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Abstract:

In this paper, we develop and compare three distinct models for cybersecurity investment

in competitive and cooperative situations to safeguard against potential and ongoing threats.

We introduce a Nash equilibrium model of noncooperation in terms of cybersecurity levels

of the firms involved, which is formulated, analyzed, and solved using variational inequality

theory. The equilibrium of this model then acts as the disagreement point over which bar-

gaining takes place in the setting of the second model, which yields a cooperative solution in

which the firms are guaranteed that their expected utilities are no lower than those achieved

under noncooperation. Nash bargaining theory is utilized to argue for information sharing

and to quantify its monetary and security benefits in terms of reduction in network vulner-

ability to cyberattacks. The third model in this paper also focuses on cooperation among

the firms in terms of their cybersecurity levels, but from a system-optimization perspective

in which the sum of the expected utilities is maximized. Qualitative properties are provided

for the models in terms of existence and uniqueness results along with numerical solutions

to two cases focusing on retailers and financial service firms, since these have been subject

to some of the most damaging cyberattacks. Sensitivity analysis results are also provided.

We compare the solutions of the models for the cases and recommend a course of action that

has both financial and policy-related implications.

Key words: cybersecurity, investments, game theory, Nash equilibrium, Nash bargaining,

system-optimization, network vulnerability, variational inequalities, retailers, financial ser-

vices
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1. Introduction

The effects of cyberattacks are being felt across the globe in multiple sectors and indus-

tries. The damages incurred include direct financial damages as well as reputation issues,

the loss of business, the inability to provide the expected services, opportunity costs, and

the loss of trust. According to the Center for Strategic and International Studies (2014),

the world economy sustained $445 billion in losses from cyberattacks in 2014. The United

States suffered a loss of $100 billion, Germany lost $60 billion, China lost $45 billion, and

the United Kingdom reported a loss of $11.4 billion due to cybersecurity lapses. The think

tank also presented an analysis that indicated that of the $2 trillion to $3 trillion generated

by the Internet annually, about 15%-20% is extracted by cybercrime. Adversaries in the

cyber realm include spies from nation-states who seek our secrets and intellectual property;

organized criminals who want to steal our identities and money; terrorists who aspire to

attack our power grid, water supply, or other infrastructure; and hacktivist groups who are

trying to make a political or social statement (Deloitte (2014)).

The evolving threat landscape of cybercrime heavily targets organizations in energy, retail,

financial services, critical manufacturing, communications, and even healthcare. According

to the US Department of Homeland Security (2015), the energy sector constituted the highest

number of incidents (32%) reported in Fiscal Year 2014. The reality of effects of cyberattacks

on energy infrastructure is brought forth by the recent “UglyGorilla” attack in 2014 that

sought access to pipeline schematics and natural gas flow regulations systems in the United

States through the remote shutdown of critical systems (Bloomberg (2014)). In order to

protect the electric grids, and oil and natural gas infrastructure from threats, the Energy

Department in October 2015 announced $34 million toward R&D efforts (US Department of

Energy (2015)). The retail sector, on the other hand, has reported to-date one of the biggest

breaches with heavy losses. In 2014 alone, Target, Home Depot, Michaels Stores, Staples,

and eBay were breached. Card data and personal information of millions of customers were

stolen and the detection of cyber espionage became the prime focus for the retail sector with

regards to cybersecurity (Granville (2015)). Since financial gains, through the subversion of

processes and controls, are one of the most attractive benefits emerging from cyberattacks,

financial service firms are targeted incessantly. The large-scale data breach of JP Morgan

Chase, Kaspersky Lab’s detection of a two-year infiltration of 100 banks across the world

costing $1 billion (USA Today (2015)), and the Dridex malware related losses of $100 million

worldwide (Dodd (2015)) are some of the widely accepted cautionary tales in this sector.

According to the Ponemon Institute (2015), the average annualized cost of cybercrime

incurred by a benchmark sample of organizations was $15 million. The range of these
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annualized costs was $1.9 million to $65 million, an 82% increase in the past six years. Most of

these cybercrimes are generally caused by denial of service, malicious insiders, and malicious

code affecting physical and cyber assets. A survey conducted by AON Risk Services with

Ponemon Institute (2015) concluded that despite the comparability of the average potential

loss to information assets ($617 million) and property, plant and equipment ($648 million),

the percentages of insurance coverage are 51% and 12%, respectively. Moreover, because of

the interlinkages among different firms, organizations, institutions, and even nations, due

to the Internet and associated advanced technologies, a single firm, organization, nation,

or even individual may affect the vulnerability of others to cyberattacks. The technological

innovations that are being envisioned could intensify these losses even more as they introduce

new entry points for cyberattacks (The Wall Street Journal (2014)). These inclement costs

ultimately trickle down to organizations and consumers.

For example, the Internet of Things (IoT) has expanded the possible entry points for cy-

berattacks (ComputerWeekly.com (2015)). According to McKinsey & Company Quarterly

(2014), worries about cyberattacks are beginning to have quantifiable negative business im-

plications. In high tech, half of the McKinsey executives surveyed said they would modify

the characteristics of their R&D efforts over time with added concerns that cyberattacks

could slow down the capture of value creation from cloud computing, mobile technologies,

and healthcare technologies. As reported therein, 70% of the respondents noted that security

concerns had delayed the adoption of public cloud computing by a year or more, and 40%

said that because of such concerns enterprise-mobility capabilities were delayed by a year or

more.

The increased rate of cyberattacks has spurred the behavioral analysis of attackers and

defenders. Aggarwal et. al. (2015) take a game theory approach to study actions of attackers

and defenders in a 2 × 4 cybersecurity game that is evaluated computationally through

1000 simulations. A defense exercise model using game theory is developed by Patrascu

and Simion (2014) to train cyber response specialists. Nagurney (2015) utilized a network

economics approach to model cybercrime emphasizing that both firms and hackers act as

economic agents. RAND National Security Division (2014) also argued that an economic

approach to tackling cybercrime is warranted.

In addition to investigating interactions among attackers and defenders, there has also

been a growing literature on cybersecurity investments. The investment in cybersecurity

through software and hardware, education, and effective personnel can help resist the growing

frequency and severity of attacks, and assist in the planning of appropriate allocation of

resources required to prevent/mitigate the likely damage. Garvey, Moynihan, and Servi
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(2013) suggested an approach that helps to prioritize among competing investment options

for better cyber defense. They identify sets of Pareto efficient cost-benefit investments, and

their economic returns, that capture tangible and intangible advantages of countermeasures

that strengthen cybersecurity. From a social welfare standpoint, Gordon et. al. (2015)

examined changes in the maximum a firm should invest into cybersecurity activities in the

face of well-recognized externalities.

Nevertheless, the domain of security in computer networks has a limited but useful lit-

erature employing game theory. Zero-sum, non-zero-sum, dynamic, stochastic, repeated,

Stackelberg, static, and coalition games have been applied to computer and communication

networks. Manshaei et al. (2011) provide a survey of the literature combining game theory

and security. The survey is divided into six main categories: security of the physical and

MAC layers, security of self-organizing networks, intrusion detection systems, anonymity,

and privacy, the economics of network security, and cryptography. Das (2015) presents a

cybersecurity ecosystem consisting of network, cloud, and software providers and econom-

ically analyzes the risk of correlation between agents in the ecosystem in case of a breach.

