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Abstract: The Covid-19 pandemic has negatively impacted virtually all economic and so-

cial activities across the globe. Presently, since there is still no vaccine and no curative

treatments for this disease, medical supplies in the form of Personal Protective Equipment

and ventilators are sorely needed for healthcare workers and certain patients, respectively.

The fact that this healthcare disaster is not limited in time and space has resulted in intense

global competition for medical supplies. In this paper, we construct the first Generalized

Nash Equilibrium model with stochastic demands to model competition among organizations

at demand points for medical supplies. The model includes multiple supply points and mul-

tiple demand points, along with prices of the medical items and generalized costs associated

with transportation. The theoretical constructs are provided and a Variational Equilibrium

utilized to enable alternative variational inequality formulations. A qualitative analysis is

presented and an algorithm proposed, along with convergence results. Illustrative examples

are detailed as well as numerical examples that are solved with the implemented algorithm.

The results reveal the impacts of the addition of supply points as well as of demand points
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on the medical item product flows. The formalism may be adapted to multiple medical items

both in the near term and in the longer term (such as for vaccines).

Keywords: pandemic, Covid-19, medical supplies, game theory, networks, healthcare
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1. Introduction

The Covid-19 pandemic, which was declared a pandemic by the World Health Organiza-

tion on March 11, 2020 (cf. Secon, Woodward, and Mosher (2020)), has disrupted the globe,

altering economic and social activities, and negatively impacting education, travel, work,

and even leisure. Healthcare systems around the world continue to face great challenges as

the battle against the novel coronavirus that causes this disease continues. The great need

for medical items from Personal Protective Equipment (PPEs) to ventilators and, now, even

convalescent plasma, has led to intense competition for medical supplies among healthcare

institutions and even regions, including states, as well as nations. Although a vaccine is

not yet available and a cure does not yet exist, scientific advances are adding to knowledge

regarding possible treatments. However, even when a vaccine becomes available, one can

expect, because of the great demands and potential insufficiency of manufacturing capacity

as well as vaccine components for distribution, that competition will be a reality for the

foreseeable future for even vaccines. The same holds for medicinal treatments for patients

suffering from Covid-19.

Indeed, the competition for PPEs, to start, is reasonable, since it has been scientifically

established that one of the most effective ways to mitigate contagion associated with the

novel coronavirus (Johns Hopkins Medicine (2020)) is to use Personal Protective Equipment

(PPE), for healthcare and other essential workers (see Jacobs, Richtel, and Baker (2020))

as well as those in social proximity (CDC (2020c), Herron et al. (2020)). China has histori-

cally produced half of the world’s face masks, but with the coronavirus originating in Wuhan,

China, the country dedicated the majority of the supply for their own citizens, whereas other

countries, such as Germany, even banned the export of PPEs (Lopez (2020)). The intense

competition for PPEs led to a dramatic increase in the price, with some prices rising by

more than 1,000%, according to the report by The Society for Healthcare Organization Pro-

curement Professionals (2020). For example (cf. Diaz, Sands, and Alesci (2020) and Berklan

(2020)), the price of N95 masks grew from $0.38 to $5.75 each (a 1,413% increase); isolation

protective gowns experienced a price increase from $0.25 to $5.00 (a 1900% increase), with

the price of reusable face shields going from $0.50 to $4.00 (a 700% increase). According to

Glenza (2020), demand and prices for PPEs, as of the end of June 2020, are dramatically

increasing again across the United States as coronavirus cases continue to rise in more than

half of states. Furthermore, shortages of PPEs are again being reported in the United States

in July as medical and dental practices reopen and with the reopening of some schools also

on the horizon.

In addition, because the coronavirus SARS-CoV-2 that causes Covid-19 may result in
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severe respiratory problems in certain individuals, various healthcare organizations, includ-

ing hospitals, were clamoring for ventilators for their patients (Gelles and Petras (2020),

Namendys-Silva (2020)). This is an example of, yet, another medical item for which there

was and continues to be intense competition globally, and with limited supply availability

(see Goudie et al. (2020), Kamdar (2020), Pifer (2020), SCCM (2020), Schlanger (2020)).

The supply chain for ventilators is quite complex, with components sourced from different

countries.

There is a growing demand for another medical product which has become critical in the

health care system due to the pandemic. It is the plasma or liquid part of blood obtained

from recovered Covid-19 patients, also known as convalescent plasma. It contains antibodies

that can fight the virus SARS-CoV-2 causing the Covid-19 disease (Hererra (2020)). The

pandemic has given rise to a rather unique competitive market for convalescent plasma

as blood banks and hospitals are seeking this antibody rich serum to directly transfuse

and treat critically ill patients, while pharmaceutical companies are collecting it to produce

plasma derived medicine such as hyperimmune globulin that can act as a cure for Covid-

19 patients (Aleccia (2020), Nagurney and Dutta (2020)). Even though the efficacy and

safety of both the treatments are still under investigation worldwide, there exist studies on

patients with other infectious diseases, severe acute viral respiratory infections, including

those caused by related coronaviruses (SARS-CoV and MERS-CoV) that found therapeutic

benefits of convalescent plasma (Mair-Jenkins et al. (2015), Winkler and Koepsell (2015),

Van Griensven et al. (2016), Ferguson et al. (2020)). Both the non-profit and profit-making

organizations competing in this market for convalescent plasma are taking measures to raise

awareness, to generate confidence regarding the safety of the donation process, and to recruit

donors (American Red Cross (2020), Grifols (2020)).

