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Abstract:

In this paper, we develop a game theory model consisting of sellers and buyers with sell-

ers competing non-cooperatively in order to maximize their expected profits by determining

their optimal product transactions as well as cybersecurity investments. The buyers reflect

their preferences through the demand price functions, which depend on the product demands

and on the average level of security in the marketplace. We demonstrate that the governing

equilibrium conditions of this model with security information asymmetry can be formulated

as a variational inequality problem. We provide qualitative properties and propose an algo-

rithmic scheme that is easy to implement. Three sets of numerical examples are presented

which reveal the impacts of the addition of buyers and sellers and a variety of changes in

demand price and investment cost functions on the equilibrium product transaction and

security level patterns.

Key words: cybersecurity, investments, game theory, Nash equilibrium, information asym-

metry, variational inequalities
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1. Introduction

While the Internet has revolutionized the manner in which we conduct many business

transactions, obtain information and entertainment, and even communicate, it has, never-

theless, led to new pathways for cyber hacking and cybercrime. According to the Center for

Strategic and International Studies [5] the estimated annual cost to the world-wide economy

from cybercrime is more than $400 billion with a conservative estimate being $375 billion in

losses, exceeding the national income of most countries.

Recent examples of dramatic cyber attacks that have garnered much media attention have

included the security breach at the retail giant Target with an estimated 40 million payment

cards stolen between November 27 and December 15, 2013 and upwards of 70 million other

personal records compromised ([13]). This led not only to financial damages for Target but

also to reputational costs. Other cyber data breaches have occurred at the luxury retailer

Neiman Marcus, the restaurant chain P.F. Chang’s, and the media giant Sony. The Ponemon

Institute [27] determined that the average annualized cost of cybercrime for 60 organizations

in their study is $11.6 million per year, with a range of $1.3 million to $58 million. According

to Alter [2], the first three months of 2014, revealed 254 reports of data breaches, resulting

in more than 200 million data records lost or stolen. This represents a 233% year-over-year

increase, according to data security company SafeNet. Alter [2] reports that records were

lost or stolen in the first quarter of 2014 at an alarming rate of 70 million every month, 2

million every day, and 93,000 every hour.

However, it is important to emphasize that the impact of cybercrime affects industries

and economic sectors differently. As noted in [19], the PriceWaterhouseCoopers 2014 Global

Economic Crime Survey [28] reports that 39% of financial sector respondents said that they

had been victims of cybercrime, compared with only 17% in other industries, with cybercrime

now the second most commonly reported economic crime affecting financial services firms.

The healthcare sector, technology companies, and the government are also top targets of

cyber attackers.

The realities of the cybercrime economic landscape calls for rigorous treatment and anal-

ysis of cybersecurity investments. According to Market Research [16] and Gartner [10],

$15 billion is spent each year by organizations in the United States to provide security for

communications and information systems. The real-world recognition of the importance of

cybersecurity investments has also drawn attention in the research literature. We note the

well-known security investment model of Gordon and Loeb [11], which utilizes a security

breach probability function, with the authors deriving a rule for determining security in-
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vestment in the case of a single decision-maker. Extensions and variants have included the

work of Hausken [12] who constructed different breach functions, that of Matsuura [17], who

endogenized the probability of an attack, and Tatsumi and Goto [31, who focused on the

timing of cybersecurity investments.

Nevertheless, breaches due to cyber attacks continue to make immense negative economic

impacts on businesses and society at-large. This calls for the development of new, rigorous

models that capture the competitive behavior of sellers and buyers in the modern marketplace

along with cybersecurity investments. Anderson and Moore [3] emphasize live research

challenges in the economics of information security and note that the discipline “is still

young.” Furthermore, they recognize the issue of information asymmetry in the software

cybersecurity market. Background on information asymmetry can be found in the Nobel

laureate George Akerlof’s classic paper, which focused on quality, however, rather than

security (see [1]). See also [20] for a network-based game theory model with information

asymmetry and minimum quality standards and the references therein.

In particular, game theory holds promise as both a conceptual and methodological frame-

work for the investigation of decision-makers who compete for business and need to determine

the level of their cybersecurity investments so as to minimize potential financial damages

due to cyber attacks. Cavusoglu, Raghunathan, and Yue [4] compare decision-theoretic and

game-theoretic approaches to IT security investment, focusing on a firm and a hacker. Kun-

reuther and Heal [14], on the other hand, consider game theory for interdependent security,

but the decisions are discrete, that is, whether to invest or not and describe applications of

their framework to cybersecurity investments. They also assume, in contrast to our model,

that all the decision-makers are identical. Varian [32] also utilized game theory to study

interdependence among security firms’ risks. For a survey of game theory, as applied to net-

work security and privacy, we refer the reader to Manshaei et al. [15]. Therein, the authors

emphasize that the application of game theory with incomplete and imperfect information is

an emerging field in network security and privacy, with only a few papers published so far.

In this paper we hope to, in part, fill this void.

