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Abstract: This paper develops a game theory model of a service-oriented Internet in which

profit-maximizing service providers provide substitutable (but not identical) services and

compete with the quantities of services in a Cournot-Nash manner, whereas the network

transport providers, which transport the services to the users at the demand markets, and

are also profit-maximizers, compete with prices in Bertrand fashion and on quality. The

consumers respond to the composition of service and network provision through the demand

price functions, which are both quantity and quality dependent. We derive the governing

equilibrium conditions of the integrated game and show that it satisfies a variational in-

equality problem. We then describe the underlying dynamics, and provide some qualitative

properties, including stability analysis. The proposed algorithmic scheme tracks, in discrete-

time, the dynamic evolution of the service volumes, quality levels, and the prices until an

approximation of a stationary point (within the desired convergence tolerance) is achieved.

Numerical examples demonstrate the modeling and computational framework.

Key words: network economics, game theory, oligopolistic competition, service differen-

tiation, quality competition, Cournot-Nash equilibrium, service-oriented Internet, Bertrand

competition, variational inequalities, projected dynamical systems
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1. Introduction

The Internet has transformed the ways in which individuals, groups, and organizations

communicate, obtain information, access entertainment, and conduct their economic and

social activities. Many users, if not the majority, however, are unaware of the economics

underlying the provision of various Internet services. Indeed, as argued in Nagurney et

al. (2013), although the technology associated with the existing Internet is rather well-

understood, the economics of the associated services have been less studied. Moreover,

modeling and computational frameworks that capture the competitive behavior of decision-

makers ranging from service providers to network providers are still in their infancy. This

may be due, in part, to unawareness of appropriate methodological frameworks.

In this paper, we build on the recent work on game theory frameworks for a service-

oriented Internet with the goal of expanding the generality of applicable game theory models

that are also computable. By services we mean not only content, such as news, videos,

music, etc., but also services associated with, for example, cloud computing. Our work is

inspired by that of Zhang et al. (2010) who employed Cournot and Bertrand games to

model competition among service providers and among network providers, with the former

competing in a Cournot manner, and the latter in a Bertrand manner. The two types of

competition were then unified in a Stackelberg game. The authors, however, focused only

on a two service provider, two network provider, and two user network configuration along

with a linear demand function to enable closed form analytical solutions. In addition, they

did not capture the quality of network provision. Altman et al. (2011) emphasized the need

for metrics for quality of service and the Internet and also provided an excellent review of

game theory models, with a focus on net-neutrality, and noted that many of the models in

the existing literature considered only one or two service providers.

In this paper, we focus on the development of a game theory model, in both equilib-

rium and dynamic settings, that captures competition among service providers and among

network (transport of service) providers. The former competition is assumed to be that

of Cournot-Nash since the service providers compete in service volumes (quantities) (cf.

Cournot (1838)), whereas the latter is that of Bertrand (1838) competition, since the net-

work providers compete in prices, along with quality levels. We note that Nagurney et al.

(2013) also developed a competitive Cournot-Nash game theory model for a service-oriented

Internet but did not include the profit-maximizing behavior of the network providers. Here,

we allow for quality competition associated with network provision, whereas Nagurney et al.

(2013) considered exclusively quality competition in service production. Moreover, in this

paper, we also describe the underlying dynamics and we integrate non-cooperative behavior
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(cf. Nash (1950, 1951)) for both the service providers and the network providers.

In our framework, we do not restrict the number of service providers, nor the number of

network providers, nor users. Moreover, we allow for service differentiation. Our model also

enables the tracking not only of the volume of services provided but also the evolution of the

quality levels as well as the prices that the network providers charge. The methodology that

we utilize for the integrated network economic model of the service-oriented Internet under

Cournot-Nash-Bertrand equilibrium is variational inequality theory (cf. Nagurney (1999)).

For its dynamic counterpart, we use projected dynamical systems theory (see Nagurney and

Zhang (1996) and Nagurney (2006)).

A notable feature of our modeling approach is that it allows for composition, in that users

at demand markets have associated demand price functions that reflect how much they are

willing to pay for the service and the network provision combination, as a function of ser-

vice volumes and quality levels. Such an idea is motivated, in part, to provide consumers

with more choices (see Wolf et al. (2012)). Consequently, our framework can be used as

the foundation for the further disaggregation of decision-making and the inclusion of addi-

tional topological constructs, say, in expanding the paths, which may reflect the transport

of services at the more detailed level of expanded sequences of links.

Our contributions in the paper fall under network economics as well as computational

management science. Some of the early papers on network economics and the Internet

are the contributions of MacKie-Mason and Varian (1995), Varian (1996), Kelly (1997),

MacKnight and Bailey (1997), Kausar, Briscoe, and Crowcroft (1999), and Odlyzko (2000).

More recent contributions include the works of: Ros and Tuffin (2004), He and Walrand

(2005), Shakkottai and Srikant (2006), Shen and Basar (2007), and Neely (2007). Lv and

Rouskas (2010), in an interesting paper, focused on the modeling of Internet service providers

and the pricing of tiered network services. They provided both models and an algorithm,

along with computational results, a contribution that is rare in this stream of literature.

However, they assumed that the users are homogeneous, whereas we consider distinct demand

price functions associated with the demand markets and the composition of service provider

services and network provision.

Dynamic pricing of network use has been explored previously, in particular in the context

of cellular access networks, where network resources are limited and congestion can occur

easily. For example, Dyaberi et al. (2012) and Ha et al. (2012) have explored the use

of incentives and time-dependent pricing to match user needs with operator constraints to

reduce congestion. Both of these works use data from real user experiments to derive a
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price-demand function. Similarly, Varian (2001) provides similar data from a study that

solely focused on wired access bandwidth. While these works are limited to one specific

network access type and do not consider advanced services, they do provide a useful starting

point for obtaining model parameters from real-world users. See also Sen et al. (2012) for a

survey on network economics and time-dependent pricing with a goal of relieving congestion

management. We note that our transportation cost functions also capture congestion, in

addition to the quality of the transport.

We also note the work of Njoroge et al. (2009) who addressed the interconnection between

network providers, the endogenous quality choice by network and service providers, and the

market coverage in tandem. They studied the competition between service providers in the

quality levels of their services and the competition between network providers in their quality

levels and prices in a network with two network providers and multiple service providers.

Hence, the focus was on duopoly competition. In their framework, consumers and content

providers base their selection of ISP on extra features such as speed of access, special add-

ons such as spam blocking and virus protection, with these extra features abstracted as

quality. In addition, they make their selections based on price. Our model is not restricted

to duopolistic competition but has the quality variables reflecting extra features as in the

above-noted paper.

The paper is organized as follows. In Section 2, we develop the game theory model by ex-

plicitly describing the service providers’ and the network providers’ competitive behavior and

interactions with the users at the demand markets and with one another. We demonstrate

that the governing integrated Cournot-Nash-Bertrand equilibrium conditions are equivalent

to the solution of a variational inequality problem. In Section 3, we then identify the under-

lying dynamics associated with the time evolution of the service volumes, the quality levels,

and the prices charged by the network providers. We show that the dynamics correspond

to a projected dynamical system, whose set of stationary points coincides with the set of

solutions to the variational inequality problem governing the Cournot-Nash-Bertrand model

in Section 2. We also provide some qualitative properties, including stability analysis.