In the United States, according to the guidelines issued by the Food and Drug Admin-

istration (2020), individuals who have fully recovered from Covid-19 and have shown no

symptoms for at least two weeks prior to donation are eligible to donate plasma. In ad-

dition to meeting the regular donor criteria, convalescent plasma donors need to provide

documentation of prior Covid-19 diagnosis. According to Harvard Health Publishing (2020),

one donor can produce sufficient plasma to treat three patients. As the world continues to

wait for the availability of vaccines, and more studies show promising results of convalescent

plasma therapy (Casadevall and Pirofski (2020), Duan et al. (2020), Johnson (2020)), the

demand for this product and competition among hospitals, medical facilities, and pharma-

ceutical companies for the limited donor pool is going to become more prominent.
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2. Literature Review and Our Contributions

Since the pandemic was declared only several months ago, although for many it feels

like an eternity, the research is nascent, but ongoing and vigorous. Queiroz et al. (2020)

presented a research agenda through a structured literature review of Covid-19 related work

and supply chain research on earlier epidemics. Ivanov (2020), in turn, discussed simulation-

based research focused on the potential impacts on global supply chains of the Covid-19

pandemic. Nagurney (2020) developed a supply chain network optimization model for per-

ishable food in the Covid-19 pandemic, which included the critical labor resource. The model

can be used to investigate the impacts of labor disruptions, due to illnesses, death, etc., on

prices and product flows.

In this paper, we construct a competitive game theory network model for medical supplies

inspired by the Covid-19 pandemic. It features salient characteristics of the realities of this

pandemic in terms of competition among organizations/institutions for supplies under lim-

ited capacities globally as well as uncertain demands due to the fact that so much about this

novel coronavirus remains unknown and has yet to be discovered. Since the organizations,

notably, healthcare ones such as hospitals and nursing homes but also medical practices,

etc., compete with one another for the limited supplies, given the prices and their associ-

ated logistical costs as well as the expected loss due to possible shortages or surpluses, the

model is a Generalized Nash Equilibrium (GNE) model (cf. Debreu (1952); see also Arrow

and Debreu (1954)) rather than a Nash equilibrium one (cf. Nash (1950, 1951)). To-date,

there have been very few GNE models in the setting of disaster relief. Here we are dealing

with a global healthcare disaster on a monumental scale, which, unlike other disasters (cf.

Nagurney and Qiang (2009), Kotsireas, Nagurney, and Pardalos (2016, 2018)), is not limited

in space and time. Furthermore, our model has stochastic elements.

We emphasize that in the case of Generalized Nash Equilibrium models not only do the

objective functions of the players in the game depend on the strategies of the other players

but the feasible sets do as well (see, e.g., Fischer, Herrich, and Schonefeld (2014)). Nagurney,

Alvarez-Flores, and Soylu (2016) constructed the first disaster relief GNE model integrating

financial and logistical aspects of humanitarian organizations activities and demonstrated

that, because of the underlying functions, an optimization reformulation was possible. Sub-

sequently, Nagurney et al. (2018) generalized the results to a broader class of functions and

used the concept of a Variational Equilibrium (cf. Kulkarni and Shabhang (2012)), which en-

abled a finite-dimensional variational inequality formulation and solution procedures. How-

ever, these models were deterministic. The first stochastic GNE model for disaster relief was

constructed by Nagurney et al. (2020) with each humanitarian organization facing a two-
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stage stochastic optimization problem and with the common, that is, the shared constraints

being on the demand side and associated with relief items to be delivered to the victims at

the various demand points. There were no bounds on the availability of supplies.

In this paper, in contrast, and as is vividly occurring in the Covid-19 pandemic, the sup-

plies of the items, which in our model are medical items, are constrained. Also, the demand

for the medical items is uncertain with associated penalties for shortages or surpluses, with

the former expected to be much higher due to potential loss of life, increased pain and suffer-

ing, etc. The constructs that we utilize for handling the uncertain demands for medical items

are based on results of Dong, Zhang, and Nagurney (2004), who introduced a supply chain

equilibrium model with random demands, and on the results of Nagurney, Yu, and Qiang

(2011) and Nagurney, Masoumi, and Yu (2012, 2015), who focused on optimization models in

disaster relief and healthcare. Nagurney and Nagurney (2016) developed a supply chain net-

work model for disaster relief under cost and demand uncertainty, but again, therein, there

was a single-decision-maker and, hence, game theory was not needed. Mete and Zabinsky

(2010) introduced a two-stage stochastic optimization model for storage and distribution of

medical supplies but also considered a single decision-maker. Adida, DeLaurentis, and Law-

ley (2011) consider hospital stockpiling of medical supplies with a focus on shortages in the

system and a common population. The authors because of their assumptions could derive

closed form expressions for solutions. In our model there are multiple independent demand

points and they compete for the medical item supplies with one another. Our model also

include general transportation costs and each demand point is subject to uncertain demand

for the medical supplies. Moreover, our model is a Generalized Nash Equilibrium model and

not a Nash equilibrium model.

Muggy and Heier Stamm (2014) provide a review of game theory in humanitarian opera-

tions to that date and note that there remain many unexplored modeling research opportu-

nities. The excellent survey article of Gutjahr and Nolz (2016) on multicriteria optimization

in humanitarian aid includes references to both deterministic and stochastic models. The au-

thors, in their future research directions section, emphasize the need for papers that consider

the diverging interests of multiple and sometimes competing stake-holders. Such a research

gap is addressed in this paper.

This remainder of the paper is organized as follows. In Section 3, we present the General-

ized Nash Equilibrium network model for medical supplies and provide alternative variational

inequality formulations of the governing equilibrium conditions. In Section 4, we discuss

some qualitative properties of the model as well as the function that enters the variational

inequality that we utilize to solve the numerical examples in Section 5. Section 6 summarizes
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our results, presents our conclusions, and also gives suggestions for future research.