Specifically, in this paper, we develop a game theory framework consisting of sellers of

a product and buyers who engage in electronic transactions during the purchases of the

product. In our setting, the product can correspond to a manufactured product, a financial

product, or even a digital one. All that needs to transpire is that buyers utilize the Internet

to engage in economic transactions, which could involve also credit or debit cards. Another

essential component of our game theory model is information asymmetry in that individual

sellers are aware of their investment in cybersecurity, whereas the buyers are only aware of
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the average security of the sellers. The sellers in our model seek to maximize their expected

profits while investing in security and competing amongst themselves. Buyers reflect their

preferences through their demand price functions which depend on the product demands as

well as the average security level for the marketplace. The governing concept is that of Nash

equilibrium.

The literature on the economics of cybersecurity in terms of information asymmetry

focuses on asymmetry associated with insurance in that insurers may not have complete

information, unlike the sellers (cf. Shetty [29], Shetty et al. [30], and the references therein).

Our game theory model, in contrast, considers information asymmetry between sellers of a

product and buyers of the product. Moreover, unlike the former models, we do not assume

that the sellers are identical nor are they faced with the same cybersecurity investment cost

functions. Our contributions in the paper are as follows:

1). We develop a rigorous framework that captures competition among sellers in an oligopolis-

tic market of non-identical sellers, who identify optimal product quantities as well as optimal

cybersecurity investments;

2). We, for the first time, model information asymmetry associated with cybersecurity

investments between buyers and sellers of a product;

3). Our model is not limited to specific functional forms for the seller transaction cost

functions and the buyer demand price functions.

4). Our framework is computationally tractable and supported by both theoretical qualita-

tive results and an algorithm, which enables the exploration of numerous sensitivity analysis

experiments.

We develop the model in Section 2, state the equilibrium conditions, and derive the

equivalent variational inequality formulation. We also provide some qualitative properties of

the solution in terms of existence and uniqueness. In Section 3, we propose the algorithmic

scheme, along with convergence results. The algorithm yields closed form expressions for

the product transactions between buyers and sellers and the seller security levels at each

iteration. In Section 4, we illustrate the game theory model via three sets of numerical

examples, accompanied by sensitivity analysis, and managerial insights. A summary of

results with conclusions is presented in Section 5.
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2. The Game Theory Model of Cybersecurity Investments with Information

Asymmetry

We consider m competitive sellers of a homogeneous product and n buyers as depicted

in Figure 1. The buyers of the product are involved in electronic transactions associated

with the purchase of the product, which can occur online and/or in a brick and mortar

establishment through electronic processing of credit card or debit card payments. The

buyers can be consumers of a product or those purchasing it for resale. In the case of

electronic product purchases the sellers can correspond to a marketplace such as Amazon.com

or a specific seller’s website. The framework is also relevant to electronic finance, e.g.,

banking, with the sellers being those who offer a financial product and buyers being those

who use that product. What is important in our framework is that the Internet is needed

for the transactions between buyers and sellers to take place. Hence, network security is

relevant since sellers can sustain financial damage as a consequence of a successful cyber

attack encompassing the loss of a seller’s reputation, losses due to identity theft, opportunity

costs, etc. Similarly, buyers care about how secure their transactions are with the sellers.

Here we use network security interchangeably with cybersecurity.
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Figure 1: The network structure of the game theory model

We denote a typical seller by i and a typical buyer by j. Let Qij denote the nonnegative

volume of the product transacted between seller i and buyer j. We group the product

transactions into the vector Q ∈ Rmn
+ . Here si denotes the network security level, or, simply,

the security of seller i. We group the security levels of all sellers into the vector s ∈ Rm
+ . All

vectors here are assumed to be column vectors, except where noted.

We have si ∈ [0, 1], with a value of 0 meaning no network security and a value of 1

representing perfect security. Hence,

0 ≤ si ≤ 1, i = 1, . . . ,m. (1)
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The strategic variables of seller i; i = 1, . . . ,m, are his product transactions {Qi} where

Qi = (Qi1, . . . , Qin) and his security level si.

The average network security of the marketplace system is denoted by s̄, where

s̄ =
1

m

m∑
i=1

si. (2)

We define the probability pi of a successful cyber attack on seller i as

pi = 1− si, i = 1, . . . ,m, (3)

with notice that if a seller i has no security, then pi = 1, and if he has perfect security then

pi = 0.

For each seller i, to achieve security si encumbers an investment cost hi(si) with the

function assumed to be continuously differentiable and convex. Note that distinct sellers,

because of their size and existing cyber infrastructure (both hardware and software), will

be faced with different investment cost functions. We assume that, for a given seller i,

hi(0) = 0 denotes an entirely insecure seller and hi(1) = ∞ is the investment cost associated

with complete security for the seller (see Shetty [29], Shetty et al. [30]). An example of a

suitable hi(si) function is hi(si) = αi(
1√

(1−si)
− 1) with αi > 0.

The demand for the product by buyer j is denoted by dj and it must satisfy the following

conservation of flow equation:

dj =
m∑

i=1

Qij, j = 1, . . . , n, (4)

where

Qij ≥ 0, i = 1, . . . ,m; j = 1, . . . , n, (5)

that is, the price that each buyer is willing to pay for the product depends, in general, on

his own demand and that of the other buyers’, as well as on the average security level in the

marketplace. We group the demands for the product for all buyers into the vector d ∈ Rn
+.