In Section 4, we propose an algorithm, which yields a time-discretization of the continuous-

time adjustment processes in service volumes, quality levels, and prices until an approxima-

tion of the stationary point (within the desired convergence tolerance) is achieved. We also

give convergence results. The algorithm is then applied to compute solutions to several

numerical examples, in Section 5, in order to illustrate the modeling and computational

framework. We summarize our results and present our conclusions in Section 6.
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2. The Cournot-Nash-Bertrand Game Theory Model with Price and Quality

Competition

In this section, we develop a game theory model of a service-oriented Internet in which

we capture the behavior of both the service providers and the network providers. We assume

that there are m service providers, with a typical service provider denoted by i, n network

providers, which provide “transport” of the services to the demand markets, with a typical

one denoted by j, and o demand markets associated with the users of the services and

network provision. A typical demand market is denoted by k. The service providers offer

multiple different services such as movies for video streaming, music for downloading, news,

etc. Users can select among different service offerings (e.g., movie streaming from service

provider 1 vs. movie streaming from service provider 2). Different network providers can

be used for data communication over the Internet (i.e., “transport”) between the service

providers and the users. In addition, we explicitly handle the quality level among network

providers.

We allow for consumers to differentiate among the services provided by the service

providers. It is assumed that the service providers compete under the Cournot-Nash equi-

librium concept of non-cooperative behavior and select their service volumes (quantities).

The network providers, in turn, compete with prices a la Bertrand and with quality lev-

els. The consumers, in turn, signal their preferences for the services and network provision

via the demand price functions associated with the demand markets. The demand price

functions are, in general, functions of the service/network provision combinations at all the

demand markets as well as the quality levels of network provision, since the focus here is on

composition and having choices.

The notation for the game theory model is given in Table 1, whereas Figure 1 depicts the

network structure of the game theory problem. All vectors here are assumed to be column

vectors. An optimal/equilibrium solution is denoted by a “∗.”

In Section 2.1 we present the behavior of the service providers, along with the Nash-

Cournot definition and formulation. In Section 2.2, we then describe the analogues for the

network providers, but under Bertrand competition. In Section 2.3, we present the integrated

Cournot-Nash-Bertrand equilibrium and derive the variational inequality formulation of the

governing equilibrium conditions.
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Figure 1: The Network Structure of the Cournot-Nash-Bertrand Model for a Service-Oriented
Internet

Table 1: Notation for the Game Theoretic Cournot-Nash-Bertrand Model
Notation Definition

Qijk the nonnegative service volume from i to k via j.
We group the {Qijk} elements for all j and k into the vector Qi ∈ Rno

+

and then we group all the vectors Qi for all i into the vector Q ∈ Rmno
+ .

si the service volume (output) produced by service provider i.
We group the {si} elements into the vector s ∈ Rm

+ .
qijk the nonnegative quality level of network provider j transporting service

i to k. We group the qijk for all i and k into the vector qj ∈ Rmo
+ and

all the vectors qj for all j into the vector q ∈ Rmno
+ .

πijk the price charged by network provider j for transporting a unit of
service provided by i via j to k. We group the πijk for all i and k into
the vector πj ∈ Rm

+ and then we group all the vectors πj for all j into
the vector π ∈ Rmno

+ .
fi(s) the total production cost of service provider i.

ρ̂ijk(Q, q) the demand price at k associated with service i transported via j.
cijk(Q, q) the total transportation cost associated with delivering service i via j

to k.
ocijk(πijk) the opportunity cost associated with pricing by network provider j

services transported from i to k.
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2.1 The Behavior of the Service Providers and Their Optimality Conditions

The service providers seek to maximize their individual profits, where the profit function

for service provider i; i = 1, . . . ,m is given by the expression:

n∑
j=1

o∑
k=1

ρ̂ijk(Q, q∗)Qijk − fi(s)−
n∑

j=1

o∑
k=1

π∗ijkQijk (1)

subject to the constraints:

si =
n∑

j=1

o∑
k=1

Qijk, i = 1, . . . ,m, (2)

Qijk ≥ 0, j = 1, . . . , n; k = 1, . . . , o. (3)

The first term in (1) is the revenue for service provider i, the second term is his production

cost, and the third term in (1) is the total payout to the network providers for delivering

the services to the users at the demand markets. Note that a service provider i controls

his service volumes Qi, whereas, as we show in the next subsection, the network providers

control the prices charged for the transport of the services from the service providers to the

users as well as the quality levels of such transport. Hence, we have q∗ and π∗ in (1).

According to constraint (2), the quantity of the service produced by each service provider

is equal to the sum of the amounts of service transported to all the demand markets via all

the network providers. Constraint (3) guarantees that the service volumes are nonnegative.

In view of constraint (2), we can define the production cost functions f̂i(Q); i = 1, . . . ,m,

as follows:

f̂i(Q) ≡ fi(s). (4)

We assume that the production cost and the demand price functions are continuous and

continuously differentiable. We also assume that the production cost functions are convex

and that the demand price functions are monotonically decreasing in service volumes but

increasing in the quality of network provision.

Therefore, the profit maximization problem for service provider i; i = 1, . . . ,m, with

its profit expression denoted by U1
i , which also represents its utility function, with the

superscript 1 reflecting the first (top) tier of decision-makers in Figure 1, can be reexpressed

as:

Maximize U1
i (Q, q∗, π∗) =

n∑
j=1

o∑
k=1

ρ̂ijk(Q, q∗)Qijk − f̂i(Q)−
n∑

j=1

o∑
k=1

π∗ijkQijk (5)

subject to: Qi ∈ K1i, where K1i ≡ {Qi|Qi ≥ 0}. We also define K1 ≡
∏m

i=1 K1i.
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Note that the consumers pay the service providers according to the incurred prices {ρ̂ijk},
whereas the service providers pay the transport network providers according to the equilib-

rium prices {π∗ijk} with the former evaluated at the equilibrium service volumes and quality

levels (as described further below). The consumers at the demand markets reflect their

preferences for the composition of services (combination of service and transport network

provision) through the demand price functions.

We assume that the service providers compete according to Cournot-Nash. Indeed, note

that the production cost functions (4) capture competition for resources since the production

cost of a particular service provider depends not only on his service volume, but also on that

of the other service providers. Also, the demand price functions (see Table 1) reveal that

users at a demand market care not only about the quality level associated with their specific

service/network provision combination but also on that of the other combinations, as well

as the service volumes.

In view of (1) - (5), we may write the profit functions of the service providers as functions

of the service provision/transportation pattern, that is,

U1 = U1(Q, q, π), (6)

where U1 is the m-dimensional vector with components: {U1
1 , . . . , U1

m}.

We consider the oligopolistic market mechanism, in which the m service providers supply

their services in a non-cooperative fashion, each one trying to maximize its own profit. We

seek to determine a nonnegative service volume pattern Q∗ for which the m service providers

will be in a state of equilibrium as defined below. In particular, Nash (1950, 1951) generalized

Cournot’s concept of an equilibrium among several players, in what has been come to be

called a non-cooperative game.