Shetty et al. (2009) and Shetty (2010) focus on game theory for the determination of cyber-

security levels through investments. In both those publications, the authors determine the

Nash equilibrium as well as the social optimum associated with security levels. However, it is

assumed that the firms face identical cybersecurity investment cost functions, have identical

wealth, and also the damages afflicted due to a cyberattack are the same. Nagurney and

Nagurney (2015) and Nagurney, Nagurney, and Shukla (2015), inspired, in part, by that

research, relaxed the assumptions of identical firms, and further quantify the expected util-

ities of financial firms/retailers in a bipartite network with investment costs, supply prices,

transaction costs, and demand price functions, taking a supply chain perspective. A vari-

ational inequality and noncooperative game theoretic approach is utilized to arrive at the

equilibrium production quantities and cybersecurity levels given firm and consumer behavior

that ultimately ascertain the network vulnerability. A recent edited volume by Daras and

Rassias (2015) includes additional information on network security models and frameworks.

Nagurney (2015) emphasized the importance of assessing the vulnerabilities of cyberat-

tacks in a rigorous quantifiable manner and identifying possible synergies associated with

information sharing for firms providing critical infrastructure networks on which our econ-

omy and society depend. The complexity and interdependence of firms, governments, and

individuals in intricately woven networks mean that an attack on one may pave the way for

attacks on others. Given that the number and intensity of cyber threats for every indus-

trial and non-industrial sector have increased, firms and governments are progressing toward
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sharing threat information to arrange coordinated defenses against attacks.

An increasingly connected world may amplify the effects of a disruption. Information

Technology (IT) outages of any kind can lead to material losses as well as loss of data,

unplanned downtime, and adverse impacts on the reputations of the affected organizations.

Firms interacting with one another may be at varied levels of IT and security maturity.

Cybersecurity related measures are found mostly at an organizational level. Breaking down

these silos and sharing information can have a direct impact on business continuity. This

makes security governance an integral part of risk management and business continuity

strategies of organizations in the support of their client processes. We suggest that, by

taking a network perspective, in evaluating both noncooperative and cooperative behavior

in terms of cybersecurity investments, can provide insight into the value of information

sharing. Nevertheless, information sharing may have its disincentives since cooperation on

the cyber front is being struck between competitors in the market.

In this paper, we present three new models of cybersecurity investments. Our proposed

models are not restricted to the number of firms, their locations, or the sectors that they

belong to. We begin with a Nash equilibrium model of noncooperation and competition,

which is formulated, analyzed, and solved using variational inequality theory. The solution to

this Nash equilibrium model then serves as the disagreement point over which the bargaining

takes place in the second model, which is one of cooperation. For this model, we utilize Nash

bargaining theory, a type of cooperative game theory, to argue for the sharing of information

on firms’ security levels, where here security refers to cybersecurity. We assume that firms

bargain with each other to decide upon the security levels that they would be willing to

implement vis-a-vis their investment cost functions, wealth, and damages in the case of a

cyberattack. The constraints guarantee that the expected utility of each firm is no lower

than that obtained under the Nash equilibrium solution.

Nash bargaining theory was proposed in Nash (1950b). Considerable contributions to

the area were made by Harsanyi (1977), who extended the original two-person game into

a multi-player game and derived important theoretical deductions, and by Muthoo (1999),

who applied the theory to various bargaining situations and demonstrated the usefulness.

Various extensions of the theory and application to supply chains were proposed by Nagara-

jan and Sosic (2006). Boonen (2016) discusses strategic interaction between two firms that

trade risk over the counter in a one period model, wherein the focus is on an incomplete set

of risk redistributions. In the context of cybercrime, one of the extensions was employed by

Wagner et al. (2012), who used Nash bargaining for resource allocation in cloud comput-

ing for collaborative defense. An optimization formulation of a collusive cooperative game
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with product quantities as variables was developed and solved as a nonlinear programming

problem in Harrington et al. (2005). Jiang et al. (2009), later, analyzed cooperative content

distribution and traffic engineering in ISP networks. Finally, Bakshi and Kleindorfer (2009)

did not discuss cybersecurity, yet demonstrated the use of Nash bargaining and cooperative

game theory towards investment for resilience in global supply chains. The paper utilized

an axiomatic approach to bargaining.

The third model in this paper also focuses on cooperation among the firms in terms

of their cybersecurity levels, but from a system-optimization perspective in which the sum

of the expected utilities of all the firms is maximized. System-optimization models, but

different from the one proposed here, were also developed for cybersecurity investments by

Shetty et al. (2009) and Shetty (2010).

In addition to the model developments and the associated theory, here we also apply

and compare the obtained solutions in terms of firm and network vulnerability. Moreover,

we demonstrate the benefits of bargaining through case studies in the retail and financial

services sectors.

The paper is organized as follows. In Section 2 we present the three distinct models,

along with their qualitative properties. We also outline the algorithm for the determination

of solutions to the noncooperative cybersecurity investment model governed by the Nash

equilibrium, along with convergence results. In Section 3, we highlight the software utilized

to compute solutions to the two cooperative cybersecurity investment models since these are

highly nonlinear programming problems. We then provide solutions to the three distinct

cybersecurity investment models for a spectrum of case studies in the retail and financial

services sectors. We also provide sensitivity analysis results. The paper is summarized and

the conclusions presented in Section 4.
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2. The Multifirm Cybersecurity Investment Models

In this Section, we present three distinct multifirm cybersecurity investment models re-

flecting three distinct behavioral concepts. In the first model, the firms compete nonco-

operatively on their cybersecurity levels, each one trying to maximize its expected utility,

with the governing concept being the Nash equilibrium (NE). In the second model, the firms

cooperate under the Nash bargaining (NB) concept. The objective function therein, which

is maximized, is the product over all the firms of each firm’s expected utility minus its ex-

pected utility evaluated at the Nash equilibrium solution. The Nash equilibrium solution is

here the disagreement point. The constraints guarantee that the firms’ respective expected

utilities are never less than those under the Nash equilibrium solution. In the third model,

the solution concept is that of system-optimization (S-O), where the sum of the expected

utilities of all the firms with respect to their cybersecurity investments is maximized. In

each of the three models, the firms are also faced with bounds on the cybersecurity levels.

We first outline the common features of the models and in subsequent subsections we

detail their specifics. The models are one period models, as in Kunreuther and Heal (2003),

and, hence, the probability of an attack is defined over the period under study.

We assume that there are m firms in the “network.” These firms can be financial service

firms, energy firms, manufacturing firms, or even retailers. The network aspect lies in their

connectivity in cyberspace through the Internet and in their frequent such interactions be-

cause of a common industry. We assume that each firm i; i = 1, . . . ,m, in the network is

interested in determining how much it should invest in cybsecurity with the cybersecurity

level or, simply, security level of firm i denoted by si; i = 1 . . . , m.

The cybersecurity level si of each firm i must satisfy the following constraint:

0 ≤ si ≤ usi
, i = 1, . . . ,m, (1)

where usi
<1, and is also greater than zero, is the upper bound on the security level for firm

i. Note that a value of a cybersecurity level of 1 would imply perfect security, which is not

achievable. When si = 0 the firm has no security. We group the security levels of all firms

into the m-dimensional vector s.

In order to attain security level si, firm i encumbers an investment cost hi(si) with the

function assumed to be continuously differentiable and convex. As noted in Shetty et al.