The buyers reflect their preferences through their demand price functions, with the de-

mand price function for buyer j, ρj, being as follows:

ρj = ρj(d, s̄), j = 1, . . . , n. (5)

Observe that in our model there is information asymmetry in that the buyers are only aware

of an average security level of the marketplace, in general. This is reasonable since one may
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have information about an industry in terms of its cyber investments and security but it is

unlikely that individual buyers would have information on individual sellers’ security levels.

In view of (2) and (4), we can define ρ̂j(Q, s) ≡ ρj(d, s̄), ∀j. These demand price functions

are assumed to be continuous, continuously differentiable, decreasing with respect to the

respective buyer’s own demand and increasing with respect to the average security level.

Each seller i; i = 1, . . . ,m, is faced with a cost ci associated with the processing and the

handling of the product and transaction costs cij(Qij); j = 1 . . . , m, with his total cost given

by:

ci

n∑
j=1

Qij +
n∑

j=1

cij(Qij). (6)

We assume that the transaction cost functions are convex and continuously differentiable.

Note that the transaction costs can include the costs of transporting/shipping the product

to the buyer. The transaction costs can also include the cost of using the network services,

taxes, etc.

Since the revenue of seller i (in the absence of a cyber attack) is:

n∑
j=1

ρ̂j(Q, s)Qij, (7)

we can express the profit fi of seller i; i = 1, . . . ,m (in the absence of a cyber attack and

security investment) as the difference between the revenue and his costs, that is,

fi(Q, s) =
n∑

j=1

ρ̂j(Q, s)Qij − ci

n∑
j=1

Qij −
n∑

j=1

cij(Qij). (8)

A seller i; i = 1, . . . ,m, incurs an expected financial damage if there is a successful cyber

attack represented by

Dipi, (9)

where Di takes on a positive value.

Using the above expressions (3), (8), and (9), we can express the expected utility, E(Ui),

of seller i; i = 1, . . . ,m, which corresponds to his expected profit, as:

E(Ui) = (1− pi)fi(Q, s) + pi(fi(Q, s)−Di)− hi(si). (10)

We group the expected utilities of all the sellers into the m-dimensional vector E(U) with

components: {E(U1), . . . , E(Um)}.
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Let Ki denote the feasible set corresponding to seller i, where Ki ≡ {(Qi, si)|Qi ≥
0, and 0 ≤ si ≤ 1} and define K ≡

∏m
i=1 Ki.

We consider the competitive market mechanism in which the m sellers supply the product

and invest in cybersecurity in a non-cooperative manner, each one trying to maximize his

own expected profit. We seek to determine a nonnegative product transaction and security

level pattern (Q∗, s∗) for which the m sellers will be in a state of equilibrium as defined below.

In particular, Nash [25, 26] generalized Cournot’s concept (cf. [6]) of an equilibrium for a

model of several players, each of which acts in his/her own self-interest, in what is called a

non-cooperative game.

Definition 1: Nash Equilibrium in Product Transactions and Security Levels

A product transaction and security level pattern (Q∗, s∗) ∈ K is said to constitute a Nash

equilibrium if for each seller i; i = 1, . . . ,m,

E(Ui(Q
∗
i , s

∗
i , Q̂

∗
i , ŝ

∗
i )) ≥ E(Ui(Qi, si, Q̂∗

i , ŝ
∗
i )), ∀(Qi, si) ∈ Ki, (11)

where

Q̂∗
i ≡ (Q∗

1, . . . , Q
∗
i−1, Q

∗
i+1, . . . , Q

∗
m); and ŝ∗i ≡ (s∗1, . . . , s

∗
i−1, s

∗
i+1, . . . , s

∗
m). (12)

According to (11), an equilibrium is established if no seller can unilaterally improve upon

his expected profits by selecting an alternative vector of product transactions and security

levels.

2.1 Variational Inequality Formulations

We now present alternative variational inequality formulations of the above Nash equilibrium

in product transactions and security levels.

Theorem 1

Assume that, for each seller i; i = 1, . . . ,m, the expected profit function E(Ui(Q, s)) is con-

cave with respect to the variables {Qi1, . . . , Qin}, and si, and is continuous and continuously

differentiable. Then (Q∗, s∗) ∈ K is a Nash equilibrium according to Definition 1 if and only

if it satisfies the variational inequality

−
m∑

i=1

n∑
j=1

∂E(Ui(Q
∗, s∗))

∂Qij

× (Qij −Q∗
ij)−

m∑
i=1

∂E(Ui(Q
∗, s∗))

∂si

× (si − s∗i ) ≥ 0, ∀(Q, s) ∈ K,

(13)
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or, equivalently, (Q∗, s∗) ∈ K is an equilibrium product transaction and security level pattern

if and only if it satisfies the variational inequality

m∑
i=1

n∑
j=1

[
ci +

∂cij(Q
∗
ij)

∂Qij

− ρ̂j(Q
∗, s∗)−

n∑
k=1

∂ρ̂k(Q
∗, s∗)

∂Qij

×Q∗
ik

]
× (Qij −Q∗

ij)

+
m∑

i=1

[
∂hi(s

∗
i )

∂si

−Di −
n∑

k=1

∂ρ̂k(Q
∗, s∗)

∂si

×Q∗
ik

]
× (si − s∗i ) ≥ 0, ∀(Q, s) ∈ K. (14)

Proof: (13) follows directly from Gabay and Moulin [9] and Dafermos and Nagurney [7].