Definition 1: Cournot-Nash Equilibrium with Service Differentiation and Net-

work Provision Choices. A service volume pattern Q∗ ∈ K1 is said to constitute a

Cournot-Nash equilibrium if for each service provider i; i = 1, . . . ,m:

U1
i (Q∗i , Q̂

∗
i , q

∗, π∗) ≥ U1
i (Qi, Q̂∗i , q

∗, π∗), ∀Qi ∈ K1i, (7)

where

Q̂∗i ≡ (Q∗1, . . . , Q
∗
i−1, Q

∗
i+1, . . . , Q

∗
m). (8)

According to (7), a Cournot-Nash equilibrium is established if no service provider can

unilaterally improve upon its profits by selecting an alternative vector of service volumes.

Alternative variational inequality formulations of the above equilibrium are:
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Theorem 1: Variational Inequality Formulations of Cournot-Nash Equilibrium.

Assume that for each service provider i the profit function U1
i (Q, q, π) is concave with respect

to the variables in {Qi} and is continuous and continuously differentiable. Then, Q∗ ∈ K1 is

a Cournot-Nash equilibrium according to Definition 1 if and only if it satisfies the variational

inequality

−
m∑

i=1

n∑
j=1

o∑
k=1

∂U1
i (Q∗, q∗, π∗)

∂Qijk

× (Qijk −Q∗ijk) ≥ 0, ∀Q ∈ K1, (9)

or, equivalently, Q∗ ∈ K1 is a Cournot-Nash equilibrium service volume pattern if and only

if it satisfies the variational inequality

m∑
i=1

n∑
j=1

o∑
k=1

[
∂f̂i(Q

∗)

∂Qijk

+ π∗ijk − ρ̂ijk(Q
∗, q∗)−

n∑
h=1

o∑
l=1

∂ρ̂ihl(Q
∗, q∗)

∂Qijk

×Q∗ihl

]
×(Qijk−Q∗ijk) ≥ 0,

∀Q ∈ K1. (10)

Proof: (9) follows directly from Gabay and Moulin (1980) and Dafermos and Nagurney

(1987).

In order to obtain (10) from (9), we note that:

−∂U1
i (Q∗, q∗, π∗)

∂Qijk

=

[
∂f̂i(Q

∗)

∂Qijk

+ π∗ijk − ρ̂ijk(Q
∗, q∗)−

n∑
h=1

o∑
l=1

∂ρ̂ihl(Q
∗, q∗)

∂Qijk

×Q∗ihl

]
, ∀i, j, k.

(11)

Multiplying the expression in (11) by (Qijk −Q∗ijk) and summing the resultant over all i, j,

and k yields (10). 2

2.2 The Behavior of the Network Providers and Their Optimality Conditions

The network providers also seek to maximize their individual profits. They have as their

strategic variables the prices that they charge for the transport of the services and the quality

levels of the transport.

We denote the profit function associated with network provider j by U2
j since this is the

second tier of decision-makers (cf. Figure 1). The optimization problem faced by network

provider j; j = 1, . . . , n is given by

Maximize U2
j (Q∗, q, π) =

m∑
i=1

o∑
k=1

πijkQ
∗
ijk −

m∑
i=1

o∑
k=1

(cijk(Q
∗, q) + ocijk(πijk)) (12)

subject to:

πijk ≥ 0, i = 1, . . . ,m; k = 1, . . . , o, (13)
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qijk ≥ 0, i = 1, . . . ,m; k = 1, . . . , o. (14)

The first term in (12) after the equal sign is the revenue, whereas the second term is

the total transportation cost. Note that the total transportation cost is quite general and

captures also competition in quality as well as possible congestion associated with transport

to the demand markets. The third term in (12) is the opportunity cost, which captures

that, if the price charged by the network provider is too high then there is an associated

business cost; similarly, if it is too low, since then other costs may not be adequately covered.

The opportunity cost may include, for example, possible anticipated regulatory costs, loss

of potential revenue if the price charged is too high, etc. We, hence, assume that the costs

in (12) are convex, continuous, and continuously differentiable. Observe that the network

providers have, as their strategic variables, the prices and quality levels of the transport

provided. They do not directly control the volume of services that they transport and,

therefore, the use of Q∗ in (12).

We group the network provider utility functions, as given in (12), into the vector U2:

U2 = U2(Q, q, π). (15)

Let K2j denote the feasible set corresponding to network provider j, such that K2j≡{(qj, πj)

|qj ≥ 0, πj ≥ 0} and define K2 ≡
∏n

j=1 K2j.

We now define the Bertrand equilibrium that captures the network providers’ behavior.

Definition 2: Bertrand Equilibrium in Transport Prices and Quality. A qual-

ity level pattern and transport price pattern (q∗, π∗) ∈ K2 is said to constitute a Bertrand

equilibrium if for each network provider j; j = 1, . . . , n:

U2
j (Q∗, q∗j , q̂

∗
j , π

∗
j , π̂

∗
j ) ≥ U2

j (Q∗, qj, q̂∗j , πj, π̂∗j ), ∀(qj, πj) ∈ K2j, (16)

where

q̂∗j ≡ (q∗1, . . . , q
∗
j−1, q

∗
j+1, . . . , q

∗
n), (17)

π̂∗j ≡ (π∗1, . . . , π
∗
j−1, π

∗
j+1, . . . , π

∗
n). (18)

According to (16), a Bertrand equilibrium is established if no network provider can unilater-

ally improve upon its profits by selecting an alternative vector of quality levels and transport

prices. Alternative variational inequality formulations of the above equilibrium are:

Theorem 2: Variational Inequality Formulations of Bertrand Equilibrium. As-

sume that for each network provider j the profit function U2
j (Q, q, π) is concave with respect

10



to the variables in {qj} and in {πj} and is continuous and continuously differentiable. Then,

(q∗, π∗) ∈ K2 is a Bertrand equilibrium according to Definition 2 if and only if it satisfies

the variational inequality

−
n∑

j=1

m∑
i=1

o∑
k=1

∂U2
j (Q∗, q∗, π∗)

∂qijk

× (qijk − q∗ijk)−
n∑

j=1

m∑
i=1

o∑
k=1

∂U2
j (Q∗, q∗, π∗)

∂πijk

× (πijk − π∗ijk) ≥ 0,

∀(q, π) ∈ K2, (19)

or, equivalently, (q∗, π∗) ∈ K2 is a Bertrand price and quality level equilibrium pattern if and

only if it satisfies the variational inequality

n∑
j=1

m∑
i=1

o∑
k=1

[
m∑

h=1

o∑
l=1

∂chjl(Q
∗, q∗)

∂qijk

]
× (qijk − q∗ijk)

+
n∑

j=1

m∑
i=1

o∑
k=1

[
−Q∗ijk +

∂ocijk(π
∗
ijk)

∂πijk

]
× (πijk − π∗ijk) ≥ 0, ∀(q, π) ∈ K2. (20)

Proof: Similar to the proof of Theorem 1.

2.3 The Integrated Cournot-Nash-Bertrand Equilibrium Conditions and Varia-

tional Inequality Formulations

We are now ready to present the Cournot-Nash-Bertrand equilibrium conditions. We

let K3 ≡ K1 × K2 denote the feasible set for the integrated model. We assume the same

assumptions on the functions as in Sections 2.1 and 2.2.