(2009), the intuition is that user security costs increase with security, and that improving

security level imposes an increasing marginal cost on the user. Distinct firms, because of

their size and existing cyber infrastructure (both hardware and software), will be faced with
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different investment cost functions. We assume that, for a given firm i, hi(0) = 0 denotes

an entirely insecure firm and hi(1) = ∞ is the investment cost associated with complete

security for the firm, as in Shetty et al. (2009) and Shetty (2010). An example of a suitable

hi(si) function that we use in this paper is

hi(si) = αi(
1√

(1− si)
− 1) (2)

with αi > 0. Such a function was utilized in Nagurney and Nagurney (2015), in Nagurney,

Nagurney, and Shukla (2015), and in Nagurney, Daniele, and Shukla (2015). In the latter

reference strict convexity of the cyberinvestment cost function (2) was established. According

to the cybersecurity investment cost function in (2), and, as noted in Shetty et al. (2009),

it becomes increasingly costly to improve the security level at a higher level of security.

The network security level, s̄, is the average security, given by:

s̄ =
1

m

m∑
j=1

sj. (3)

The vulnerability of firm i, vi = (1− si) and the network vulnerability, v̄ = (1− s̄). Similar

measures, but in a supply chain cybersecurity investment context, were used by Nagurney,

Nagurney, and Shukla (2015). Therein, however, only competition and not cooperation was

considered and the strategic variables included product quantities in addition to security

levels.

In this paper, we study how the network security and the network vulnerability vary

under the three different behavioral concepts.

Following Shetty (2010), probability pi of a successful attack on firm i; i = 1, . . . ,m, is

pi = (1− si)(1− s̄), i = 1, . . . ,m, (4)

where (1 − s̄) is the probability of an attack on the network and (1 − si) is the probability

of success of such an attack on firm i.

Each firm i; i = 1, . . . ,m, has a utility associated with its wealth Wi, denoted by fi(Wi),

which is increasing, and is continuous and concave. The form of the fi(Wi) that we use in

this paper is
√

W i (see Shetty et al. (2009)). Such a function is increasing, continuous, and

concave, reflecting that a firm’s wealth has a positive but decreasing marginal benefit. Also,

a firm i is faced with damage Di if there is a successful cyberattack on it.

Hence, the expected utility E(Ui) of firm i; i = 1, . . . ,m, is given by the expression:

E(Ui) = (1− pi)fi(Wi) + pi(fi(Wi −Di))− hi(si). (5)
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Note that, according to (3), each firm i encumbers an investment cost associated with cy-

bersecurity, which, of course, is equal to zero if the security level si is zero. We group the

expected utilities of all firms into the m-dimensional vector E(U). In view of (2), we may

write E(Ui) = E(Ui(s)),∀i.

We emphasize that, in previous papers that focused on cybersecurity investments solely

as in Shetty et al. (2009) and Shetty (2010), it was assumed that the firms were identical in

that their valuation of wealth was the same, the financial damage after a successful attack

was the same, their investment cost functions were the same, and the upper bounds on

the security levels of the firms were all identically equal to 1. In our framework, the firms

differ in these aspects, which provides greater realism. For example, the firms can have

different wealth, value their wealth distinctly, have different damage due to a cyberattack,

given their existing cyber infrastructure, and also have distinct associated cyberinvestment

cost functions. Moreover, different firms may have distinct upper bounds on their achievable

security levels. Furthermore, in contrast to the models in Shetty (2010), here we do not

assume that an individual firm has a negligible effect on the network security level (3) and

takes that value as given.

2.1 The Nash Equilibrium Model of Cybersecurity Investments

In our first model, we assume that the m firms compete noncooperatively, each one trying

to maximize its expected utility. We seek to determine a security level pattern s∗ ∈ K1,

where K1 =
∏m

i=1 K1
i and K1

i ≡ {si|0 ≤ si ≤ usi
}, such that the firms will be in a state

of equilibrium with respect to their cybersecurity levels as defined below. Note that K1 is

convex since it is a Cartesian product of the firms’ feasible sets with each such set being

convex since it corresponds to box-type constraints.

We now present the Nash (1950a, 1951) equilibrium definition that captures the decision-

makers’ competitive behavior in our model.

Definition 1: Nash Equilibrium in Cybersecurity Levels

A security level pattern s∗ ∈ K1 is said to constitute a cybersecurity level Nash equilibrium

if for each firm i; i = 1, . . . ,m:

E(Ui(s
∗
i , ŝ

∗
i )) ≥ E(Ui(si, ŝ

∗
i )), ∀si ∈ K1

i , (6)

where

ŝ∗i ≡ (s∗1, . . . , s
∗
i−1, s

∗
i+1, . . . , s

∗
m). (7)
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According to (6), a cybersecurity Nash equilibrium is established if no firm can unilaterally

improve upon its expected profits by selecting an alternative security level.

We now present the variational inequality formulation of the Nash equilibrium in security

levels.

Theorem 1: Variational Inequality Formulation of Nash Equilibrium in Cyber-

security Levels

If for each firm i; i = 1, . . . ,m, the expected profit function E(Ui(s)) is continuously differen-

tiable, and concave, and the feasible set K1 is convex, we know that s∗ ∈ K1 is a Nash

equilibrium in cybersecurity levels according to Definition 1 if and only if it satisfies the

variational inequality

−
m∑

i=1

∂E(Ui(s
∗))

∂si

× (si − s∗i ) ≥ 0, ∀s ∈ K1, (8)

or, equivalently, s∗ ∈ K1 is a Nash equilibrium security level pattern if and only if it satisfies

the variational inequality

m∑
i=1

[
∂hi(s

∗
i )

∂si

+ [fi(Wi)− fi(Wi −Di)]

[
1

m

m∑
j=1

s∗j − 1− 1

m
+

s∗i
m

]]
× (si − s∗i ) ≥ 0, ∀s ∈ K1.

(9)

Proof: Since the feasible set is convex for each firm, and minus the expected utility, -

E(Ui(s)), is convex, we know from the classical theory of variational inequalities (see also

Gabay and Moulin (1980)), that each firm i; i = 1, . . . ,m, maximizes its expected utility if

and only if

−∂E(Ui(s
∗))

∂si

× (si − s∗i ) ≥ 0, ∀si ∈ K1
i . (10)

Summing the inequality (10) over all firms yields the variational inequality (8).

Variational inequality (9), in turn, is equivalent to variational inequality (8) with notice

of (5) so that the expansion of

−∂E(Ui(s
∗))

∂si

=
∂hi(s

∗
i )

∂si

+ fi(Wi)

[
1

m

m∑
j=1

s∗j − 1− 1

m
+

s∗i
m

]
+ fi(Wi −Di)

[
1− 1

m

m∑
j=1

s∗j +
1

m
− s∗i

m

]

=
∂hi(s

∗
i )

∂si

+ [fi(Wi)− fi(Wi −Di)]

[
1

m

m∑
j=1

s∗j − 1− 1

m
+

s∗i
m

]
, (11)
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for each firm i. The conclusion follows. 2

We now put variational inequality (9) into standard variational inequality form (see

Nagurney (1999)), that is: determine X∗ ∈ K ⊂ RN , such that

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (12)

where F is a given continuous function from K to RN and K is a closed and convex set.

We define the m-dimensional vectors X ≡ s and F (X) with the i-th component, Fi, of

F (X) given by

Fi(X) ≡ −∂E(Ui(s))

∂si

=
∂hi(si)

∂si

+ [fi(Wi)− fi(Wi −Di)]

[
1

m

m∑
j=1

sj − 1− 1

m
+

si

m

]
, (13)

and with the feasible set K ≡ K1 and N = m. Then, clearly, variational inequality (8) and

(9) can be put into standard form (12).

A solution to variational inequality (12) for our Nash equilibrium cybersecurity investment

model is guaranteed to exist since the function F (X) is continuous and the feasible set

K = K1 is compact (see Kinderlehrer and Stampacchia (1980) and Nagurney (1999)). The

uniqueness result also follows from the classical theory of variational inequalities.