3. The Generalized Nash Equilibrium Network Model for Medical Supplies

Under Stochastic Demand

We consider m locations that are supply locations for the medical supplies, with a typical

supply point denoted by i, and n locations that are demand points, with a typical demand

point denoted by j. Note that supply points can be locations in different regions, states, or

even countries. Demand points are locations where the medical supplies are needed such as

hospitals, nursing homes, medical clinics, prisons, etc. The bipartite structure of the game

theory problem is depicted in Figure 1. The notation for the model is given in Table 1. All

vectors are column vectors.
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Figure 1: The Network Structure of the Competitive Game Theory Model for Medical Sup-
plies

The demand for the medical item at the demand points is uncertain due to the unpre-

dictability of the actual demand at the demand points. The literature contains examples

of supply chain network models with uncertain demand and associated shortage and sur-

plus penalties (see, e.g., Dong, Zhang, and Nagurney (2004), Nagurney, Yu, and Qiang

(2011), Nagurney and Masoumi (2012), Nagurney, Masoumi, and Yu (2015)). Nagurney

and Nagurney (2016) develop a model for disaster relief under cost and demand uncertainty.

The probability distribution of demand for PPEs can be obtained using census data and/or

information gathered during the pandemic disaster preparedness phase.

Before constructing the objective function, we present some needed preliminaries.
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Table 1: Notation for the Medical Supply Generalized Nash Equilibrium Network Model

Notation Definition
qij the amount of the medical item purchased from supply location i by j.

We first group all the i elements {qij} into the vector qj and then we
group such vectors for all j into the vector q ∈ Rmn

+ .
vj the projected demand at demand point j; j = 1, . . . , n.
dj the actual (uncertain) demand for the medical item at demand location

j; j = 1, . . . , n.
∆−

j the amount of shortage of the medical item at demand point j; j =
1, . . . , n.

∆+
j the amount of surplus of the medical item at demand point j; j =

1, . . . , n.
λ−j the unit penalty associated with a shortage of the the medical item at

demand point j; j = 1, . . . , n.
λ+

j the unit penalty associated with a surplus of the medical item at demand
point j; j = 1, . . . , n.

ρi the price of the medical item at supply location i; i = 1, . . . ,m.
cij(q) the generalized cost of transportation associated with transporting the

the medical item from supply location i to demand location j, which
includes the financial cost, any tariffs/taxes, time, and risk. We group
all the generalized costs into the vector c(q) ∈ Rmn.

Si the nonnegative amount of the medical item available for purchase at
supply location i; i = 1, . . . ,m.

µi the nonnegative Lagrange multiplier associated with the supply con-
straint at supply location i. We group the Lagrange multipliers into
the vector µ ∈ Rm

+ .

Since dj denotes the actual (uncertain) demand at destination point j, we have:

Pj(Dj) = Pj(dj ≤ Dj) =

∫ Dj

0

Fj(t)dt, j = 1, . . . , n, (1)

where Pj and Fj denote the probability distribution function, and the probability density

function of demand at point j, respectively.

Recall from Table 1 that vj is the “projected demand” for the medical item at demand

point j; j = 1, . . . , n. The amounts of shortage and surplus at demand point j are calculated,

respectively, according to:

∆−
j ≡ max{0, dj − vj}, j = 1, . . . , n, (2a)

∆+
j ≡ max{0, vj − dj}, j = 1, . . . , n. (2b)
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The expected values of shortage and surplus at each demand point are, hence:

E(∆−
j ) =

∫ ∞

vj

(t− vj)Fj(t)dt, j = 1, . . . , n, (3a)

E(∆+
j ) =

∫ vj

0

(vj − t)Fj(t)dt, j = 1, . . . , n. (3b)

The expected penalty incurred by demand point j due to the shortage and surplus of the

medical item is equal to:

E(λ−j ∆−
j + λ+

j ∆+
j ) = λ−j E(∆−

j ) + λ+
j E(∆+

j ), j = 1, . . . , n. (4)

We assume that λ+
j + λ−j is greater than zero, for each demand point j.

The projected demand at demand point j, vj, is equal to the sum of flows of the medical

item to j, that is:

vj ≡
m∑

i=1

qij, j = 1, . . . , n. (5)

Each demand location j seeks to minimize the total costs associated with the purchasing

of the medical item plus the total cost of transportation plus the expected cost due to a

shortage or surplus at j.

The objective function of each demand point j is, hence, given by:

Minimize
m∑

i=1

ρiqij +
m∑

i=1

cij(q) + λ−j E(∆−
j ) + λ+

j E(∆+
j ) (6)

subject to the following constraints:

n∑
j=1

qij ≤ Si, i = 1, . . . ,m, (7)

qij ≥ 0, i = 1, . . . ,m. (8)

The first term in the objective function (6) represents the purchasing costs, whereas the

second term represents the generalized total transportation costs. The third term in (6)

captures the expected cost due to shortage or surplus of the medical items at the demand

point of the organization. We expect that the weight λ−j would be significantly higher than

the weight λ+
j for each j since a shortage of the medical items can result in greater suffering

and loss of life.
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The constraints (7) represent common, that is, a shared constraints in that the demand

locations compete for the medical items that are available for purchase at the supply locations

at a maximum available supply. The constraints in (8) are the nonnegativity assumption on

the medical item purchase volumes.

We assume that the total generalized transportation cost functions are continuously dif-

ferentiable and convex. Note that, in our model, the transportation costs can, in general,

depend upon the vector of medical item flows since there is competition for freight service

provision in the pandemic.