In order to obtain variational inequality (14) from variational inequality (13), we note

that, at the equilibrium:

−∂E(Ui)

∂Qij

= ci +
∂cij(Q

∗
ij)

∂Qij

− ρ̂j(Q
∗, s∗)−

n∑
k=1

∂ρ̂k(Q
∗, s∗)

∂Qij

×Q∗
ik; i = 1, . . . ,m; j = 1, . . . , n;

(15)

and

−∂E(Ui)

∂si

=
∂hi(s

∗
i )

∂si

−Di −
n∑

k=1

∂ρ̂k(Q
∗, s∗)

∂si

×Q∗
ik; i = 1, . . . ,m. (16)

Multiplying the right-most expression in (15) by (Qij −Q∗
ij) and summing the resultant

over all i and all j; similarly, multiplying the right-most expression in (16) by (si − s∗i ) and

summing the resultant over all i yields, respectively:

m∑
i=1

n∑
j=1

[
ci +

∂cij(Q
∗
ij)

∂Qij

− ρ̂j(Q
∗, s∗)−

n∑
k=1

∂ρ̂k(Q
∗, s∗)

∂Qij

×Q∗
ik

]
×(Qij−Q∗

ij), ∀Q ∈ Rmn
+ (17)

and
m∑

i=1

[
∂hi(s

∗
i )

∂si

−Di −
n∑

k=1

∂ρ̂k(Q
∗, s∗)

∂si

×Q∗
ik

]
× (si − s∗i ), ∀si ∈ [0, 1] ,∀i. (18)

Finally, summing (17) and (18) and then using constraints (1) and (2), yields variational

inequality (14). 2

We now put the above Nash equilibrium problem into standard variational inequality

form (see Nagurney [18]), that is: determine X∗ ∈ K ⊂ RN , such that

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (19)

where F is a given continuous function from K to RN and K is a closed and convex set.
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We define the (mn + m)-dimensional vector X ≡ (Q, s) and the (mn + m)-dimensional

row vector F (X) = (F 1(X), F 2(X)) with the (i, j)-th component, F 1
ij, of F 1(X) given by

F 1
ij(X) ≡ −∂E(Ui(Q, s))

∂Qij

, (20)

the i-th component, F 2
i , of F 2(X) given by

F 2
i (X) ≡ −∂E(Ui(Q, s))

∂si

, (21)

and with the feasible set K ≡ K. Then, clearly, variational inequality (13) can be put into

standard form (19).

In a similar manner, one can establish that variational inequality (14) can also be put

into standard variational inequality form (19).

For additional background on the variational inequality problem, we refer the reader to

the book by Nagurney [12].

2.2 Qualitative Properties

It is reasonable to expect that the expected utility of any seller i, E(Ui(Q, s)), would

decrease whenever his product volume has become sufficiently large, that is, when E(Ui) is

differentiable, ∂E(Ui(Q,s))
∂Qij

is negative for sufficiently large Qij. Hence, the following assumption

is reasonable:

Assumption 1

Suppose that in our game theory model there exists a sufficiently large M , such that for any

(i, j),
∂E(Ui(Q, s))

∂Qij

< 0, (22)

for all product transaction patterns Q with Qij ≥ M .

We now give an existence result.

Proposition 1

Any Nash equilibrium problem in product transactions and security levels, as modeled above,

that satisfies Assumption 1 possesses at least one equilibrium product transaction and security

level pattern.
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Proof: The proof follows from Proposition 1 in Zhang and Nagurney [33]. 2

We now present the uniqueness result, the proof of which follows from the basic theory

of variational inequalities (cf. [18]).

Proposition 2

Suppose that F is strictly monotone at any equilibrium point of the variational inequality

problem defined in (19). Then it has at most one equilibrium point.

3. The Algorithm

For computational purposes, we will utilize the Euler method, which is induced by the

general iterative scheme of Dupuis and Nagurney [8]. Specifically, iteration τ of the Euler

method (see also [24]) is given by:

Xτ+1 = PK(Xτ − aτF (Xτ )), (23)

where PK is the projection on the feasible set K and F is the function that enters the

variational inequality problem (19).

As shown in [6], for convergence of the general iterative scheme, which induces the Euler

method, the sequence {aτ} must satisfy:
∑∞

τ=0 aτ = ∞, aτ > 0, aτ → 0, as τ →∞. Specific

conditions for convergence of this scheme as well as various applications to the solutions of

other network-based game theory models can be found in [21] – [24].