Theorem 2: Uniqueness of the Nash Equilibrium

If F (X) is strictly monotone, that is:

〈(F (X1)− F (X2)), X1 −X2〉 > 0, ∀X1, X2 ∈ K, X1 6= X2, (14)

then X∗, the solution to variational inequality (12), is unique.

We now provide an interpretation of the strict monotonicity property directly for the Nash

equilibrium model. Specifically, we know that if the Jacobian of F (X), which we denote by

J , is positive definite, then F (X) is strictly monotone.

We construct:
∂Fi

∂si

=
3αi

4(1− si)2.5
+

2

m
[fi(Wi)− fi(Wi −Di)], (15a)

and
∂Fi

∂sj

=
1

m
[fi(Wi)− fi(Wi −Di)], for j 6= i. (15b)
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It then follows that

J =


3α1

4(1−s1)2.5 + 2
m [f1(W1)− f1(W1 −D1)] · · · 1

m [f1(W1)− f1(W1 −D1)]
...

...
1
m [fm(Wm)− fm(Wm −Dm)] · · · 3αm

4(1−sm)2.5 + 2
m [fm(Wm)− fm(Wm −Dm)]

 ,

We know that (see, e.g., Nagurney (1999)), if (J +JT )/2, where J need not be symmetric,

is strictly diagonally dominant, then it is positive definite and F (X) is then strictly mono-

tone. From the structure of (J + JT )/2 we can infer that it is strictly diagonally dominant

if

3αi

4(1− si)2.5
>

m− 5

2m
[fi(Wi)−fi(Wi−Di)]+

1

2m

m∑
j=1;j 6=i

[fj(Wj)−fj(Wj−Dj)], i = 1, . . . ,m.

(16)

One can deduce that (16) will be satisfied, for example, for m = 3, if 2[fi(Wi)− fi(Wi −
Di)] ≥

∑m
j=1[fj(Wj) − fj(Wj − Dj)], j 6= i. Analogous conditions can be determined for

m = 2, and so on. Specifically, for m = 2 if the following condition is satisfied then strict

diagonal dominance of (J + JT )/2 also holds:

3(f1(W1)− f1(W1 −D1)) ≥ f2(W2)− f2(W2 −D2) ≥
f1(W1)− f1(W1 −D1)

3
. (17)

This result is useful since we then have a unique disagreement point.

Of course, positive definiteness of J can still hold even when the strict diagonal dominance

condition does not.

There are numerous algorithms that can be applied to compute the solution to (12). In

this paper, we utilize the Euler method, detailed below for the numerical study in Section

3. Specifically, the statement of the Euler method, due to Dupuis and Nagurney (1993), is

as follows. Iteration τ of the Euler method where the variational inequality is expressed in

standard form (12) is:

Xτ+1 = PK(Xτ − aτF (Xτ )), (18)

where PK is the projection on the feasible set K and F is the function that enters variational

inequality (12) in which X ≡ s and F (X) consists of the components as defined in (9). As

established in Dupuis and Nagurney (1993), for convergence of the general iterative scheme,

which induces the Euler method, the sequence {aτ} must satisfy:
∑∞

τ=0 aτ = ∞, aτ > 0,

aτ → 0, as τ → ∞. Also, assume that F (X) is strictly monotone at some solution X∗ to

the variational inequality (12).
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If, however, F (X) is not strictly monotone, but only monotone, and Lipschitz continuous,

the modified projection method of Korpelevich (1977) can be used. It is essential to note

that, in the absence of strict monotonicity, there may be multiple Nash equilibria. If so, firms

will prefer the equilibria that are Pareto optimal. For multiple such equilibria, there are Nash

equilibrium solutions. Boonen (2016) studies regulators that aim to optimize welfare of firms

while enforcing an attractive Pareto optimal solution by restricting the joint feasible space.

Conditions for convergence of the Euler method for a variety of network-based problems can

be found in Nagurney and Zhang (1996) and Nagurney (2006).

In view of the simple structure of the underlying feasible set, the Euler method yields at

each iteration closed form expressions for the security levels: i; i = 1, . . . ,m, given by:

sτ+1
i =

max{0, min{usi
, sτ

i +aτ (−
∂hi(s

τ
i )

∂sτ
i

−(fi(Wi)−fi(Wi−Di))

[
1

m

m∑
j=1

sτ
j − 1− 1

m
+

sτ
i

m

]
}}. (19)

The complete statement of the algorithm to implement for the solution of this model is

given below:

Step 0: Initialization

Set s0 ∈ K. Let τ = 0 and set the sequence {aτ} so that {aτ} satisfies:
∑∞

τ=0 aτ = ∞,

aτ > 0, aτ → 0, as τ →∞.

Step 1: Computation

Compute sτ+1
i ; i = 1, . . . ,m, according to (19).

Step 2: Convergence Verification

If max |sτ+1
i − sτ

i | ≤ ε, for all i, with ε > 0, a prespecified tolerance, then stop; otherwise,

set τ := τ + 1, and go to Step 1.

2.2 The Nash Bargaining Model of Cybersecurity Investments

The bargaining model proposed by Nash (1950b, 1953) is based on axioms and focused

on two players, that is, decision-makers. The framework easily generalizes to m decision-

makers, as noted in Leshem and Zehavi (2008). Here the decision-makers are firms. An

excellent overview can be found in Binmore, Rubinstein, and Wolinsky (1989) and in the

book by Muthoo (1999). In our Nash bargaining model, we use expected utilities, rather
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than utilities, since we are dealing with uncertainties as represented by the probabilities of

cyberattacks.

Let E(UNE
j ) denote the expected utility of firm j evaluated at the Nash equilibrium

security level solution, as discussed in Section 2.1. E(UNE
j ) is the disagreement point of firm

j, according to the bargaining framework.

The objective function underlying the Nash bargaining model of cybersecurity invest-

ments is:

Z1 =
m∏

j=1

(E(Uj(s))− E(UNE
j )). (20)

The optimization problem to be solved is then:

Maximize
m∏

j=1

(E(Uj(s))− E(UNE
j )) (21)

subject to:

−E(Uj(s)) ≤ −E(UNE
j ), j = 1, . . . ,m, (22)

s ∈ K1. (23)

We define the feasible set K2 consisting of constraints (22) and (23). Under our previous

assumptions, we know that it is convex.

A solution to our Nash bargaining model is guaranteed to exist since the feasible set K2

is compact and the objective function is continuous. We now provide conditions under which

the solution is unique.

Theorem 3: Uniqueness of the Nash Bargaining Solution

The solution to the above cooperative Nash bargaining model is unique if the objective func-

tion, Z1, is strictly quasi-concave.

Proof: This result follows from classical nonlinear programming theory. 2

We now discuss a condition for which Z1 will be strictly quasi-concave.

We can transform Z1 as in (20) through the following logarithmic transformation:

ln(Z1) = ln(
m∏

j=1

(E(Uj(s))− E(UNE
j ))) =

m∑
j=1

ln(E(Uj(s))− E(UNE
j )). (24)
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The objective function Z1 is strictly quasi-concave if ln(Z1) is strictly concave.

2.3 The System-Optimization Model of Cybersecurity Investments

Under system-optimization, the objective function becomes:

Z2 =
m∑

j=1

E(Uj(s)) (25)

and the feasible set remains as for the Nash equilibrium problem, that is, s ∈ K1.