We now present some preliminaries that allow us to express the partial derivatives of

the expected total shortage and discarding costs of the medical items at the demand points

only in terms of the medical item flow variables. We then prove that the third term in the

Objective Function (6) is also convex.

Note that that, for each demand point j:

∂E(∆−
j )

∂qij

=
∂E(∆−

j )

∂vj

× ∂vj

∂qij

, ∀i. (9)

By Leibniz’s integral rule, we have:

∂E(∆−
j )

∂vj

=
∂

∂vj

(∫ ∞

vj

(t− vj)Fj(t)d(t)

)
=

∫ ∞

vj

∂

∂vj

(t− vj)Fj(t)d(t)

= Pj(vj)− 1, j = 1, . . . , n. (10a)

Therefore,

∂E(∆−
j )

∂vj

= Pj

(
m∑

i=1

qij

)
− 1, j = 1, . . . , n. (10b)

On the other hand, we have:

∂vj

∂qij

=
∂

∂qij

m∑
l=1

qlj = 1, ∀i; j = 1, . . . , n. (11)

Therefore, from (10b) and (11), we conclude that

∂E(∆−
j )

∂qij

=

[
Pj

(
m∑

i=1

qij

)
− 1

]
, ∀i; j = 1, . . . , n. (12)

Analogously, for the surplus, we have:

∂E(∆+
j )

∂qij

=
∂E(∆+

j )

∂vj

× ∂vj

∂qij

, ∀i; j = 1, . . . , n, (13)
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∂E(∆+
j )

∂vj

=
∂

∂vj

(∫ vj

0

(vj − t)Fj(t)d(t)

)
=

∫ vj

0

∂

∂vj

(vj − t)Fj(t)d(t)

= Pj(vj), j = 1, . . . , n. (14a)

Thus,

∂E(∆+
j )

∂vj

= Pj

(
m∑

i=1

qij

)
, j = 1, . . . , n. (14b)

From (14b) and (11) we have:

∂E(∆+
j )

∂qij

= Pj

(
m∑

i=1

qij

)
, ∀i; j = 1, . . . , n. (15)

Lemma 1

The expected shortage and surplus cost function λ−j E(∆−
j ) + λ+

j E(∆+
j ) is convex.

Proof: We have:

∂2

∂qij
2

[
λ−j E(∆−

j ) + λ+
j E(∆+

j )
]

= λ−j
∂2E(∆−

j )

∂qij
2

+ λ+
j

∂2E(∆+
j )

∂qij
2

, ∀i; j = 1, . . . , n. (16a)

Substituting the first order derivatives from (12) and (15) into (16a) yields:

∂2

∂qij
2

[
λ−j E(∆−

j ) + λ+
j E(∆+

j )
]

= λ−j
∂

∂qij

[
Pj

(
m∑

i=1

qij

)
− 1

]
+ λ+

j

∂

∂qij

Pj

(
m∑

i=1

qij

)

= (λ−j + λ+
j )Fj

(
m∑

i=1

qij

)
≥ 0, ∀i; j = 1, . . . , n. (16b)

The above inequality holds provided that (λ−j +λ+
j ), i.e., the sum of shortage and surplus

penalties, is positive. Hence, λ−j E(∆−
j ) + λ+

j E(∆+
j ), and, as a consequence, the objective

function in (6) is also convex. 2

We refer to the objective function (6) for j as the disutility of j and denote it by DUj(q);

j = 1, . . . , n.

We define the feasible sets Kj ≡ {qj ≥ 0}; j = 1, . . . , n. We define K ≡
∏I

i=1 Ki. We

also define the feasible set S ≡ {q|q satisfying (7))}, which consists of the shared constraints.
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Definition 1: Generalized Nash Equilibrium for Medical Items

A vector of medical items q∗ ∈ K ∩ S is a Generalized Nash Equilibrium if for each demand

point j; j = 1, . . . , n:

DUj(q
∗
j , q̂

∗
j ) ≤ DUj(qj, q̂

∗
j ), ∀qj ∈ Kj ∩ S, (17)

where q̂∗j ≡ (q∗1, . . . , q
∗
j−1, q

∗
j+1, . . . , q

∗
n).

According to (17), an equilibrium is established if no demand point has any incentive

to unilaterally change its vector of medical item purchases/shipments. Observe that in our

model not only does the objective function of a demand point depend not only on the

vector of strategies of its own strategies and on those of the other demand points, but the

feasible set does as well. Hence, this model is not a Nash (1950, 1951) model, but, rather,

it is a Generalized Nash Equilibrium model. Our model captures the reality of the intense

competitive landscape in the Covid-19 pandemic.

Here, we utilize the concept of a Variational Equilibrium, which allows us to formulate the

above GNE conditions as the solution to a finite-dimensional variational inequality problem.

Hence, rather than making use of quasi-variational inequalities, for which the algorithms

are not as advanced, we can apply variational inequality algorithms to solve numerically the

model. Indeed, as emphasized in Nagurney, Yu, and Besik (2017), in Nagurney, Salarpour,

and Daniele (2019), and in Nagurney et al. (2020), we can define a Variational Equilibrium

which is a refinement and a specific type of GNE (cf. Kulkarni and Shabhang (2012)) that

enables a variational inequality formulation.

We define the feasible set K ≡ K ∩ S.

Definition 2: Variational Equilibrium

A vector of medical items q∗ ∈ K is a Variational Equilibrium of the above Generalized Nash

Equilibrium problem if it is a solution to the following variational inequality:
n∑

j=1

m∑
i=1

∂DUj(q
∗)

qij

× (qij − q∗ij) ≥ 0, ∀q ∈ K, (18)

where 〈·, ·〉 denotes the inner product in mn-dimensional Euclidean space.