Explicit Formulae for the Euler Method Applied to the Game Theory Model

The elegance of this procedure for the computation of solutions to our model is apparent from

the following explicit formulae. In particular, we have the following closed form expression

for the product transactions i = 1, . . . ,m; j = 1, . . . , n:

Qτ+1
ij = max{0, Qτ

ij + aτ (ρ̂j(Q
τ , sτ ) +

n∑
k=1

∂ρ̂k(Q
τ , sτ )

∂Qij

Qτ
ik − ci −

∂cij(Q
τ
ij)

∂Qij

)}, (24)

and the following closed form expression for the security levels i = 1, . . . ,m:

sτ+1
i = max{0, min{1, sτ

i + aτ (
n∑

k=1

∂ρ̂k(Q
τ , sτ )

∂si

Qτ
ik −

∂hi(s
τ
i )

∂si

+ Di)}}. (25)

We now provide the convergence result. The proof is direct from Theorem 5.8 in Nagurney

and Zhang (1996).
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Theorem 2

In the game theory model described above let F (X)=−∇E(U(Q, s)) be strictly monotone at

any equilibrium pattern and assume that Assumption 1 is satisfied. Also, assume that F is

uniformly Lipschitz continuous. Then there exists a unique equilibrium product transaction

and security level pattern (Q∗, s∗) ∈ K and any sequence generated by the Euler method as

given by (23) above, where {aτ} satisfies
∑∞

τ=0 aτ = ∞, aτ > 0, aτ → 0, as τ →∞ converges

to (Q∗, s∗).

In the next Section, we apply the Euler method to compute solutions to numerical game

theory problems.

4. Numerical Examples

We implemented the Euler method, as described in Section 3, using FORTRAN on a

Linux system at the University of Massachusetts Amherst. The convergence criterion was

ε = 10−4; that is, the Euler method was considered to have converged if, at a given iteration,

the absolute value of the difference of each product transaction and each security level differed

from its respective value at the preceding iteration by no more than ε.

The sequence {aτ} was: .1(1, 1
2
, 1

2
, 1

3
, 1

3
, 1

3
. . .). We initialized the algorithm by setting

each product transaction Qij = 1.00, ∀i, j, and by setting the security level of each supplier

si = 0.00, ∀i.

We now present three sets of examples in order to illustrate both the model and the

algorithm. Each set of examples consists of an example with four variants, followed by

sensitivity analysis.

Example Set 1

The first set of examples consists of two sellers and a single buyer as depicted in Figure 2.

This set of examples begins with the baseline Example 1, followed by four variants. The

equilibrium solutions are reported in Table 1. We then include additional results in the form

of sensitivity analysis on the demand price functions which we depict in graphical form in

Figure 3.

The cost and demand price function data for Example 1 are:

c1 = 5, c2 = 10,

c11(Q11) = .5Q2
11 + Q11, c21(Q21) = .5Q2

21 + Q21,

12
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Figure 2: Network Topology for Example Set 1

ρ1(d, s̄) = −d1 + .1(
s1 + s2

2
) + 100.

The damage parameters are: D1 = 50 and D2 = 70 with the investment functions taking

the form:

h1(s1) =
1√

(1− s1)
− 1, h2(s2) =

1√
(1− s2)

− 1.

From Table 1, one can see that Seller 1 sells more of the product than Seller 2 to the buyer

and has a higher expected profit. His security level, however, is lower than that of Seller

2. The buyer is unaware of the individual seller security levels since there is information

asymmetry and only knows the average security level. This works to Seller 1’s advantage.

In Variant 1.1, we modified the damage parameters to:

D1 = 5, D2 = 7,

reducing those in Example 1 by a factor of 10, while keeping the remainder of the data as in

Example 1. With lower associated financial damages in the case of a possible cyber attack,

the sellers now substantially reduce their security levels with an increase in expected profits,

although not significant.

In Variant 1.2, we kept the data as in Example 1, but we increased the damage parameters

by a factor of 4 to:

D1 = 200, D2 = 280.

With large damages for both sellers, in the case of a cyber attack, the sellers increase their

security levels with a decrease in expected profits due to the increased costs.

In Variant 1.3, we used the data for Example 1 but we modified the demand price function

to:

ρ1(d, s̄) = −d1 + 1(
s1 + s2

2
) + 100.
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Hence, the buyer is now more sensitive to the average security level. The sellers, in order

to satisfy the buyer, increase their security levels, as compared to those in Example 1. The

buyer responds with an increased demand for the product and the sellers increase their

expected profits since the buyer is willing to pay a higher price for the product due to

enhanced average security.

In Variant 1.4, we, again, increase the sensitivity of the buyer to the average security

level, so that now the demand price function is

ρ1(d, s̄) = −d1 + 10(
s1 + s2

2
) + 100

with the remainder of the data as in Example 1. With even greater sensitivity of the buyer

to average network security, both sellers respond with increased security levels, the highest

of all examples in this set. Each seller also increases his product transaction volume and the

price for the product increases by almost 10%. The expected profit for each seller increases

substantially.