Definition 3: Cournot-Nash-Bertrand Equilibrium in Service Differentiation,

Transport Network Prices, and Quality. A service volume, quality level, and transport

price pattern (Q∗, q∗, π∗) ∈ K3 is a Cournot-Nash-Bertrand equilibrium if it satisfies (7) and

(16) simultaneously.

Given Definition 3, Theorem 3 below is immediate.

Theorem 3: Variational Inequality Formulations of Cournot-Nash-Bertrand Equi-

librium. Under the same assumptions as given in Theorems 1 and 2, (Q∗, q∗, π∗) ∈ K3 is

a Cournot-Nash-Bertrand equilibrium according to Definition 3 if and only if it satisfies the

variational inequality:

−
m∑

i=1

n∑
j=1

o∑
k=1

∂U1
i (Q∗, q∗, π∗)

∂Qijk

× (Qijk −Q∗ijk)

11



−
n∑

j=1

m∑
i=1

o∑
k=1

∂U2
j (Q∗, q∗, π∗)

∂qijk

× (qijk − q∗ijk)−
n∑

j=1

m∑
i=1

o∑
k=1

∂U2
j (Q∗, q∗, π∗)

∂πijk

× (πijk − π∗ijk) ≥ 0,

∀(Q, q, π) ∈ K3, (21)

or, equivalently, the variational inequality problem:

m∑
i=1

n∑
j=1

o∑
k=1

[
∂f̂i(Q

∗)

∂Qijk

+ π∗ijk − ρ̂ijk(Q
∗, q∗)−

n∑
h=1

o∑
l=1

∂ρ̂ihl(Q
∗, q∗)

∂Qijk

×Q∗ihl

]
× (Qijk −Q∗ijk)

+
n∑

j=1

m∑
i=1

o∑
k=1

[
m∑

h=1

o∑
l=1

∂chjl(Q
∗, q∗)

∂qijk

]
× (qijk − q∗ijk)

+
n∑

j=1

m∑
i=1

o∑
k=1

[
−Q∗ijk +

∂ocijk(π
∗
ijk)

∂πijk

]
× (πijk − π∗ijk) ≥ 0, ∀(Q, q, π) ∈ K3. (22)

Indeed, note that if we set (q, π) = (q∗, π∗) and substitute into variational inequality (22),

we obtain (10). Similarly, if we let Q = Q∗ and substitute into (22) we obtain (20). Hence,

the solution of (22) also provides us with the solutions to (10) and (22).

We now put variational inequality (22) into standard form (cf. Nagurney (1999)): de-

termine X∗ ∈ K where X is a vector in RN , F (X) is a continuous function such that

F (X) : X 7→ K ⊂ RN , and

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (23)

where 〈·, ·〉 is the inner product in the N -dimensional Euclidean space, and K is closed and

convex. We define the vector X ≡ (Q, q, π) and K ≡ K3. Also, here N = 3mno. The

components of F are then given by: for i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , o:

F 1
ijk(X) =

∂f̂i(Q)

∂Qijk

+ πijk − ρ̂ijk(Q, q)−
n∑

h=1

o∑
l=1

∂ρ̂ihl(Q, q)

∂Qijk

×Qihl, (24)

F 2
ijk(X) =

m∑
h=1

o∑
l=1

∂chjl(Q, q)

∂qijk

, (25)

F 3
ijk(X) = −Qijk +

∂ocijk(πijk)

∂πijk

. (26)

Hence, (22) can be put into standard form (23).

12



2.3.1 An Illustrative Example and a Variant

We now present a simple example for illustrative purposes. Please refer to Figure 2. The

problem consists of a single service provider, a single network provider, and a single demand

market.

����
1Service Provider

?����
1Network Provider

?����
1Demand Market

Figure 2: Network Topology for an Illustrative Example

The functions are as follows. The production cost function is:

f̂1(Q111) = Q2
111 + Q111.

The demand price function is:

ρ̂111(Q111, q111) = −2Q111 + q111 + 78,

and the total transportation cost function is:

c111(Q111, q111) = (q111 − 1)2,

with an opportunity cost of:

oc111(π111) = π2
111.

Hence, according to (24):

F 1
111(X) = 2Q111 + 1 + π111 + 2Q111 − q111 − 78 + 2Q111

= 6Q111 + π111 − q111 − 77,

whereas, according to (25):

F 2
111(X) = 2q111 − 2

and, according to (26):

F 3
111(X) = −Q111 + 2π111.

13



We will assume that the Cournot-Nash-Bertrand equilibrium solution X∗ = (Q∗, q∗, π∗)

in this example lies in the interior, so we can then explicitly solve for X∗ in (22), with

notice that K is the nonnegative orthant R3
+ as follows. Hence, we can set F 1

111(X
∗) = 0,

F 2
111(X

∗) = 0, and F 3
111(X

∗) = 0. Since F 2
111(X

∗) = 0, this means that

2q∗111 − 2 = 0

so that q∗111 = 1. Also, since F 3
111(X

∗) = 0. we know that

Q∗111 = 2π∗111.

Noting that F 1
111(X

∗) = 0, simplifies to

6Q∗111 + π∗111 − q∗111 − 77 = 0,

which, with the above substitutions, yields:

13π∗111 = 78

or

π∗111 = 6.

Hence, X∗ = (12, 1, 6) and the profit of service provider 1, U1
1 = 432, and that of network

provider 1, U2
1 = 36.

We now construct a variant of the above example. All the data remain the same except

that we change the transportation cost function of the network provider, which is now:

c111(Q111, q111) = (q111 − 1)2 + Q111q111

so that the service volume explicitly appears now in the last term.

The new equilibrium solution is now: X∗ = (11.82, 0, 5.91). Note that the quality level

has dropped to zero. The profit U1
1 (X∗) for the service provider is now 421.14, whereas

that for the network provider, U2
1 (X∗), is now 33.10. Hence, both providers now have lower

profits than in the original example.

2.3.2 Another Illustrative Example

We now present another example. There are now two service providers, a single network

provider, and a single demand market, as depicted in Figure 3.

The data are as follows.

14
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Figure 3: Network Topology for Another Illustrative Example

The production cost functions are:

f̂1(Q) = Q2
111 + Q111, f̂2(Q) = 2Q2

211 + Q211.

The demand price functions are:

ρ̂111(Q, q) = −Q111 − .5Q211 + .5q111 + 100, ρ̂211(Q, q) = −Q211 − .5Q111 + .5q211 + 200.

The transportation cost functions are:

ĉ111(Q, q) = .5(q111 − 20)2, ĉ211(Q, q) = .5(q211 − 10)2,

with the opportunity cost functions being:

oc111(π111) = π2
111, oc211(π211) = π2

211.

Using (24) through (26), we construct the following:

F 1
111(X) = 2Q111 + 1 + π111 + Q111 + .5Q211 − .5q111 − 100 + Q111,

F 1
211(X) = 4Q211 + 1 + π211 + Q211 + .5Q111 − .5q211 − 200 + Q211,

F 2
111(X) = q111 − 20, F 2

211(X) = q211 − 10,

F 3
111(X) = −Q111 + 2π111, F 3

211(X) = −Q211 + 2π211.