In expanded form, the variational inequality in (18) is: determine q∗ ∈ K such that

n∑
j=1

m∑
i=1

[
ρi +

m∑
l=1

∂clj(q
∗)

∂qij

+ λ+
j Pj(

m∑
l=1

q∗lj)− λ−j (1− Pj(
m∑

l=1

q∗lj))

]
×
[
qij − q∗ij

]
≥ 0, ∀q ∈ K.

(19)
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Note that the variational equilibrium guarantees that the Lagrange multipliers associated

with the common constraints are the same for all the demand points. This feature yields

and elegant fairness and equity interpretation, which is very relevant during this pandemic.

We now put variational inequality (19) into standard form. Recall (cf. Nagurney (1999))

that the finite-dimensional variational inequality problem, VI(F,K), is to determine a vector

X∗ ∈ K ⊂ RN , such that

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (20)

where F is a given continuous function from K to RN , and K is a given closed, convex set.

We let X ≡ q and F (X) be the vector with elements: {∂DUj(q
∗)

qij
}, ∀j, i with K as originally

defined and N = mn. Then, clearly, variational inequality (19) can be put into standard

form (20), under our assumptions.

Also it is worth noting that existence of a solution q∗ to variational inequality (19) is

guaranteed under the classical theory (see Kinderlehrer and Stampacchia (1980)) since the

function that enters the variational inequality is continuous and the feasible set K is not only

convex but also compact because the supplies of the medical items are bounded. Hence, the

following theorem is immediate.

Theorem 1: Existence

A solution to variational inequality (19) exists.

We now provide an alternative variational inequality to (18) (and (19)). We associate a

nonnegative Lagrange multiplier µi with constraint (7), for each supply location i = 1, . . . ,m.

We group all the Lagrange multipliers into the vector µ ∈ Rm
+ . We define the feasible set

K2 ≡ {(q, µ)|q ≥ 0, µ ≥ 0}.

Then, using arguments as in Nagurney, Salarpour, and Daniele (2019), an alternative

variational inequality for (19) is: determine (q∗, µ∗) ∈ K2 such that

n∑
j=1

m∑
i=1

[
ρi +

m∑
l=1

∂clj(q
∗)

∂qij

+ λ+
j Pj(

m∑
l=1

q∗lj)− λ−j (1− Pj(
m∑

l=1

q∗lj) + µ∗i

]
×
[
qij − q∗ij

]

+
m∑

i=1

[
Si −

n∑
j=1

q∗ij

]
× [µi − µ∗i ] ≥ 0, ∀(q, µ) ∈ K2. (21)
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Variational inequality (21) can also be put into standard form (20) if we define X ≡ (q, µ)

and F (X) ≡ (F 1(X), F 2(X)) where F 1(X) has as its (i, j)-th component: ρi +
∑m

l=1
∂clj(q)

∂qij
+

λ+
j Pj(

m∑
l=1

qlj) − λ−j (1 − Pj(
m∑

l=1

qlj) + µi; i = 1, . . . ,m; j = 1, . . . , n, and the i-th component

of F 2(X) is Si −
∑n

j=1 qij, for i = 1, . . . ,m. Furthermore, K ≡ K2 and N = mn + m.

3.1 Illustrative Examples

In this Subsection, we present three small numerical examples for illustrative purposes.

These examples are inspired by the Covid-19 pandemic and associated challenges in procur-

ing N95 face masks, which are among the most needed medical products in dealing with

this healthcare disaster. We emphasize that the equilibrium Lagrange multipliers provide

valuable information since they represent the shadow prices of the supply constraints. In

particular, if an equilibrium Lagrange multiplier is positive then this is the amount of the

cost (or the loss) that could be saved with an extra unit of the supply of the medical item.

Illustrative Example 1: One Supply Point and One Demand Point

In this example there is a single supply point and a single demand point, as depicted in

Figure 2.

Supply Point

Demand Point

��
��

1

��
��

1

?

Figure 2: Network Topology for Illustrative Example 1

The supply point sells 20-pack N95 masks in the form of large bulks of 1000 packs each;

therefore, one unit of item flow from the supply point to a demand point, qij, represents 1000

of 20-pack N95 masks. The demand at the demand point is uniformly distributed between

100 and 1,000 of large bulks. To determine the price of a unit item flow, ρi at supply point i,

we assume that the price of each 20-pack N95 mask during the pandemic is $25, so that the

purchase price of each large bulk is ρ1 = 25, 000. Although a face mask is not, under normal

conditions, an expensive product, it has been proved to essential in reducing the spread of

14



the virus. Based on this, we assume that, for every 2,000 people who do not use the face

mask, one person would die due to the disease. Although it is not easy to value people’s

lives, we assume a $200,000 equivalent for each loss. As a result, the penalty, λ−1 , on the

shortage of one item flow, which is equivalent to 20,000 N95 masks, is set at $2,000,000.

Also, since the supply chain has been severely disrupted at the time of the declaration of the

pandemic, overloading can cause many problems in transportation and processing at entry

points for countries. To prevent this, we also consider a penalty of λ+
1 = 100, 000 on surplus

item flows. The data for this example is as follows:

ρ1 = 25, 000, S1 = 1, 000, c11(q) = q2
11 + 3q11, λ−1 = 2, 000, 000, λ+

1 = 100, 000.

We can rewrite variational inequality (21) for this example as: determine (q∗, µ∗) ∈ K2 such

that: [
25000 + 2q∗11 + 3 + 100000(

q∗11 − 100

900
)− 2000000(

1000− q∗11
900

) + µ∗1

]
× [q11 − q∗11]

+ [1000− q∗11]× [µ1 − µ∗1] ≥ 0, ∀(q, µ) ∈ K2

The solution to the above variational inequality, which we obtained analytically, is:

q∗11 = 945.62, µ∗1 = 0.00.