Table 1: Equilibrium Solutions for Examples in Set 1

Solution Ex. 1 Var. 1.1 Var. 1.2 Var. 1.3 Var. 1.4
Q∗

11 24.27 24.26 24.27 24.49 26.70
Q∗

21 21.27 21.28 21.27 21.49 23.70
d∗1 45.54 45.54 45.54 45.98 50.40
s∗1 .95 .81 .98 .96 .98
s∗2 .96 .84 .99 .97 .98
s̄∗ .955 .83 .985 .965 .98

ρ1(d
∗
1, s̄

∗) 54.55 54.54 54.55 54.98 59.40
E(U1) 882.35 883.00 881.12 898.52 1069.37
E(U2) 677.12 678.42 675.72 691.26 842.10

In Figure 3, we display the expected profits at equilibrium of the two sellers as the

demand price coefficient for average security of Buyer 1 varies in Example 1. Figure 3

depicts graphically the expected profits obtained in Example 1, and its Variants 1.3 and 1.4,

with the addition of the result for the demand price average security level coefficient being

equal to 5. As can be seen from Figure 3, both sellers benefit financially as the buyer values

the average security more highly. Such information is of use to sellers, since, as a buyer values

average security higher, this leads to higher expected profits for the sellers. This sensitivity

analysis demonstrates that a buyer can act as a positive driver for enhanced cybersecurity

investments of sellers, even under information asymmetry. Hence, sellers may wish to seek

out such buyers.
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Figure 3: Sensitivity Analysis for Demand Price Coefficient for Average Security of Buyer 1
in Example 1

Example Set 2

The second set of examples has the network topology depicted in Figure 4. Specifically, we

added a second buyer. The equilibrium solutions for this set of examples are reported in

Table 2. Sensitivity analysis results for changes in cybersecurity investment cost functions

are then given in graphical form in Figures 5 and 6.
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Sellers
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Figure 4: Network Topology for Example Set 2

Example 2, which is the baseline for this set, is constructed from Example 1 above but

with the following data added for Buyer 2.
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The new cost and demand price functions are:

c12(Q12) = .25Q2
12 + Q12, c22(Q22) = .25Q2

22 + Q22,

ρ2(d2, s̄) = −.5d2 + .2(
s1 + s2

2
) + 200.

It is interesting to compare the solution of Example 2 with that of Example 1. Observe

that, with the addition of a new buyer, which is more sensitive to average security, both

sellers increase their security levels. The addition of a new buyer also increases the expected

profits for both sellers just under tenfold for the first seller and over tenfold for the second

seller.

In the first variant of Example 2, Variant 2.1, we modify the demand price function of

Buyer 1 to reflect, for example, an increased willingness to pay more for the product because

of its value. The new demand price function of Buyer 1 is now:

ρ1(d, s̄) = −d1 + .1(
s1 + s2

2
) + 200.

The product transactions to Buyer 1 more than double from their respective values in

Example 2. The security levels remain unchanged. Both sellers benefit from increased

expected profits.

Variant 2.2 in this set is constructed from Variant 2.1. We assume now that Buyer 2 no

longer values the product much so his demand price function is

ρ2(d2, s̄) = −.5d2 + .2(
s1 + s2

2
) + 20,

with the remainder of the data as in Variant 2.1. The product transactions decrease by an

order of magnitude to the second buyer and the sellers suffer from much decreased expected

profits as compared to those in Variant 2.1 of this set of examples.

Variant 2.3 in this set is constructed from Example 2 to investigate the impacts of an

increase in both the security investment functions so that:

h1(s1) = 100(
1√

(1− s1)
− 1), h2(s2) = 100(

1√
(1− s2)

− 1)

with new damages: D1 = 500 and D2 = 700. With the increased costs associated with

cybersecurity investments both sellers reduce their security levels to the lowest level of all

the examples solved to this point.
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Variant 2.4 in this set had the same data as Variant 2.3, but we now even further increase

Seller 2’s investment cost function where:

h2(s2) = 1000(
1√

(1− s2)
− 1).

This could reflect, for example, a scenario where Seller 2 has expanded his cyber infrastruc-

ture and needs to invest more in appropriate software to protect the network. Seller 2 now

has an equilibrium security level that is one quarter of that in Variant 2.3. Interestingly, not

only do his expected profits decline but also those of Seller 1 do.

Table 2: Equilibrium Solutions for Examples in Set 2

Solution Ex. 2 Var. 2.1 Var. 2.2 Var. 2.3 Var. 2.4
Q∗

11 24.27 49.27 49.27 24.27 24.26
Q∗

12 98.35 98.35 8.35 98.32 98.30
Q∗

21 21.27 46.27 46.27 21.27 21.26
Q∗

22 93.35 93.35 3.35 93.32 93.30
d∗1 45.55 95.55 95.55 45.53 45.53
d∗2 191.69 191.69 11.69 191.63 191.60
s∗1 .96 .96 .96 .79 .79
s∗2 .97 .97 .96 .83 .21
s̄∗ .965 .965 .96 .81 .50

ρ1(d
∗
1, s̄

∗) 54.55 104.55 104.55 54.55 54.53
ρ2(d

∗
2, s̄

∗) 104.35 104.35 104.35 104.35 104.30
E(U1) 8136.68 10894.79 3692.71 8083.88 8077.98
E(U2) 7212.55 9745.65 3218.61 7151.75 6763.43

In Figure 5, we display the sensitivity analysis results for the changes in equilibrium

average security levels of the two sellers as the α2 coefficient in Seller 2’s investment function

h2 increases from 1 (Example 2) to 100 (Variant 2.3), to 1,000 (Variant 2.4), and, finally, to

2,000 and 3,000 (results not in Table 2). We see, from Figure 5, that at α2 = 2, 000 the cost

of investing in cybersecurity is sufficiently high enough that Seller 2 does not invest at all in

cybersecurity.