Solving, as for the first example in Section 2.1, we obtain:

Q∗111 = 21.00, Q∗211 = 30.00,

q∗111 = 20.00, q∗211 = 10.00,

π∗111 = 10.50, π∗211 = 15.00.

The profits for the service providers are: U1
1 (X∗) = 875.00 and U1

2 (X∗) = 2660.00, whereas

the profit for the network provider, U2
1 (X∗) = 331.00.
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3. The Underlying Dynamics and Stability Analysis

We now describe the underlying dynamics until the equilibrium satisfying variational

inequality (22) is achieved. Specifically, we propose a dynamic adjustment process for the

evolution of the service providers’ service volumes, and that of the network providers’ quality

levels and transport prices. The users provide feedback through the demand price functions.

Observe that, for a current service volume, quality level, and price pattern at time t, X(t) =

(Q(t), q(t), π(t)), −F 1
ijk(X(t)) =

∂U1
i (Q(t),q(t),π(t))

∂Qijk
, given by minus the expression in (24), is the

marginal utility (profit) of service provider i with respect to its service volume to demand

market k via network transport provider j. Similarly, −F 2
ijk(X(t)) =

∂U2
j (Q(t),q(t),π(t))

∂qijk
, given

by minus the value in (25), is the network provider j’s marginal utility (profit) with respect

to its quality level associated with transporting the service volume from i to k. Finally,

−F 3
ijk(X(t)) =

∂U2
j (Q(t),q(t),π(t))

∂πijk
, given by minus the value in (26), is the network provider

j’s marginal utility (profit) with respect to its price charged for transporting the service

volume from i to k. Below we provide the continuous-time adjustment processes and the

corresponding projected dynamical system.

In this framework, the rate of change of the service volume between a service provider i

and demand market k via network provider j is in proportion to −F 1
ijk(X), as long as the

service volume Qijk is positive. Namely, when Qijk > 0,

Q̇ijk =
∂U1

i (Q, q, π)

∂Qijk

, (27)

where Q̇ijk denotes the rate of change of Qijk. However, when Qijk = 0, the nonnegativity

condition (3) forces the service volume Qijk to remain zero when
∂U1

i (Q,q,π)

∂Qijk
≤ 0. Hence, in

this case, we are only guaranteed of having possible increases of the service volume. Namely,

when Qijk = 0,

Q̇ijk = max{0, ∂U1
i (Q, q, π)

∂Qijk

}. (28)

We may write (27) and (28) concisely as:

Q̇ijk =

{
∂U1

i (Q,q,π)

∂Qijk
, if Qijk > 0

max{0, ∂U1
i Q,q,π)

∂Qijk
}, if Qijk = 0.

(29)

Using similar arguments as above, we may write:

q̇ijk =

{
∂U2

i (Q,q,π)

∂qijk
, if qijk > 0

max{0, ∂U2
i (Q,q,k)

∂qijk
}, if qijk = 0.

(30)
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and

π̇ijk =


∂U2

j (Q,q,π)

∂πijk
, if πijk > 0

max{0, ∂U2
j (Q,q,π)

∂πijk
}, if πijk = 0.

(31)

Applying (29), (30), and (31) to all i = 1, . . . ,m; j = 1, . . . , n, and k = 1, . . . , o, and

combining the resultants, yields the following pertinent ordinary differential equation (ODE)

for the adjustment processes of the service volumes, quality levels, and transport network

prices, in vector form, as:

Ẋ = ΠK(X,−F (X)), (32)

where, sinceK is a convex polyhedron, according to Dupuis and Nagurney (1993), ΠK(X,−F (X))

is the projection, with respect to K, of the vector −F (X) at X defined as

ΠK(X,−F (X)) = lim
δ→0

PK(X − δF (X))−X

δ
(33)

with PK denoting the projection map:

P(X) = argminz∈K‖X − z‖, (34)

and where ‖ · ‖ = 〈x, x〉. Hence, F (X) = −∇U(Q, q, π), where ∇U(Q, q, π) is the vector of

marginal utilities (profits) with components given by (24), (25), and (26).

We now interpret the ODE (32) in the context of the Cournot-Nash-Bertrand model for

a service-oriented Internet with price and quality competition among the network transport

providers. First, note that ODE (32) ensures that the service volumes, quality levels, and

network prices are always nonnegative. Indeed, if one were to consider, instead, the ordinary

differential equation: Ẋ = −F (X), or, equivalently, Ẋ = ∇U(X), such an ODE would

not ensure that X(t) ≥ 0, for all t ≥ 0, unless additional restrictive assumptions were to

be imposed. Moreover, ODE (32) retains the interpretation that if X at time t lies in the

interior of K, then the rate at which X changes is greatest when the vector field −F (X) is

greatest. In addition, when the vector field −F (X) pushes X to the boundary of the feasible

set K, then the projection ΠK ensures that X stays within K. Hence, the service volumes,

quality levels, and prices are always nonnegative.

Recall now the definition of F (X) (see (24) – (26)) for the integrated model, in which case

the projected dynamical system (32) states that the rate of change of the service volumes,

quality levels, and prices is greatest when the service providers’ and network providers’

marginal utilities (profits) are greatest. If the marginal utilities with respect to the service

volumes are positive, then the service providers will increase their volumes; if they are

negative, then they will decrease them. A similar adjustment behavior holds for the network
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providers in terms of their network transport quality levels and prices. This type of behavior

is rational from an economic standpoint. Therefore, ODE (32) is a reasonable continuous

adjustment process for the Cournot-Nash-Bertrand game theory model.

Although the use of the projection on the right-hand side of ODE (32) guarantees that

the underlying variables are always nonnegative, it also raises the question of existence of a

solution to ODE (32), since this ODE is nonstandard due to its discontinuous right-hand side.

Dupuis and Nagurney (1993) developed the fundamental theory with regards to existence

and uniqueness of projected dynamical systems as defined by (32). We cite the following

theorem from that paper. See also the book by Nagurney and Zhang (1996).

Theorem 4

X∗ solves the variational inequality problem (22) if and only if it is a stationary point of the

ODE (32), that is,

Ẋ = 0 = ΠK(X∗,−F (X∗)). (35)

This theorem demonstrates that the necessary and sufficient condition for a pattern X∗ =

(Q∗, q∗, π∗) to be a Cournot-Nash-Bertrand equilibrium, according to Definition 3, is that

X∗ = (Q∗, q∗, π∗) is a stationary point of the adjustment process defined by ODE (32), that

is, X∗ is the point at which Ẋ = 0.

Consider now the competitive system consisting of the service providers and the network

providers, who, in order to maximize their profits, adjust, respectively, their service volumes

and their quality level and price patterns by instantly responding to the marginal profits,

according to (32). The following questions naturally arise and are of interest. Does the profit

(utility) gradient process defined by (32), approach a Cournot-Nash-Bertrand equilibrium,

and how does it approach an equilibrium in term of the convergence rate? Also, for a

given Cournot-Nash-Bertrand equilibrium, do all the disequilibrium service volumes, quality

level, and price patterns that are close to this equilibrium always stay nearby? Motivated by

these questions, we now present the stability analysis of Cournot-Nash-Bertrand equilibrium,

under the above gradient process.