Observe that the organization at the demand point procures a huge number of masks

because of the great importance of PPEs in preventing the further spread of the virus and

the potential damage that could be caused by an insufficient number of N95 face masks.

The projected demand value v1 = 945.62 lies between the lower and the upper bounds of the

uniform distribution range. Note that the projected demand is very close to the upper bound.

The decision-makers at the organization at the demand point are aware of the importance

of the masks and have assigned a much larger penalty on a shortage as compared to the

surplus penalty. The disutility of the organization in this logistical operation is equal to

67,543,534.04.

Illustrative Example 2: Two Supply Points and One Demand Point

In the second illustrative example, a new supply point has been added to the supply chain

network, as depicted in Figure 3.

Hence, now, the decision-makers at the demand point have two options for procuring

the face masks. The new supply point offers masks for less than half the price of the other

15
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Figure 3: Network Topology for Illustrative Example 2

supply point, but its supply capacity is half that of the previous one. Also, the generalized

transportation cost rate from the origin of the N95 masks of the new supply point to the

demand point is higher than the rate of the other supply point. The data on the new supply

point are as follows.

ρ2 = 10, 000, S2 = 500, c21(q) = 2q2
21 + 4q21.

Variational inequality (21) can be rewritten as follows for this example: determine (q∗, µ∗) ∈
K2 such that[
25000 + 2q∗11 + 3 + 100000(

q∗11 + q∗21 − 100

900
)− 2000000(

1000− q∗11 − q∗21
900

) + µ∗1

]
× [q11 − q∗11]

+

[
10000 + 4q∗21 + 4 + 100000(

q∗11 + q∗21 − 100

900
)− 2000000(

1000− q∗11 − q∗21
900

) + µ∗2

]
×[q21 − q∗21]

+ [1000− q∗11]× [µ1 − µ∗1] + [500− q∗21]× [µ2 − µ∗2] ≥ 0, ∀(q, µ) ∈ K2.

The solution to the above variational inequality, obtained analytically, is:

q∗11 = 446.05, q∗21 = 500.00, µ∗1 = 0.00, µ∗2 = 13, 891.80.

Observe that, with the addition of a new supply point, the decision-makers’ strategy

has changed. Since the price of the product offered by the new supply point is much lower

than that at the first supply point, the decision-makers purchase more items from supply

point 2, despite the fact that the generalized transportation cost to the demand point from

supply point 2 is higher than that from supply point 1. However, the supply capacity of the

new supply point is half that of the first supply point, and we see that all its capacity has

been used. Therefore, the associated equilibrium Lagrange multiplier is positive. Again, the
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projected demand falls between the lower and the upper bounds of the uniform distribution

and is closer to the upper bound for the same reason as in the previous example. But, now,

with greater flexibility in the supply chain due to the addition of a new supply point, the

disutility of the organization at the demand point has declined, dropping to 59,860,548.75.

Illustrative Example 3: Two Supply Points and Two Demand Points

This example is constructed from the previous examples, with the difference that now there

are two demand points trying to procure N95 masks and competing over limited supplies;

see Figure 4.
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Figure 4: Network Topology for Illustrative Example 3

The demand for the new demand point is uniformly distributed between 100 and 500.

The generalized transportation cost functions and the penalty coefficients associated with

the second demand point are:

c12(q) = 2q2
12 + 3q12, c22(q) = 3q2

22 + 4q22, λ−2 = 2, 000, 000, λ+
2 = 100, 000.

Variational inequality (21) for this example is as below: determine (q∗, µ∗) ∈ K2 such

that[
25000 + 2q∗11 + 3 + 100000(

q∗11 + q∗21 − 100

900
)− 2000000(

1000− q∗11 − q∗21
900

) + µ∗1

]
× [q11 − q∗11]

+

[
10000 + 4q∗21 + 4 + 100000(

q∗11 + q∗21 − 100

900
)− 2000000(

1000− q∗11 − q∗21
900

) + µ∗2

]
×[q21 − q∗21]

+

[
25000 + 4q∗12 + 3 + 100000(

q∗12 + q∗22 − 100

400
)− 2000000(

500− q∗12 − q∗22
400

) + µ∗1

]
×[q12 − q∗12]

+

[
10000 + 6q∗22 + 4 + 100000(

q∗12 + q∗22 − 100

400
)− 2000000(

500− q∗12 − q∗22
400

) + µ∗2

]
×[q22 − q∗22]
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+ [1000− q∗11]× [µ1 − µ∗1] + [500− q∗21]× [µ2 − µ∗2] ≥ 0, ∀(q, µ) ∈ K2.

The solution to this variational inequality, again, obtained analytically, is:

q∗11 = 634.14, q∗21 = 311.74, q∗12 = 287.71, q∗22 = 188.26, µ∗1 = 0.00, µ∗2 = 15, 020.30.

With the addition of another demand point, there is increased competition for the valuable

N95 masks. The strategies of the organization at demand point 1 have changed as compared

to the previous example. It can be seen that the full capacity of supply point 2 has not been

assigned to demand point 1, since the organization at demand point 1 now competed with

the organization at demand point 2. As a result, the major part of the demand point 1’s

procurement of the N95 masks is from supply point 1 that has a larger capacity as compared

to supply point 2. And, similar to the previous example, the equilibrium Lagrange multiplier

associated with the supply capacity of supply point 2 is positive since it has sold all its

available supply of N95 masks, while the other supply point has not exhausted its capacity.