In Figure 6, we display the expected profits at equilibrium of the two sellers at the same

values of the α2 as in Figure 5. The expected profit of Seller 2 drops precipitously whereas

that of Seller 1 remains essentially level. Hence, Seller 1 bears the burden of cybersecurity

investments once Seller 2’s investment function parameter α2 reaches 2,000. This sensitivity

analysis focuses on the “supply” side in terms of cybersecurity investment costs, as opposed

to the “demand” side in terms of price function changes as done for the previous Example
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Figure 5: Sensitivity Analysis for Cybersecurity Investment Function α2 Coefficient in Vari-
ant 2.3

Figure 6: Sensitivity Analysis for Cybersecurity Investment Function α2 Coefficient in Vari-
ant 2.3

1 sensitivity analysis. This analysis is useful to third parties, such as insurance companies,

who can see the impact of higher cybersecurity investment costs on security levels, with the
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security investments even dropping down to zero. In this case, Seller 2, who does not invest

at all in cybersecurity, is at greater risk associated with cyber attacks, unlike Seller 1, who

has invested in security.

Example Set 3

The third set of numerical examples consists of three sellers and two buyers. as depicted in

Figure 7 with the subsequent sensitivity analysis results evaluating the impact of additional

sellers reported in Figures 8 through 10.
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Figure 7: Network Topology for Example Set 3

In order to do cross comparisons among the different example sets, we construct Example

3, which is the baseline example in this set, from Example 2 in Set 2. Hence, the data for

Example 3 is identical to that in Example 2 except the new Seller 3 data are as given below:

c3 = 3, c31(Q21) = Q2
21 + 3Q21, c32(Q32) = Q2

22 + 4Q22,

h3(s3) = 2(
1√

(1− s3)
− 1), D3 = 100.

Also, since there are now 3 sellers, the demand price functions become:

ρ1(d, s̄) = −d1 + .1(
s1 + s2 + s3

3
) + 100, ρ2(d, s̄) = −.5d2 + .2(

s1 + s2 + s3

3
) + 200.

The equilibrium solutions for examples in Set 3 are reported in Table 3. With increased

competition, due to the addition of Seller 3, the demand prices for the product drop for both

Buyer 1 and Buyer 2 (as compared to the respective equilibrium prices for Example 2). Also,

with the increased competition, the expected profits drop for the two original sellers. The

demand increases at Buyer 1 and also for Buyer 2, both at upwards of 10%.

Variant 3.1 in Set 3 is constructed from Example 3 with the data as therein except for

the demand price function for Buyer 1 who now is more sensitive to the average security,
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Table 3: Equilibrium Solutions for Examples in Set 3

Solution Ex. 3 Var. 3.1 Var. 3.2 Var. 3.3 Var. 3.4
Q∗

11 20.81 21.00 21.00 11.64 12.68
Q∗

12 89.50 89.50 89.85 49.66 51.86
Q∗

21 17.81 17.99 17.99 9.64 10.68
Q∗

22 84.50 84.50 84.85 46.32 48.53
Q∗

31 13.87 13.99 14.00 8.73 9.51
Q∗

32 35.40 35.40 35.54 24.50 25.60
d∗1 52.48 52.98 52.98 30.02 32.87
d∗2 209.39 209.39 210.23 120.48 125.99
s∗1 .96 .96 .97 .96 .99
s∗2 .97 .97 .97 .97 .99
s∗3 .95 .96 .96 .96 .97
s̄∗ .96 .961 .966 .963 .981

ρ1(d
∗
1, s̄

∗) 47.61 47.98 47.99 40.93 44.06
ρ2(d

∗
2, s̄

∗) 95.50 95.50 95.85 80.49 83.82
E(U1) 6655.25 6667.06 6714.85 3420.18 3765.72
E(U2) 5828.73 5838.82 5883.93 2913.47 3230.19
E(U3) 2261.46 2268.47 2283.75 1426.07 1581.55

where

ρ1(d1, s̄) = −d1 + (
s1 + s2 + s3

3
) + 100.

The expected profit increases for all the sellers since Buyer 1 is willing to pay a higher

price for the product.

Variant 3.2 in this set is constructed from Variant 3.1 with the only change being that

now Buyer 2 is also more sensitive to average security so that his demand price function is:

ρ2(d2, s̄) = −.5d2 + (
s1 + s2 + s3

3
) + 200.

We see, from Table 3, that the expected profits are now even higher than for Variant 3.1.

These two variants demonstrate that consumers who care about security can enhance the

expected profits of sellers of a product, further reinforcing the results obtained for Example

Set 2.

Note that Seller 2 has not increased his security level in Variant 3.1 and Variant 3.2 as

compared to that in Example 3, whereas Seller 1 and Seller 3 have. Hence, Seller 2, here,

benefits from the information asymmetry.
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Variant 3.3 in this set has the same data as Variant 3.2 except that the demand functions

are now:

ρ1(d1, s̄) = −2d2 + (
s1 + s2 + s3

3
) + 100, ρ2(d2, s̄) = −d2 + (

s1 + s2 + s3

3
) + 100.