3.1 Stability Under Monotonicity

We now turn to the questions raised above, that is, whether and under what conditions

does the adjustment process defined by ODE (32) approaches a Cournot-Nash-Bertrand

equilibrium? We first note that Lipschitz continuity of F (X) (cf. Dupuis and Nagurney

(1993) and Nagurney and Zhang (1996)) guarantees the existence of a unique solution to
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(36) below, where we have that X0(t) satisfies ODE (32) with service volume, quality level

and price pattern (Q0, q0, π0). In other words, X0(t) solves the initial value problem (IVP)

Ẋ = ΠK(X,−F (X)), X(0) = X0, (36)

with X0(0) = X0. For convenience, we will sometimes write X0 · t for X0(t).

We introduce the following definitions of stability for this adjustment process, which are

extensions of those introduced in Zhang and Nagurney (1995) (see also Nagurney and Zhang

(1996)). Hereafter, we use B(X, r) to denote the open ball with radius r and center X.

We now present some fundamental definitions, for completeness, and some basic qualita-

tive results.

Definition 4

An equilibrium service volume, quality level, and price pattern X∗ is stable, if for any ε > 0,

there exists a δ > 0, such that for all initial X ∈ B(X∗, δ) and all t ≥ 0

X(t) ∈ B(X∗, ε). (37)

The equilibrium point X∗ is unstable, if it is not stable.

Definition 5

An equilibrium service volume, quality level, and price pattern X∗ is asymptotically stable,

if it is stable and there exists a δ > 0 such that for all initial service volumes, quality levels,

and prices X ∈ B(X∗, δ)

lim
t→∞

X(t) −→ X∗. (38)

Definition 6

An equilibrium service volume, quality level, and price pattern X∗ is globally exponentially

stable, if there exist constants b > 0 and µ > 0 such that

‖X0(t)−X∗‖ ≤ b‖X0 −X∗‖e−µt, ∀t ≥ 0, ∀X0 ∈ K. (39)
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Definition 7

An equilibrium service volume, quality level, and price pattern X∗ is a global monotone

attractor, if the Euclidean distance ‖X(t)−X∗‖ is nonincreasing in t for all X ∈ K.

Definition 8

An equilibrium X∗ is a strictly global monotone attractor, if ‖X(t) −X∗‖ is monotonically

decreasing to zero in t for all X ∈ K.

We now investigate the stability of the adjustment process under various monotonicity

conditions.

Recall (cf. Nagurney (1999)) that F (X) is monotone if

〈F (X)− F (X∗), X −X∗〉 ≥ 0, ∀X, X∗ ∈ K. (40)

F (X) is strictly monotone if

〈F (X)− F (X∗), X −X∗〉 > 0, ∀X, X∗ ∈ K, X 6= X∗. (41)

F (X) is strongly monotone, if there is an η > 0, such that

〈F (X)− F (X∗), X −X∗〉 ≥ η‖X −X∗‖2, ∀X, X∗ ∈ K. (42)

The monotonicity of a function F is closely related to the positive-definiteness of its

Jacobian ∇F (cf. Nagurney (1999)). Specifically, if ∇F is positive-semidefinite, then F is

monotone; if ∇F is positive-definite, then F is strictly monotone; and, if ∇F is strongly

positive-definite, in the sense that the symmetric part of ∇F, (∇F T + ∇F )/2, has only

positive eigenvalues, then F is strongly monotone.

In the context of the Cournot-Nash-Bertrand, where F (X) is the vector of negative

marginal utilities as in (24) – (26), we point out that if the utility functions are twice

differentiable and the Jacobian of the negative marginal utility functions (or, equivalently, the

negative of the Hessian matrix of the utility functions) for the integrated model is positive-

definite, then the corresponding F (X) is strictly monotone.

We now present an existence and uniqueness result, the proof of which follows from the

basic theory of variational inequalities (cf. Nagurney (1999)).
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Theorem 5

Suppose that F is strongly monotone. Then there exists a unique solution to variational

inequality (22); equivalently, to variational inequality (23).

We summarize in the following theorem the stability properties of the utility gradient

process, under various monotonicity conditions on the marginal utilities.

Theorem 6

(i). If F (X) is monotone, then every Cournot-Nash-Bertrand equilibrium, as defined in Def-

inition 3, provided its existence, is a global monotone attractor for the utility gradient process.

(ii). If F (X) is strictly monotone, then there exists at most one Cournot-Nash-Bertrand

equilibrium. Furthermore, given existence, the unique Cournot-Nash-Bertrand equilibrium is

a strictly global monotone attractor for the utility gradient process.

(iii). If F (X) is strongly monotone, then the unique Cournot-Nash-Bertrand equilibrium,

which is guaranteed to exist, is also globally exponentially stable for the utility gradient pro-

cess.

Proof: The stability assertions follow from Theorems 3.5, 3.6, and 3.7 in Nagurney and

Zhang (1996), respectively. The uniqueness in (ii) is a classical variational inequality result,

whereas existence and uniqueness as in (iii) follows from Theorem 5. 2

3.1.1 Examples

We now return to the examples in Sections 2.3.1 and 2.3.2 in order to illustrate some of

the above concepts and results.

We begin with the first example in Section 2.3.1. The Jacobian matrix of F (X) =

−∇U(Q, q, π), for this example, denoted by J(Q111, q111, π111), is

J(Q111, q111, π111) =

 6 −1 1
0 2 0
−1 0 2

 .

This Jacobian matrix is positive-definite, since it is strictly diagonally dominant, and,

hence, minus the gradient of the utility functions, that is, -∇U(Q, q, π) is strongly monotone
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(see also Nagurney (1999)). Thus, both the existence and the uniqueness of the solution

to variational inequality (22) with respect to this example are guaranteed. Moreover, the

equilibrium solution, which is: Q∗111 = 12, q∗111 = 1, and π∗111 = 6 is globally exponentially

stable.

The variant of this example, in turn, as described in Section 2.3.1, has the Jacobian

matrix of its F (X) = −∇U(Q, q, π) given by:

J(Q111, q111, π111) =

 6 −1 1
1 2 0
−1 0 2

 .

We note that this Jacobian matrix is also positive-definite, since it is also strictly diagonally

dominant and, hence, the same conclusions as above hold for its equilibrium solution X∗ =

(11.82, 0, 5.91) and the associated gradient process.

We now turn to the numerical example in Section 2.3.2. The Jacobian matrix of F (X) =

−∇U(Q, q, π), for this example, denoted by J(Q111, Q211, q111, q211, π111, π211), is

J(Q111, Q211, q111, q211, π111, π211) =


4 .5 −.5 0 1 0
.5 6 0 −.5 0 1
0 0 1 0 0 0
0 0 0 1 0 0
−1 0 0 0 2 0
0 −1 0 0 0 2

 .

Given the positive-definiteness of this Jacobian matrix, similar conclusions to those obtained

from the two preceding examples follow in terms of existence and uniqueness of the equilib-

rium (21, 30, 20, 10, 10.5, 15) as well as its stability.

4. The Algorithm

As mentioned in Section 3, the projected dynamical system yields continuous-time ad-

justment processes. However, for computational purposes, a discrete-time algorithm, which

serves as an approximation to the continuous-time trajectories is needed.