Both demand points receive a large amount of face masks and their projected demands lie in

their respective uniform probability distribution range. Both projected demands are closer

to the upper bound since the penalty on shortage is much higher than the penalty on surplus.

The addition of a new demand point to the competition has changed the strategies of the

organization at demand point 1, and we can see the impact on its disutility. Its disutility has

now increased to 62,580,546.57. The disutility of the second demand point is 28,457,845.74.

4. Qualitative Properties and the Algorithm

We now discuss some properties of the model, specifically, those that guarantee that the

conditions for convergence of the modified projection method (cf. Korpelevich (1977) and

Nagurney (1999)) that we use to compute solutions to numerical examples in this next section

are met. The algorithm is guaranteed to converge to a solution of variational inequality

(21) if the function F (X) that enters the variational inequality is monotone and Lipschitz

continuous, and that a solution exists. It was recently applied to compute solutions to a

stochastic game theory model for disaster relief by Nagurney et al. (2020).

Recall that the function F (X) is said to be monotone, if

〈F (X1)− F (X2), X1 −X2〉 ≥ 0, ∀X1, X2 ∈ K. (22)
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Theorem 2: Monotonicity

The function F (X) is monotone, for all X ∈ K, if all the generalized transportation cost

functions cij, i = 1, . . . ,m; j = 1, . . . , n, are convex.

Proof: ∀X1, X2 ∈ K, let v1
j =

∑m
i=1 q1

ij and v2
j =

∑m
i=1 q2

ij.

〈F (X1)− F (X2), X1 −X2〉

=
n∑

j=1

m∑
i=1

[
m∑

l=1

∂clj(q
1)

∂qij

−
m∑

l=1

∂clj(q
2)

∂qij

]
× (q1

ij − q2
ij) (23)

+
n∑

j=1

(λ+
j + λ−j )× (Pj(v

1
j )− Pj(v

2
j ))× (v1

j − v2
j ). (24)

Given the convexity of the generalized transportation cost functions, equation (23) is greater

or equal to zero. Since a probability function Pj, ∀j, is an increasing function, the expression

in equation (24) is greater or equal to zero. Hence, F (X) is monotone. 2

If the conditions in Theorem 1 are slightly strengthened so that the the vector function

that enters into the variational inequality problem (21) is strictly monotone, then its solution

is unique (see, e.g., Nagurney (1999)).

Theorem 3: Uniqueness

The function F (X) is strictly monotone for all X ∈ K, if all the generalized transportation

cost functions cij; i = 1, . . . ,m; j = 1, . . . , n, are strictly convex. Then the variational

inequality (21) has a unique solution in K

Theorem 4: Lipschitz Continuity

If the generalized transportation cost functions cij, for all i and j, have bounded second order

partial derivatives, then the function F (X) that enters the variational inequality problem

(21) is Lipschitz continuous; that is, there exists a constant L > 0, known as the Lipschitz

constant, such that

‖F (X1)− F (X2)‖ ≤ L‖X1 −X2‖, ∀X1, X2 ∈ K. (25)

Proof: Since each probability function Pj; j = 1, . . . , n, is always less than or equal to 1, the

result is direct by applying a mid-value theorem from calculus to the vector function F (X)
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that enters the variational inequality problem (21). See also Nagurney and Zhang (1996)

and Nagurney (1999). 2

The iterative steps of the modified projection method, with τ denoting an iteration

counter, are as follows:

The Modified Projection Method

Step 0: Initialization

Initialize with X0 ∈ K. Set the iteration counter τ := 1 and let β be a scalar such that

0 < β ≤ 1
L
, where L is the Lipschitz constant.

Step 1: Computation

Compute X̄τ by solving the variational inequality subproblem:

〈X̄τ + βF (Xτ−1)−Xτ−1, X − X̄τ 〉 ≥ 0, ∀X ∈ K. (26)

Step 2: Adaptation

Compute Xτ by solving the variational inequality subproblem:

〈Xτ + βF (X̄τ )−Xτ−1, X −Xτ 〉 ≥ 0, ∀X ∈ K. (27)

Step 3: Convergence Verification

If |Xτ −Xτ−1| ≤ ε, with ε > 0, a pre-specified tolerance, then stop; otherwise, set τ := τ +1

and go to Step 1.

The modified projection method for the model governed by variational inequality (21)

yields closed form expressions for the medical item flows and for the Lagrange multipliers in

both Steps (26) and (27). This is a nice features for computer implementation.

Theorem 5: Convergence

Assume that the function that enters the variational inequality (21) (or (19)) has at least one

solution and all the generalized transportation cost functions are convex, then the modified

projection method described above converges to the solution of the variational inequality (21)

(or (19)).
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Proof: According to Korpelevich (1977), the modified projection method converges to the

solution of the variational inequality problem of the form (20), provided that the function

F that enters the variational inequality is monotone and Lipschitz continuous and that

a solution exists. Existence of a solution follows from Theorem 1. Monotonicity follows

Theorem 2. Lipschitz continuity, in turn, follows from Theorem 4. 2

We now provide the explicit formulae for the medical item flows and the Lagrange mul-

tipliers at iteration τ for Step 1. The analogues for Step 2 can be easily derived accordingly.

Specifically, we have:

Explicit Formula for the Medical Item Flow for Each i, j at Iteration τ of Step 1

Determine q̄τ
ij for each i, j at Step 1 iteration τ according to:

q̄τ
ij = max{0, qτ−1

ij +β(−ρi−
m∑

l=1

∂clj(q
τ−1)

∂qij

−λ+
j Pj(

m∑
l=1

qτ−1
lj )+λ−j (1−Pj(

m∑
l=1

qτ−1
lj ))−µτ−1

i )}.