Hence, the system-optimization cybersecurity investment problem is to:

Maximize
m∑

j=1

E(Uj(s)) (26)

subject to:

s ∈ K1. (27)

We know that the feasible set K1 is convex and compact and that the objective function

(25) is continuous. Hence, the solution to the above system-optimization problem is guar-

anteed to exist. In addition, we have the following uniqueness result under an assumption.

Theorem 4: Uniqueness of the System-Optimized Solution

The solution to the system-optimization problem above is unique if the objective function,

Z2, is strictly quasi-concave.

Proof: The result follows from classical nonlinear programming theory. 2

We now provide conditions under which the strict concavity of Z2 will hold.

We construct:

∂Z2

∂sj

= − αj

2(1− sj)1.5
− [fj(Wj)− fj(Wj −Dj)][

1

m

m∑
l=1

sl +
sj − 1

m
− 1]

−
m∑

k=1;j 6=k

sk − 1

m
[fk(Wk)− fk(Wk −Dk)]. (28)

Also,
∂2Z2

∂s2
j

= − 3αj

4(1− sj)2.5
− 2

m
[fj(Wj)− fj(Wj −Dj)], (29)
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and

∂2Z2

∂sk∂sj

=
∂2Z2

∂sj∂sk

= − 1

m
[fj(Wj)−fj(Wj−Dj)]−

1

m
[fk(Wk)−fk(Wk−Dk)], for k 6= j. (30)

Z2 is strictly concave if its Hessian matrix, H, is negative definite or −H is positive
definite (for all feasible s), where

H =


∂2Z2

∂s2
1

· · · ∂2Z2

∂s1∂sm

...
...

∂2Z2

∂sm∂s1
· · · ∂2Z2

∂s2
m

 ,

with the individual components for H as in (29) and (30) above. This matrix is symmetric.

Moreover, we know that −H is positive definite if it is strictly diagonally dominant, with

the satisfaction of the condition below:

3αi

4(1− si)2.5
>

m− 3

m
[fi(Wi)−fi(Wi−Di)]+

1

m

m∑
j=1;j 6=i

[fj(Wj)−fj(Wj−Dj)], j = 1, . . . ,m.

(31)

One can deduce, for example, that (31) will always be satisfied for m = 2 when [fi(Wi)−
fi(Wi − Di)] = [fj(Wj) − fj(Wj − Dj)],∀j 6= i. This is useful since, if this relationship is

true, strict diagonal dominance will always exist for two firms. However, if this relationship

is not true and (31) holds, the matrix will still be positive definite. For m = 3, condition

(31) is also useful.

3. Numerical Examples

In this Section, we present numerical examples/cases illustrating the cybersecurity invest-

ment models developed in Section 2. Solutions of the Nash Equilibrium model were computed

by applying the Euler method as outlined in subsection 2.1, with the Euler method imple-

mented in Matlab on a Lenovo G410 laptop with an Intel Core i5 processor and 8GB RAM.

The convergence tolerance was set to 10−5, so that the algorithm was deemed to have con-

verged when the absolute value of the difference between each successively computed security

level was less than or equal to 10−5. The sequence {aτ} was set to: .1{1, 1
2
, 1

2
, 1

3
, 1

3
, 1

3
, ...}. We

initialized the Euler method by setting the security levels at their lower bounds. The upper

bounds on the security levels usi
= 0.99,∀i.

The solutions to the Nash Bargaining and System-Optimization models were computed by

applying the Interior Point Method in the SAS NLP Solver. The algorithm was called upon
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while using SAS Studio, a web browser-based programming environment. The maximum

optimality error, in each case example below, was 5 × 10−7 for the S-O solutions. The

optimality error is defined as the maximum violation of the constraints in the models. The

optimality errors in the solution of the NB model in the cases below are reported with the

solutions. For both NB and S-O, the solver was initialized at the lower bounds of the security

levels.

Below we present cases illustrating two different industries: retail and financial services

respectively. The industry aspect affects the firm size, wealth, and the damage parameters.

Wealth, damages, and investment costs are given in US dollars in millions. The αi values in

the cybersecurity investment functions across all examples are the number of employees in

millions based on the most recently available public data.

Case I: Retailers

In Case I, we consider two retailers. Firm 1 represents the second largest discount retailer

in the United States, Target Corporation. The firm, in January 2014, announced that the

security of 70 million of its users was breached and their information compromised. Credit

card information of 40 million users was used by hackers to generate an estimated $53.7

million in the black market as per Tobias (2014). Firm 2 represents The Home Depot,

a popular retailer in the home improvement and construction domain. Products available

under these categories are also sold through Target which makes them compete for a common

consumer base. The company was struggling with high turnover and old software which led

to a compromise of 56 million users (Tobias (2014)). Firm 1 suffered $148 million in damages,

according to the Consumer Bankers Association and the Credit Union National Association

(Tobias (2014)). Home Depot incurred $62 million in legal fees and staff overtime to deal

with their cyber attack in 2014. Additionally, it paid $90 million to banks for re-issuing

debit and credit cards to users who were compromised (Tobias (2014)).

We use the annual revenue data for the firms to estimate their wealth. Hence, in US$

in millions, W1 = 72600; W2 = 78800. The potential damages these firms stand to sustain

in the case of similar cyberattacks as above in the future amount to (in US$ in millions):

D1 = 148.0; D2 = 152.

As in Shetty et al. (2009), we assume that the wealth functions are of the following form:

f1(W1) =
√

W1; f2(W2) =
√

W2.
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The cybersecurity investment cost functions are:

h1(s1) = 0.25(
1√

1− s1

− 1); h2(s2) = 0.30(
1√

1− s2

− 1).

The parameters α1 = .25 and α2 = .30 are the number of employees of the respective

firms in millions, thereby, representing their size.

Results for the Nash Equilibrium model, the Nash Bargaining model, and the System-

Optimization model for cybersecurity investments are summarized in Table 1. Recall that

the values of the expected utilities are in million of dollars.

Solution NE NB S-O
s1 0.384 0.443 0.460
s2 0.317 0.409 0.388
v1 0.616 0.557 0.540
v2 0.683 0.591 0.612
s̄ 0.350 0.426 0.424
v̄ 0.650 0.574 0.576

E(U1) 269.265 269.271 269.268
E(U2) 280.530 280.531 280.534

Table 1: Results for NE, NB, and S-O for Target and Home Depot

We now discuss uniqueness of the NE solution in Table 1. Referring to the strict diagonal

dominance condition (16), we observe that the diagonal elements of the Jacobian J above

(16) will assume their lowest values at si = 0; i = 1, 2, in this example. Hence, if the strict

diagonal dominance condition holds at these values of the security levels, it will hold over

all values in the feasible set. We now let bi = 3αi

4(1−si)2.5 , and ci = m−5
2m

[fi(Wi)− fi(Wi−Di)]+
1

2m

∑m
j=1;j 6=i[fj(Wj) − fj(Wj − Dj)] for i = 1, 2. Hence, b1 at s1 = 0, is equal to .188, and

c1 = −.138. Similarly, b2 at s2 = 0, is equal to .225 and c2 = −.134. Clearly, b1 > c1 and

b2 > c2 and, therefore, the above NE security level pattern is unique.

We also evaluated the Hessian of ln(Z1) (cf. (24)), which is a symmetric matrix, for the

NB problem and computed the eigenvalues and the lowest eigenvalue of minus the Hessian

evaluated at the computed NB solution was: 321.315 and, therefore, the NB solution is

locally unique.

We now turn to examining whether the solution to the S-O problem in Table 1 is unique.