As can be seen from Table 3, the product transactions have all decreased substantially, as

compared to the respective values for Variant 3.2 in this set of examples. Also, the demand

prices associated with the two buyers have decreased substantially as have the expected

profits for all the sellers.

Variant 3.4 in this set is constructed from Variant 3.3 except that now the demand price

function sensitivity for both buyers has increased even more so that:

ρ1(d1, s̄) = −2d2 + 10(
s1 + s2 + s3

3
) + 100, ρ2(d2, s̄) = −d2 + 10(

s1 + s2 + s3

3
) + 100.

The equilibrium product transactions now increase. The demand prices have both increased

as have the expected profits of all sellers.

We then proceeded to conduct the following sensitivity analysis. To Variant 3.4 we added

a fourth seller with the identical data to that of Seller 3 and then a fifth seller, also with

identical data to that of Seller 3. The demand price functions were then modified accordingly

to include the corresponding average security level.

In Figure 8, we display the equilibrium demands and the incurred equilibrium demand

prices and in Figure 9 the average security levels at equilibrium. With increasing competition,

the demand prices decrease and the demand increases for both Buyer 1 and Buyer 2. As can

be seen from Figure 9, the average equilibrium security levels decrease. This may be due,

in part, to sellers being less likely to be recognized (and suffer the consequences) for lower

cybersecurity investments and, hence, they invest less.

In Figure 10, we display the impact on the sellers’ expected profits as the number of sellers

increases from 3 to 4 to 5, with again, Sellers 4 and 5 being identical to Seller 3. Sellers 4

and 5 have the same expected profits as does Seller 3 since they are identical. Figure 10

clearly reveals that increasing competition has a negative effect on all the sellers. Buyers,

on the other hand, benefit from reduced prices.
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Figure 8: Sensitivity Analysis for an Increase of Sellers - Impacts on Equilibrium Demands
and Incurred Demand Prices

Figure 9: Sensitivity Analysis for an Increase of Sellers - Impact on Average Equilibrium
Security

5. Summary

Cyber attacks have impacted businesses and other organizations as well as governments

and individuals. Such attacks may result in financial losses as well as reputational costs, not

to mention inconvenience and disruptions. Investments in cybersecurity are a mechanism in

which to reduce financial damages in the case of a cyberattack.

In today’s networked marketplaces buyers can purchase products in brick and mortar

establishments or online; the same for many financial product transactions. Hence, they are

also sensitive to the cybersecurity provided by the sellers, as recent cyber attacks of major
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Figure 10: Sensitivity Analysis for an Increase of Sellers - Impact on Expected Profits

retailers have demonstrated. To tackle the challenges posed by cyber attacks and cybercrime

there has been growing interest in developing methodological tools that can assist decision-

makers in their cybersecurity investments. It is important to note that buyers interact with

multiple sellers through the prices that they are willing to pay for the product. The prices

depend on the quantities provided by the sellers of the product as well as the average security

level for the marketplace.

In this paper, we develop a game theory model whose solution provides the equilibrium

product transactions between sellers and buyers as well as the security levels of the sell-

ers in the case of security information asymmetry. It is reasonable to expect that buyers

may be aware of an industry average in terms of cybersecurity levels (and associated invest-

ments) but unlikely that they would know an individual seller’s security levels. We construct

probabilities from the security levels of the sellers, identify the expected financial damages,

in the case of a cyber attack, and reveal the expected profit functions of the sellers. The

sellers compete non-cooperatively, each one maximizing his expected profit until a Nash

equilibrium is achieved. We derive the variational inequality formulation of the governing

equilibrium conditions, and establish existence and uniqueness results for the equilibrium

product transaction and security level pattern. From our model, once solved, the sellers can

identify how much to invest in cybersecurity so as to maximize their expected profits, given

the cybersecurity investments of their competitors. The model can be applied, as desired,
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in different application settings and would require parameterization and obtaining data in

terms of costs (processing, transaction, and cybersecurity investment ones), damages due

to a cyberattack (type under consideration) as well as price function data for the product

that the sellers provide. The latter would include not only dependencies on the demands

but also on the average security level sensitivity, which, clearly, would depend on the buyer.

Such data could be acquired, for example, from surveys or from specific industry reports.

Furthermore, should governmental regulations be imposed as to the reporting of security

levels, then this would provide another source of data.

The proposed computational scheme has nice features for implementation and results in

closed form expressions, at each iteration, for the product transactions and security levels.

The algorithm is then applied to compute solutions to three sets of increasingly more complex

numerical examples (with a total of fifteen examples) in which we explore the addition of

buyers and sellers, as well as the impacts of changes in the investment cost functions and

the demand price functions on the equilibrium pattern. We also, include, after each example

set, additional results, in the form of sensitivity analysis, and, for the final set, we report

the impacts of the addition of identical sellers on the equilibrium demands, the incurred

equilibrium demand prices, the average equilibrium security, and the expected profits of the

sellers.

Future research may include the investigation of additional interdependencies in the

buyer-seller network in terms of security, the development of cybersecurity investment mod-

els with product differentiation in that buyers are aware of the security levels of individual

sellers, the construction of appropriate insurance schemes, and the study of the impacts of

the imposition of minimum security levels.
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