We now recall the Euler method, which is induced by the general iterative scheme of

Dupuis and Nagurney (1993). Specifically, iteration τ of the Euler method (see also Nagurney

and Zhang (1996)) is given by:

Xτ+1 = PK(Xτ − aτF (Xτ )), (43)

where PK is the projection on the feasible set K and F is the function that enters the

variational inequality problem (23).
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As shown in Dupuis and Nagurney (1993) and Nagurney and Zhang (1996), for conver-

gence of the general iterative scheme, which induces the Euler method, the sequence {aτ}
must satisfy:

∑∞
τ=0 aτ = ∞, aτ > 0, aτ → 0, as τ →∞. Specific conditions for convergence

of this scheme as well as various applications to the solutions of other game theory models

can be found in Nagurney, Dupuis, and Zhang (1994), Nagurney, Takayama, and Zhang

(1995), Cruz (2008), Nagurney (2010), and Nagurney and Li (2013).

4.1 Explicit Formulae for the Euler Method Applied to the Cournot-Nash-

Bertrand Game Theory Model

The elegance of this procedure for the computation of solutions to our model (in both the

dynamic and static, that is, equilibrium, versions) can be seen in the following explicit

formulae. In particular, we have the following closed form expression for all the service

volumes for i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , o:

Qτ+1
ijk = max{0, Qτ

ijk +aτ (ρ̂ijk(Q
τ , qτ )+

n∑
h=1

o∑
l=1

∂ρ̂ihl(Q
τ , qτ )

∂Qijk

×Qτ
ihl−πτ

ijk−
∂f̂i(Q

τ )

∂Qijk

)}, (44)

and the following closed form expression for all the quality levels for i = 1, . . . ,m; j =

1, . . . , n; k = 1, . . . , o:

qτ+1
ijk = max{0, qτ

ijk + aτ (−
m∑

h=1

o∑
l=1

∂chjl(Q
τ , qτ )

∂qijk

)} (45)

with the explicit formulae for the network transport prices being: for i = 1, . . . ,m; j =

1, . . . , n; k = 1, . . . , o:

πτ+1
ijk = max{0, πτ

ijk + aτ (Q
τ
ijk −

∂ocijk(πijk)

∂πijk

)}. (46)

We now provide the convergence result. The proof is direct from Theorem 5.8 in Nagurney

and Zhang (1996).

Theorem 7

In the Cournot-Nash-Bertrand model for a service-oriented Internet, let F (X) = −∇U(Q, q, π)

be strongly monotone. Also, assume that F is uniformly Lipschitz continuous. Then there

exists a unique equilibrium service volume, quality level, and price pattern (Q∗, q∗, π∗) ∈ K
and any sequence generated by the Euler method as given by (43) above, where {aτ} satisfies∑∞

τ=0 aτ = ∞, aτ > 0, aτ → 0, as τ →∞ converges to (Q∗, q∗, π∗).
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In the next section, we apply the Euler method to compute solutions to several numerical

problems.

5. Larger Numerical Examples

In this section, we apply the Euler method, described in the preceding section to compute

the Cournot-Nash-Bertrand equilibrium for several service-oriented Internet examples. We

set the sequence {aτ}=1(1, 1
2
, 1

2
, 1

3
, 1

3
, 1

3
, . . .). The convergence criterion was that the absolute

value of the difference of the iterates at two successive iterations was less than or equal to

10−4. All the variables (service volumes, quality levels, and network provider prices) were

initialized to 0.00.

In the examples (cf. Figure 4) there are 3 service providers, 2 network providers, and 2

demand markets. We implemented the algorithm in FORTRAN and used a LINUX system

for the computations. All the examples in this section satisfy the conditions for convergence

as given in Theorem 7. The computed equilibria for the numerical examples below, which

are guaranteed to exist, are unique, since the respective Jacobians of their −∇U(Q, q, π)

are positive-definite, and, hence, the function F that enters the variational inequality (23)

for each of these numerical examples is strongly monotone. Moreover, these F s are also

uniformly Lipschitz continuous since the utility functions have bounded second order partial

derivatives.
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Figure 4: Network Topology for Larger Numerical Examples

5.1 Baseline Example 1

The data for the first numerical example in this section, from which we then construct

subsequent variants, are as follows.

The production cost functions are:

f̂1(Q) = 2(Q111 + Q112 + Q121 + Q122)
2 + (Q111 + Q112 + Q121 + Q122),
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f̂2(Q) = (Q211 + Q212 + Q221 + Q222)
2 + (Q211 + Q212 + Q221 + Q222),

f̂3(Q) = 3(Q311 + Q312 + Q321 + Q322)
2 + (Q311 + Q312 + Q321 + Q322).

The demand price functions are:

ρ̂111(Q, q) = −Q111 − .5Q112 + q111 + 100, ρ̂112(Q, q) = −2Q112 − 1Q111 + q112 + 200,

ρ̂121(Q, q) = −2Q121 − .5Q111 + .5q121 + 100, ρ̂122(Q, q) = −3Q122 −Q112 + .5q122 + 150,

ρ̂211(Q, q) = −1Q211 − .5Q212 + .3q211 + 100, ρ̂212(Q, q) = −3Q212 + .8q212 + 200,

ρ̂221(Q, q) = −2Q221 − 1Q222 + q221 + 140, ρ̂222(Q, q) = −3Q222 −Q121 + q221 + 300,

ρ̂311(Q, q) = −4Q311 + .5q311 + 230, ρ̂312(Q, q) = −2Q312 −Q321 + .3q312 + 150,

ρ̂321(Q, q) = −3Q321 −Q311 + .2q321 + 200, ρ322(Q, q) = −4Q322 + .7q322 + 300.

The transportation cost functions are:

c111(Q, q) = q2
111− .5q111, c112(Q, q) = .5q2

112−q112, c121(Q, q) = .1q2
121−q121, c122(Q, q) = q2

122,

c211(Q, q) = .1q2
211−q211, c212(Q, q) = q2

212−.5q212, c221(Q, q) = 2q2
221, c222(Q, q) = .5q2

222−q222,

c311(Q, q) = q2
311−q311, c312(Q, q) = .5q2

312−q312, c321(Q, q) = q2
321−q321, c322(Q, q) = 2q2

322−2q322.

The opportunity cost functions are:

oc111(π111) = 2π2
111, oc112(π112) = 2π2

112, oc121(π121) = π2
121, oc122(π122) = .5π2

122,

oc211(π211) = π2
211, oc212(π212) = .5π2

212, oc221(π221) = 2π2
221, oc222(π222) = 1.5π2

222,

oc311(π311) = π2
311, oc312(π312) = 2.5π2

312, oc321(π321) = 1.5π2
321, oc322(π322) = π2

322.

The Euler method converged in 432 iterations and yielded the approximation to the

equilibrium solution reported in Table 2.

The profit of service provider 1 is: 2402.31 and that of service provider 2: 6086.77 and of

service provider 3: 3549.49. The profit of network provider 1 is: 184.04 and that of network

provider 2: 241.54.

