence, also strongly monotone,

so existence of a solution to variational inequality (7) necessarily holds.

Theorem 7

Any sequence {Xτ} generated by the Euler method (35), with explicit realization for the

solution of our model yielding expressions (36) and (37), with aτ > 0, for τ = 1, 2, . . ., and

lim
τ→∞

aτ = 0, (39)

∞∑
τ=1

aτ = ∞, (40)

converges to a unique equilibrium point, satisfying (34) as well as (18).

Proof: Conditions (39) and (40) are required for convergence (see Assumption 4.1 in Nagur-

ney and Zhang (1996a)). Setting the sequence {Xτ} is bounded, under Assumption 1, and

F̂ (X) is strictly monotone according to Theorem 4, and also F̂ (X) is Lipschitz continuous

since it is linear, all the conditions for convergence that are required are satisfied according

to Theorem 4.1 in Nagurney and Zhang (1996a) (see also Theorem 6.10 therein). 2

The algorithm was considered to have converged to a solution when the absolute value of

each of the successive biomass flow iterates differed by no more than ε = 10−5. We utilized

(cf. (39) and (40)) the sequence aτ = 1.{1, 1
2
, 1

2
, . . .}, which satisfies the requirements for con-

vergence of the Euler method. The computer system used was a Linux-based system at the

University of Massachusetts Amherst. The Euler method was implemented in FORTRAN.

In order to appropriately depict reality of predator prey ecosystems, we utilized parame-

ters, in ranges, as outlined in Mullon, Shin, and Cury (2009). Their data is for the coastal

system of Chile and is based on previous papers of Neira and Arancibia (2004) and Neira,

Arancibia, and Cubillo (2004). Here we report our complete input and output data for

reproducibility purposes.
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Ĵ

B
B
B
B
B
B
B
B
BN

@
@

@
@

@
@

@
@
@R

b
b

b
b

b
b

b
b

b
b

b
b

b
bb

�
�

�
�

�
�

�
�
�


B
B
B
B
B
B
B
B
BN

@
@

@
@

@
@

@
@
@R

�
�

�
�

�
�

�
�

�	

�
�

�
�

�
�

�
�
�


B
B
B
B
B
B
B
B
BN

"
"

"
"

"
"

"
"

"
"

"
"

"
""

�
�

�
�

�
�

�
�
�


�
�

�
�

�
�

�
�

�	

Figure 3: The Ecosystem for the Numerical Application

A Numerical Application

We now discuss an application that is drawn from fisheries and which is motivated by

Mullon, Shin, and Cury (2009). The ecological predator-prey network is depicted in Figure

3. The species and their data parameters are itemized in Table 1, where note that fisheries

as a predator is also included. There are 2 primary prey: the phytoplankton and the mac-

robenthos, 5 intermediate predator-prey species: the anchovies, the sardines, the pelagics I,

the small hake, and the demersal fish I, and 3 bottom-tiered predators: the sea lions, the

sea birds, and the fisheries.

The φhl functions (please refer to Figure 3 and (4c)) were given by:

φ13(X13) = .08276X13 + 82.76, φ14(X14) = .08272X14 + 82.72,

φ25(X25) = .00037X25 + .37, φ26(X26) = .00012X26 + .12, φ27(X27) = .00041X27 + .41,

φ38(X38) = .00198X38+1.98, φ39(X39) = .00198X39+1.98, φ3,10(X3,10) = .00197X3,10+1.97,

φ48(X48) = .00236X48+2.36, φ49(X49) = .00236X49+2.36, φ4,10(X4,10) = .00235X4,10+2.35,

φ58(X58) = .00119X58+1.19, φ59(X59) = .00119X59+1.19, φ5,10(X5,10) = .00048X5,10+.48,

φ68(X68) = .0013X68 + 1.30, φ6,10(X6,10) = .00048X6,10 + .48,

φ78(X78) = .00049X78 + .49, φ7,10(X7,10) = .00048X7,10 + .48.

The above functions are extensions of their uncongested counterparts extracted from Mullon,

Shin, and Cury (2009).

17



Table 1: Species and Their Parameters

i species γi µi κi λi Ei

1 phytoplankton 2.00 16.89 .21 0.00 8000.00
2 macrobenthos .25 .50 .23 0.00 25.00
3 anchovies .1 .94 .26 .02 0.00
4 sardines .10 1.10 .27 .02 0.00
5 pelagics I .11 .13 .25 .02 0.00
6 small hake .30 .56 .26 .08 0.00
7 demersal fish I .20 .26 .23 .04 0.00
8 sea lions .02 .15 0.00 .01 0.00
9 sea birds .025 .50 0.00 .01 0.00
10 fisheries .30 .08 0.00 .01 0.00

The equilibrium biomass flows computed by the Euler method were:

X∗
13 = 4658.79, X∗

14 = 4665.89,

X∗
25 = 0.00, X∗

26 = 5.48, X∗
27 = 0.00,

X∗
38 = 142.13, X∗

39 = 310.22, X∗
3,10 = 5.10,

X∗
48 = 141.53, X∗

49 = 309.56, X∗
4,10 = 4.46,

X∗
58 = X∗

59 = X∗
5,10 = X∗

68 = X∗
6,10 = X∗

78 = X∗
7,10 = 0.00,

with the equilibrium species biomass levels being:

B∗
1 = 395.22, B∗

2 = 1.54, B∗
3 = 8.96, B∗

4 = 10.03, B∗
5 = 0.00,

B∗
6 = 2.93, B∗

7 = 0.00, B∗
8 = 37.82, B∗

9 = 30.99, B∗
10 = 35.87.

This application demonstrates that the dynamic ecological network framework developed

in this paper can be utilized for the study of ecological predator-prey networks.
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5. Summary and Conclusions

The contributions to the literature in this paper are:

(1). a new dynamic ecological predator-prey network model, which captures the dynamics

underlying multitiered ecological networks and that is based on an extension to capture con-

gestion associated with predator-prey interactions, also developed here, of a model presented

earlier by Mullon, Shin, and Cury (2009);

(2). a proof that the set of stationary points of the projected dynamical systems model

coincides with the set of solutions to the governing predator-prey equilibrium conditions,

formulated as a variational inequality problem;

(3). the establishment of existence and uniqueness results to the variational inequality

problem plus stability results;

(4). a proof of the equivalence between the governing equilibrium condition of the ecological

predator-prey network and supply chain network equilibrium, as well as the proof that the

special case of the bipartite network corresponds to the classical spatial price equilibrium

problem;

(5). a proof of the convergence for the proposed algorithm scheme, and

(6) an applications to an ecological predator-prey network drawn from a fisheries application.

Our contributions in this paper further demonstrate the growing interconnections among

network problems in different disciplines and also show that ecological food webs act and

perform as nature’s supply chains.

Future research is expected to include other applications of our framework to ecological

networks.
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