In particular, we refer to (31). We retain the definition of bi as above for i = 1, 2, and define

now di: gi = m−3
m

[fi(Wi) − fi(Wi − Di)] + 1
m

∑m
j=1;j 6=i[fj(Wj) − fj(Wj − Dj)], i = 1, 2. We
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know, from the above computation, that b1 = .188, and we determine g1 = −.002. Also, we

know that b2 = .225, from the above, with g2 = .002. Clearly, we have that b1 > g1 and

b2 > g2 and, therefore, condition (31) is satisfied so the S-O solution for the security levels

is unique for this example.

As reported in Table 1, Nash equilibrium security level for Firm 1 is 0.384 and that for

Firm 2 is .317, indicating that neither firm may be well-prepared to ward off against cyber

threats. The network security is .35 and the network vulnerability is .65. Firm 2 achieves a

higher expected utility than Firm 1 under the Nash Equilibrium solution.

The solution to the Nash Bargaining model, in which the firms collaborate on security

levels, shows an increase in the security levels for each firm. The security level of Firm

1 increases from 0.384 to 0.443 and that of Firm 2 increases from 0.317 to 0.409. These

increases also result in slightly higher expected utilities for both firms as compared to the

values at their NE solution; thus, creating a win-win situation for the retailers and their

consumers (who benefit from higher security levels). The network vulnerability decreases

from .650 to .574, a marked decline. The optimality error for the NB solution was 3.17×10−7.

We observe an increase of 6000 in expected utility of Target and 1000 for Home Depot if

the firms employ NB as compared to NE. Comparison of S-O and NB shows an increase of

3000 for Home Depot but a decrease of 3000 for Target. Results for the S-O model reveal

that, while the security level of Firm 1 increases, that of Firm 2 decreases, as compared to

the NB solution. The network vulnerability increases. Also, the expected utility for Firm 1

is lower under the S-O solution concept than under the NB one, whereas that for Firm 2 is

slightly higher under the S-O solution concept.

Target Corporation is part of the Retail Cyber Intelligence Sharing Center through which

the firm shares cyber threat information with other retailers that are part of the Retail

Industry Leaders Association and also with public stakeholders such as the U.S. Department

of Homeland Security, and the FBI (RILA (2014)). Even Home Depot has expressed openness

towards the sharing threat information.

Note that the results for the Nash Bargaining model are close to those for the System-

Optimization model. The S-O model, however, operates on the premise that the firms are

controlled by a single entity, thereby, making it an unlikely scenario in practice.

In order to further examine the magnitude of the possible changes in network vulnerability

and expected utilities, we now report the results for sensitivity analysis for varying damage

parameters but with the wealth parameters the same as in Table 1, and α1 = 100.00, α2 =
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120.00. This would represent a big increase in the number of employees of the two firms

and more damaging attacks. The expected utilities for both firms are reported in Table 2

under the three solution concepts. In Table 3, we report the computed security levels and

the network vulnerability values.

Condition (16) holds for all the NE solutions in the sensitivity analysis as does condition

(31) for the S-O solutions, where, as for the baseline example, the evaluation is done at the

security levels equal to zero, since this would be the most restrictive.

Parameters NE NB S-O
D1 D2 E(U1) E(U2) E(U1) E(U2) E(U1) E(U2)

24800 25200 222.472 235.991 223.541 237.087 223.410 237.220
34800 35200 210.460 223.098 211.619 224.278 211.517 224.381
44800 45200 200.039 212.090 201.276 213.340 201.212 213.405

Table 2: Expected Utilities for NE, NB, and S-O for Target and Home Depot for Varying
Di Parameters with α1 = 100 and α2 = 200

Parameters NE NB S-O
D1 D2 s∗1 s∗2 v̄ s∗1 s∗2 v̄ s∗1 s∗2 v̄

24800 25200 .169 .066 .88285 .262 .164 .78711 .265 .161 .78719
34800 35200 .289 .197 .75705 .369 .281 .67496 .371 .279 .67502
44800 45200 .374 .288 .66915 .444 .363 .59661 .445 .362 .59665

Table 3: Network Vulnerability v̄ for NE, NB, and S-O for Target and Home Depot for
Varying Di Parameters with α1 = 100 and α2 = 200

Figure 1: Representation of Table 3 Showing Comparison of Network Vulnerability v̄ for NE,
NB, and S-O with Varying Di Parameters with α1 = 100 and α2 = 200
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For both Target and Home Depot, an increase of over a million is observed on employing

NB as compared to NE when D1 = 44800, D2 = 45200. Also, as illustrated in Table 5 and

Figure 1, the network vulnerability is at 0.60 for NB and 0.67 for NE when D1 = 44800, D2 =

45200, which indicates that there is a significant decline in the vulnerability of the overall

network if firms cooperate. The optimality error for the NB solutions was 5× 10−7.

Minus the Hessian of ln(Z1), a symmetric matrix, evaluated at the NB solutions of all the

sensitivity analysis examples discussed above had positive eigenvalues, implying that they

were positive definite. Hence, the NB solutions in Tables 2 and 3 are locally unique.

As the number of employees have increased, the investment cost functions for both firms

increased and, hence, the security levels dropped as compared to Table 1. However, the

varying increase in damages, as shown in Tables 2 and 3, is leading to an increase in the

security levels. The network vulnerability is consistently the lowest for the NB solution

concept, demonstrating the benefit of bargaining for cooperation in cybersecurity.

For Home Depot, an increase of 1.25 million in expected utility is observed on employ-

ing NB as compared to NE and for Target, an increase of 1.24 million is observed when

D1 = 44800, D2 = 45200, which is the highest of the three scenarios evaluated through our

sensitivity analysis. Clearly, the reported increase is much higher than in Table 1 and Table

2. Comparison of S-O and NB shows an increase of 64,432 for Target but a decrease of

64,081 for Home Depot when D1 = 44800, D2 = 45200.

Case II: Financial Service Firms

In Case II we consider three banking and financial service firms. Firm 1 represents the

largest bank in the United States, JPMorgan Chase (JPMC). Cyber intrusion faced by the

bank was one of the largest ever and one of the most talked about in 2014. More than

76 million households and seven million small businesses were compromised. The bank’s

forensics investigations revealed that hackers had obtained a list of applications and programs

run by JPMC and found alternate entry points to penetrate the systems (Silver-Greenberg,

Goldstein, and Perlroth (2014)).

Firm 2 represents the third largest bank in the United States, Citibank, part of Citigroup.

The bank has reported violation through cyber means in multiple instances in the past few

years. However, to focus on one such event, we discuss the reported breach in 2011 in which

34,000 of the company’s customers were affected. Financial losses were compensated by the

company and 217,657 credit cards were replaced to ensure safety (Neowin (2011)).
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Firm 3 is represented by HSBC Holdings Plc’s Turkish Unit. Inclusion of the company

gives an international angle to the analysis, especially since vulnerability of Turkey’s HSBC

can be manipulated to penetrate HSBC in the UK, United States, Canada, and so on. The

unit was attacked right after JPMC in 2014 and 2.7 million customers’ bank data was lost

(Bloomberg (2014)).

In US$ in millions, W1 = 51500; W2 = 33300; W3 = 31100. Since HSBC Holdings Plc in

its entirety would battle against an attack on any of its units, the wealth of HSBC Holdings

is considered instead of just the Turkish unit. The potential damages these firms could

stand to sustain in the future, in the case of similar cyberattacks to those described above,

amount to (in US$ in millions): D1 = 250.00; D2 = 172.80; D3 = 580.50. Damage for Firm

1 is estimated based on its spending after cybersecurity in 2014 since the firm claims to not

have registered complaints of actual damage from customers. For Firm 2, it was assessed

that loss per customer was $794 US (Neowin (2011)). A survey from the Ponemon Institute

(2013) states that per record cost for a cyberattack on financial firms was $215 US in 2012.