It is interesting to see that demand market 1 obtains no services from service provider 1

since Q∗111 and Q∗121 are equal to 0.00 and only obtains services from service providers 2 and

3. Demand market 2, however, obtains services from all three service providers. Network

provider 1 handles positive volumes of services from all service providers as does network

provider 2. It is also interesting to see that two of the quality levels are equal to zero.
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Table 2: Equilibrium Solution for the Baseline Example 1
Service Network Demand

Provider i Provider j Market k Q∗ijk q∗ijk π∗ijk
1 1 1 0.00 0.25 0.00
1 1 2 22.67 1.00 5.67
1 2 1 0.00 5.00 0.00
1 2 2 3.24 0.00 3.24
2 1 1 0.00 5.00 0.00
2 1 2 14.53 0.25 14.53
2 2 1 2.24 0.00 0.56
2 2 2 31.97 1.00 10.66
3 1 1 7.55 0.50 3.77
3 1 2 0.00 1.00 0.00
3 2 1 4.18 0.50 1.39
3 2 2 15.80 0.50 7.90

Noting that Q∗111 = 0.00 we then constructed Variant 1 as described below.

5.2 Example 2: Variant 1 of Example 1

In this example, we explored the effects of a change in the price function ρ111 since recall

that, in Example 1, Q∗111 = 0.00. Such a change in a price function could occur, for example,

through enhanced marketing. Specifically, we sought to determine the change in the equilib-

rium pattern if the consumers at demand market 1 are willing to pay more for the services of

the service provider 1 and network provider 1 combination. The new demand price function

is:

ρ̂111(Q, q) = −Q111 − .5Q112 + q111 + 200,

with the remainder of the data as in Example 1. The new computed solution is reported in

Table 3. The algorithm converged in 431 iterations.

The profit of service provider 1 is now: 3168.18. The profits of the other two service

providers remain as in Example 1. The profit of network provider 1 is now: 209.85 and that

of network provider 2: 236.35. Hence, both service provider 1 and network provider 1 have

higher profits than in Example 1 and the service volume Q∗111 increases from 0.00 to 25.40.

There is a reduction in service volume Q∗112 and in Q∗122.

5.3 Example 3: Variant 2 of Example 1

In the next example, we returned to Example 1 and modified all of the transportation cost
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Table 3: Equilibrium Solution for Example 2: Variant 1 of Example 1
Service Network Demand

Provider i Provider j Market k Q∗ijk q∗ijk π∗ijk
1 1 1 25.40 0.25 6.35
1 1 2 8.67 1.00 2.17
1 2 1 0.00 4.45 0.00
1 2 2 0.37 0.00 0.37
2 1 1 0.00 4.45 0.00
2 1 2 14.52 0.25 14.53
2 2 1 2.24 0.00 0.56
2 2 2 31.97 1.00 10.66
3 1 1 7.55 0.50 3.77
3 1 2 0.00 1.00 0.00
3 2 1 4.18 0.50 1.39
3 2 2 15.80 0.50 7.90

functions to include an additional term: Qijkqijk to reflect that cost could depend on both

congestion level and on quality of transport. The solution obtained via the Euler method for

this example is given in Table 4. The Euler method required 705 iterations for convergence.

Table 4: Equilibrium Solution for Example 3: Variant 2 of Example 1
Service Network Demand

Provider i Provider j Market k Q∗ijk q∗ijk π∗ijk
1 1 1 0.00 0.25 0.00
1 1 2 22.52 0.00 5.63
1 2 1 0.00 4.98 0.00
1 2 2 3.31 0.00 3.31
2 1 1 0.00 4.99 0.00
2 1 2 14.52 0.00 14.52
2 2 1 2.31 0.00 0.58
2 2 2 31.84 0.00 10.61
3 1 1 7.53 0.00 3.77
3 1 2 0.00 1.00 0.00
3 2 1 4.19 0.00 1.40
3 2 2 15.77 0.00 7.89

The profit of service provider 1 is now: 2380.87. The profit of service provider 2 is:

6053.76 and that of service provider 3 is: 3541.93. The profit of network provider 1 is now:

181.89 and that of network provider 2: 237.21.
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Observe that, in this, as in the previous two examples, if Q∗ijk = 0, then the price π∗ijk = 0,

which is reasonable. It is interesting to note that, in this example, the inclusion of an

additional term Qijkqijk to each transportation cost function cijk, with the remainder of the

data as in Example 1, results in a decrease in the quality levels in eight out of the twelve

computed equilibrium variable values, with the other quality values remaining unchanged.

Note that, as mentioned in the introduction, a quality level of zero implies that no extra

features are provided. Having an effective modeling and computational framework allows

one to explore the effects of changes in the underlying functions on the equilibrium pattern

to gain insights that may not be apparent from smaller scale, analytical solutions.

5.3 Example 4: Variant 3 of Example 1

In the next example, we used the same data as in Example 3 but we reduced the pro-

duction cost function for service provider 1 to see the effects on its service volumes (observe

that in Table 4, two of its equilibrium service volumes were 0.00).

The new production cost function is:

f̂1(Q) = (Q111 + Q112 + Q121 + Q122)
2 + (Q111 + Q112 + Q121 + Q122),

The algorithm converged in 638 iterations and yielded the equilibrium pattern reported

in Table 5.

Table 5: Equilibrium Solution for Example 4: Variant 3 of Example 1
Service Network Demand

Provider i Provider j Market k Q∗ijk q∗ijk π∗ijk
1 1 1 2.44 0.00 0.61
1 1 2 27.48 0.00 6.87
1 2 1 4.00 0.00 2.00
1 2 2 5.96 0.00 5.96
2 1 1 0.00 4.98 0.00
2 1 2 14.59 0.00 14.59
2 2 1 2.55 0.00 0.64
2 2 2 31.28 0.00 10.43
3 1 1 7.54 0.00 3.77
3 1 2 0.00 1.00 0.00
3 2 1 4.19 0.00 1.40
3 2 2 15.77 0.00 7.89

The profit of service provider 1 has increased and is now: 3245.84. The profit of service
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provider 2 has been reduced to 5933.49. The profit of service provider 3 remains unchanged

and is 3541.93. The profit of network provider 1 has increased to 214.54 and that of network

provider 2 has also increased to 247.33.

Observe that service provider 1, by lowering his production costs, now has all positive

equilibrium service volumes.

6. Summary and Conclusions

In this paper we developed a game theory model for a service-oriented Internet. The mo-

tivation for the research stems, in part, from a need to understand the underlying economics

of a service-oriented Internet with more choices as well as to demonstrate the integration

of complex competitive behaviors on multitiered networks. We developed both static and

dynamic versions of the Cournot-Nash-Bertrand game theory model in which the service

providers offer differentiated, but substitutable, services and the network providers transport

the services to consumers at the demand markets. Consumers respond to the composition of

service and network provision choices and to the quality levels and service volumes, through

the prices. The service providers compete in a Cournot-Nash manner, whereas the network

providers compete a la Bertrand in prices charged for the transport of the services, as well

as with the quality levels associated with the transport.

We derived the governing equilibrium conditions of the integrated game theory model and

showed that it satisfies a variational inequality problem. We then described the underlying

dynamics, using the theory of projected dynamical systems, and also presented stability

analysis and other qualitative results. An algorithm was presented, along with convergence

results, which provides a discrete-time version of the continuous-time adjustment processes

for the service volumes, quality levels, and prices. We demonstrated the generality of the

modeling and computational framework with several numerical examples.
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