Damage for Firm 3 is estimated based on this data and the fact that 2.7 million customers

were compromised.

The wealth functions are:

f1(W1) =
√

W1; f2(W2) =
√

W2; f2(W3) =
√

W3.

The cybersecurity investment cost functions take the form:

h1(s1) = 0.27(
1√

1− s1

− 1); h2(s2) = 0.24(
1√

1− s2

− 1); h3(s3) = 0.27(
1√

1− s3

− 1).

The αi; i = 1, 2, 3 values in the investment cost functions (cf. (2)) represent the total

number of employees of the organizations in millions. As of 2014, the number of employees in

JPMC was approximately 265000, the number in Citigroup was 243000, and that in HSBC

Holdings Plc: 263273. Hence, we have set α1 = .27, α2 = .24, and α3 = .27. Since these

illustrate the size of the organizations and the number of employees that will need to be

protected (and trained) in order to ward off cyber attacks on the organizations and, thus,

consumers, they are included in the investment cost functions.

The results for the Nash Equilibrium model, the Nash Bargaining model, and the System-

Optimization model for cybersecurity investments are summarized in Table 4.

We first verify whether or not the Nash Equilibrium solution s∗ in Table 4 is unique. We

use the definitions of the bi and ci as given in Case I (and evaluated at security levels equal
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Solution NE NB S-O
s1 0.467 0.542 0.581
s2 0.454 0.535 0.598
s3 0.719 0.762 0.718
v1 0.533 0.458 0.419
v2 0.547 0.465 0.402
v3 0.281 0.238 0.282
s̄ 0.546 0.613 0.632
v̄ 0.454 0.387 0.368

E(U1) 226.703 226.709 226.704
E(U2) 182.281 182.286 182.274
E(U3) 175.902 175.916 175.942

Table 4: Results of NE, NB, and S-O for JPMC, Citibank, and HSBC Turkish Unit

to zero) and compute them for this example with three firms for i = 1, 2, 3. Specifically,

we have that: b1 = .202, c1 = .171, b2 = .180, c2 = .209, and b3 = .520, with c3 = −.380.

Clearly, for this example, we have that: b1 > c1 and b3 > c3. However, b2 < c2 so we cannot

guarantee that condition (16) is satisfied, unlike for the baseline example for Case I. Recall

that the strict diagonal dominance condition guarantees that a matrix is positive definite

but a matrix may be positive definite even if the strict monotonicity condition does not hold.

Indeed, if all the eigenvalues of a symmetric matrix are positive, then positive definiteness

of the matrix is guaranteed. We evaluate the eigenvalues for 1
2
(J + JT ) and find that the

smallest eigenvalue is positive and equal to .699. Hence, uniqueness of the NE cybersecurity

level investment solution in Table 4 is guaranteed.

We also know that the NB solution in Table 4 is locally unique since we evaluated the

Hessian of (24) and the smallest eigenvalue of minus that Hessian is: 501.665.

When we evaluate condition (31), which corresponds to the strict diagonal dominance

condition holding for the corresponding Hessian matrix −H we find that for this example,

the condition does not hold. Nevertheless, the smallest eigenvalue of this matrix is positive

and equal to .044. Consequently, we know that the S-O solution reported in Table 4 is

unique.

In terms of the NE solution, Firm 3 has the highest security level and Firm 2 the lowest.

Firm 1 enjoys the highest expected utility and Firm 3 the lowest. Similar to the results

for Case I, we observe lower security levels for the firms with more wealth. For JPMC, we

observe an increase of 6000 in expected utility, 1000 for Citibank and 14,000 for HSBC when

NB is employed as opposed to NE. Comparison of S-O and NB shows an increase of 26,000

23



for HSBC but a decrease of 5000 for JPMC and 12,000 for Citibank. The expected utility

of Citibank through the S-O solution concept is 7000 below that under the NE concept.

In the results for the NB model, we observe that the security levels of all three firms are

higher than their respective security levels for the Nash Equilibrium model. Consequently,

the network vulnerability is decreased to 0.387 from 0.454. The optimality error for the NB

solution is 9.86× 10−6.

Quantum Dawn 2 and 3 are cybersecurity incident response drills conducted for enhanc-

ing resolution and coordination processes in the financial services sector. These exercises

are meant to avoid ripple effects of a cyberattack on one firm to others. To counteract such

coordinated attacks, the financial service firms and banks realize the importance of shar-

ing information and protect through a coordinated response (SIFMA (2015)). Our results

on Nash bargaining corroborate this understanding, support negotiations, and numerically

reveal the increase in security levels and the concomitant decrease in network vulnerability.

As noted earlier, since the goal of the System-Optimization model is to maximize the

sum of the expected utilities and not necessarily to enhance the security level of the network,

the individual security levels adjust so that the total expected utility is higher than those

obtained through the other models. However, individually, Firm 1 and Firm 2 have lower

expected utilities than they had through thee Nash Bargaining solution concept. Also, Firm

2 has an expected utility lower than that under the Nash Equilibrium.

In order to further examine the magnitude of changes in network vulnerability and ex-

pected utilities, we now report results of sensitivity analysis if the wealth parameters are

the same as in Table 4, but with damage parameters increased to D1 = 25000.00, D2 =

17200.80, D3 = 28000.50, and the alpha parameters varying in an elevated range. Such in-

creases represent more damaging attacks on the firms. The expected utilities are reported

in Table 5 and the computed security levels and network vulnerability values are reported

in Table 6.

Parameters NE NB S-O
α1 α2 α3 E(U1) E(U2) E(U3) E(U1) E(U2) E(U3) E(U1) E(U2) E(U3)
75 65 75 183.136 144.520 105.422 184.644 145.827 107.881 184.040 144.016 111.114
100 90 100 177.133 139.292 92.330 179.045 140.963 95.448 178.276 138.697 99.500
150 125 150 170.457 133.215 72.735 173.065 135.456 76.988 172.027 132.289 82.638

Table 5: Expected Utilities for NE, NB, and S-O for JPMC, Citibank, and HSBC Turkish
Unit for Varying αi Parameters with D1 = 25000.00, D2 = 17200.80 and D3 = 28000.50
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Parameters NE NB S-O
α1 α2 α3 s∗1 s∗2 s∗3 v̄ s∗1 s∗2 s∗3 v̄ s∗1 s∗2 s∗3 v̄
75 65 75 .258 .258 .484 .66673 .366 .366 .564 .56793 .392 .423 .513 .55717
100 90 100 .169 .151 .423 .75226 .291 .275 .512 .64082 .319 .339 .456 .62874
150 125 150 .018 .040 .318 .87477 .161 .180 .423 .74504 .195 .257 .356 .73086

Table 6: Network Vulnerability v̄ for NE, NB, and S-O for JPMC, Citibank, and HSBC
Turkish Unit for Varying αi Parameters with D1 = 25000.00, D2 = 17200.80 and D3 =
28000.50

Figure 2: Representation of Table 6 Showing Comparison of Network Vulnerability v̄ for
NE, NB, and S-O with Varying αi Parameters with D1 = 25000.00, D2 = 17200.80 and
D3 = 28000.50

As illustrated in Figure 2, the network vulnerability is the lowest in the case of the S-O

solutions. However, for Citibank, we observe that the expected utilities for every set of alpha

parameters are lower than their corresponding NE values. These results are similar to those

in Table 4. For the third scenario, the expected utility of Citibank is 133.215 million for

NE, 135.456 million for NB, and 132.289 million for S-O. A firm such as Citibank would not

prefer an S-O approach if it possibly could attain a utility 927,000 below the value when

it competes. But as per constraint (23), NB leads to better expected utilities for all three

firms and a network vulnerability significantly lower than NE. The optimality error for the

NB solutions was 9.40× 10−7.

Conditions (16) and (31) were evaluated for all the sensitivity analysis examples above

at the solutions and for security levels equal to zero, which is the most restrictive. The

conditions are met, and, thus, the solutions are unique.
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Minus the Hessian of ln(Z1), a symmetric matrix, evaluated at the NB solutions of all the

sensitivity analysis examples discussed above had positive eigenvalues, implying that they

were positive definite. Hence, the NB solutions in Tables 5 and 6 are locally unique.

For JPMC, an increase of 2.61 million in expected utility is observed on employing NB

as compared to NE; for Citibank, an increase of 2.24 million and for HSBC, an increase of

4.25 million is observed when α1 = 150, α2 = 125, α3 = 150, which constitute the highest

of the three scenarios evaluated above. Comparison of S-O and NB shows an increase of

5.65 million for HSBC but a decrease of 1.04 million for JPMC and 3.17 million for Citibank

when α1 = 150, α2 = 125, α3 = 150.

Since the wealth and damage parameters influence the network vulnerability and expected

utilities, we take into consideration another situation wherein the parameters are the same

for all three firms. They are fixed as follows: W1 = 51500, W2 = 51500, W3 = 51500; D1 =

25000, D2 = 25000, D3 = 25000. The expected utilities are reported in Table 7 and the

computed security levels and network vulnerability values are reported in Table 8.

Parameters NE NB S-O
α1 α2 α3 E(U1) E(U2) E(U3) E(U1) E(U2) E(U3) E(U1) E(U2) E(U3)
50 50 50 189.012 189.012 189.012 190.253 190.253 190.253 190.253 190.253 190.253
50 75 50 187.406 184.183 187.406 188.741 185.647 188.741 188.529 186.091 188.529
50 100 25 188.116 184.881 196.217 189.316 186.288 197.243 189.032 187.397 196.560

Table 7: Expected Utilities for NE, NB, and S-O for JPMC, Citibank, and HSBC Turkish
Unit for Varying αi Parameters with D1 = 25000, D2 = 25000 and D3 = 25000

Parameters NE NB S-O
α1 α2 α3 s∗1 s∗2 s∗3 v̄ s∗1 s∗2 s∗3 v̄ s∗1 s∗2 s∗3 v̄
50 50 50 .389 .389 .389 .61140 .480 .480 .480 .51987 .480 .480 .480 .51987
50 75 50 .404 .249 .404 .64780 .494 .358 .494 .55129 .500 .345 .500 .55150
50 100 25 .397 .110 .598 .63157 .488 .230 .661 .54062 .494 .198 .682 .54215

Table 8: Network Vulnerability v̄ for NE, NB, and S-O for JPMC, Citibank, and HSBC
Turkish Unit for Varying αi Parameters with D1 = 25000, D2 = 25000 and D3 = 25000
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Figure 3: Representation of Table 8 Showing Comparison of Network Vulnerability v̄ for NE,
NB, and S-O and Varying αi Parameters with D1 = 25000, D2 = 25000 and D3 = 25000

In the first scenario, in which α1 = α2 = α3, the expected utilities and network vulner-

ability for the NB and the S-O solutions are the same. Hence, if all the firms have equal

wealth, damages, and size, either the NB or the S-O approach can be adopted. Yet, the

potential to obtain a lower network vulnerability through NB gets highlighted as the size

of the firms (or the αi; i = 1, 2, 3) changes. The optimality error for the NB solutions was

3.53 × 10−7. Through bargaining, the firm of larger size attains a higher security level as

compared to during system-optimization.

Based on Cases I and II, which describe results for different industrial sectors along

with their sensitivity analysis, it can be stated that the Nash Bargaining model is the most

practical and beneficial for firms, the network, and consumers alike in terms of security

levels. Moreover, the expected utilities of the firms under NB are always greater than or

equal to the respective ones under the NE solution, demonstrating that the firms’ individual

expected profits do not suffer under cooperation as per Nash Bargaining.

4. Summary and Conclusions

In this paper, we explored cybersecurity investments in the case of multiple firms in the

same industrial sector and presented three new models. In the first model, the governing

concept was that of Nash Equilibrium with the firms competing in terms of their cyber-

security levels. In the second model, the governing concept was that of Nash Bargaining,

in which the disagreement point was the Nash equilibrium. In this model, the constraints

included not only the bounds on the security levels but also that the expected utility for
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each firm could not be lower than that achieved under the Nash equilibrium solution. The

objective function for this model was the product over all the firms of each firm’s expected

utility minus its expected utility evaluated at the Nash equilibrium. The third model was

also one of cooperation, and the concept was that of System-Optimization in which the sum

of the expected utilities of all firms was maximized.

The Nash equilibrium was formulated as a variational inequality problem and an al-

gorithm proposed for its solution since an associated optimization reformulation does not

exist. Qualitative properties of existence and uniqueness were examined and obtained for all

models.

We then investigated the models through two case studies focusing on different industrial

sectors in which cyberattacks have been prominent recently; in particular, the retail sector

and the financial services sector. We computed solutions to all three cybersecurity invest-

ment models for each case and determined the security levels of the firms, their individual

vulnerability as well as the vulnerability of their networks, and their expected utilities. Since

the wealth, damage, and alpha parameters significantly affect the security levels, network

vulnerability, and expected utilities, we conducted sensitivity analysis for all three cases.

In Case I, we first computed the results based on estimated data for two major retailers,

Target and Home Depot. The network vulnerability for NB was found to be the lowest

out of the three solution concepts. To explore competition vs. cooperation, we conducted

sensitivity analysis over the damage parameters with increasing alpha values associated with

the cybersecurity investment cost functions. An increase as high as 1.24 million in expected

utility was observed for Target and 1.25 million for Home Depot if NB was employed instead

of NE.

For Case II, we computed the results based on estimated data for three financial service

firms: JPMC, Citibank, and HSBC. The network vulnerability was the lowest in the case

of S-O. However, expected utility of one of the firms fell below its corresponding NE value

which made system-optimization a less appropriate solution concept even with lower network

vulnerability. The magnitude of changes in expected utilities was reported through sensitivity

analysis on the alpha parameters. Increases as high as 2.61 million for JPMC, 2.24 million

for Citibank, and 4.25 million for HSBC in expected utility were observed if NB was adopted

in place of NE. We also reported analysis over alpha parameters for the three firms for equal

wealth and damage parameters. The results showed that if the wealth, damage, and alpha

parameters of all firms were the same, either NB or the S-O approach could be taken. The

benefits of bargaining, resulting in lower network vulnerability, also was highlighted as the
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sizes of the firms change.

Our results show that the Nash Bargaining concept yields enhanced network security in

all industrial sector cases as compared to the Nash Equilibrium solution. Since firms bargain,

the constraints guarantee that a not lower expected utility for each firm is ensured. This

concept, with increasing emphasis on the sharing of cyber information, is the most pragmatic

one since we can expect firms to negotiate among one another rather than be controlled by

a central controller via system-optimization, where a firm may win and another lose as

compared to the Nash Bargaining solution. Moreover, there is increasing pressure from the

government and policy-makers to have firms exchange information in the cyber space as a

possible defensive mechanism. Our results support cooperation among firms, which may

otherwise be competitors, in terms of cybersecurity investments.
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