(28)

Explicit Formula for the Lagrange Multiplier for Each i at Iteration τ of Step 1

Determine µ̄τ
i for each i at Step 1 iteration τ according to:

µ̄τ
i = max{0, µτ−1

i + β(−Si +
n∑

j=1

qτ−1
ij )}. (29)

5. Numerical Examples

In this Section, we apply the modified projection method to compute solutions to nu-

merical examples. The algorithm was implemented in FORTRAN and the computer system

used was a Linux system at the University of Massachusetts Amherst. We initialized the

algorithm by setting all the medical item flows and the Lagrange multipliers to 0.00. The

convergence condition for all the examples was that the absolute value of two successive

variable iterates was less than or equal to 10−8. The β parameter in the modified projection

method was set to: .1.

The examples are of increasing complexity. We report all the input and the output data

for transparency purposes and reproducibility.

In this Section, we focus on procurement of N95 masks but in the scenario of increasing

demand among smaller healthcare organizations in the form of medical practices. With
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the pandemic in the US continuing in the summer of 2020 and with the opening of schools

and universities to a certain degree on the horizon, there are increased pressures on the

procurement of PPEs. In particular, we reference the following news article by O’Connell

(2020); see also Wan (2020).

Numerical Example 1: One Supply Point and One Demand Point

In the first numerical example, for which we computed the solution using the code that we

implemented, there is a single supply point and a single demand point as in the network in

Figure 2. The qijs are in units since these medical practices are small relative to hospitals,

etc. We assumed a uniform probability distribution in the range [100, 1000] at the demand

point. The additional data for this example are:

ρ1 = 2, S1 = 1, 000, c11(q) = .005q2
11 + .01q11, λ−1 = 1, 000, λ+

1 = 10.

The computed equilibrium solution is:

q∗11 = 980.56, µ∗1 = 0.00.

The projected demand of 980.56 is close to the upper bound of the probability distribution

at the demand point.

Numerical Example 2: One Supply Point and Two Demand Points

This example has the same data as that in Numerical Example 1 except for added data for

the second demand point. The network topology is as in Figure 5.
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Figure 5: Network Topology for Numerical Example 2

The probability distribution at the second demand point had the same lower and upper

bounds as in the first demand point.
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This example has the same data as Numerical Example 1 except for the following addi-

tional data for the new demand point:

c12(q) = .01q2
12 + .02, λ−2 = 1000, λ+

2 = 10.

The network topology for this example is as in Figure 5.

The modified projection method converged to the following equilibrium solution:

q∗11 = 502.20, q∗12 = 497.80, µ∗1 = 541.61.

With increased competition for N95 mask supplies from the second demand point, the

first demand point has a large reduction in procured supplies, as compared to the volume

received in Numerical Example 1. The available supply of 1,000 N95 masks is exhausted

between the two demand points, and, hence, the associated Lagrange multiplier µ∗1 is positive.

The equilibrium conditions hold with excellent accuracy.

Numerical Example 3: Two Supply Points and Two Demand Points

In Numerical Example 3, we considered the impacts of the addition of a second supply point

to Numerical Example 2. The topology was as in Figure 4. Hence, the data are as above

with the following additions:

S2 = 500, ρ2 = 3, c21(q) = .015q2
21 + .03, c22(q) = .02q2

22 + .04q22.

The modified projection method yielded the following equilibrium solution:

q∗11 = 526.31, q∗12 = 473.69, q∗21 = 225.57, q∗22 = 274.43, µ∗1 = 261.17, µ∗2 = 258.65.

With the addition of a new supply point, both demand points gain significantly in terms

of the volume of N95 that each procures and the supplies at each supply point are fully sold

out. As a result, both equilibrium Lagrange multipliers are positive.

Numerical Example 4: Two Supply Points and Three Demand Points

Numerical Example 4 was constructed from Numerical Example 3 with demand point 3

added, as in Figure 6.

Numerical Example 4 has the same data as Numerical Example 3 but with the addition

of data for demand point 3 as follows:

c13(q) = .01q2
13 + .02q13, c23(q) = .015q2

23 + .03q23, λ−3 = 1000, λ+
3 = 10.
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Figure 6: Network Topology for Numerical Example 4

The probability distribution for the N95 masks associated with demand point 3 is uniform

with a lower bound of 200 and an upper bound of 1000.

The modified projection method yielded the following equilibrium solution:

q∗11 = 360.11, q∗12 = 318.83, q∗13 = 321.06,

q∗21 = 122.29, q∗22 = 161.10, q∗23 = 216.62, µ∗1 = 565.25, µ∗2 = 564.16.

Observe that with increasing competition for the N95 masks with another demand point,

both demand points 1 and 2 experience decreases in procurement of supplies. The two

supply points again fully sell out of their N95 masks and the associated equilibrium Lagrange

multipliers are both positive.

Numerical Example 5: Two Supply Points and Four Demand Points

In the final example, Numerical Example 5, we consider yet another demand point addition

to the demand points in Numerical Example 4. Please refer to Figure 7. Smaller medical

practices are increasingly concerned about being able to secure the much needed PPEs to

protect the health of their employees and the viability of their practices.

The data for this example is as the data for Numerical Example 4, and the probability

distribution structure for the demand at demand point is the same, with the following

additional data for the new demand point 4:

c14(q) = .015q2
14 + .03q14, c24(q) = .025q2

24 + .05q24, λ−4 = 1000, λ+
4 = 10.

The modified projection method now yielded the following equilibrium solution:

q∗11 = 260.73, q∗12 = 229.36, q∗13 = 251.22, q∗14 = 258.69,
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Figure 7: Network Topology for Numerical Example 5

q∗21 = 79.57, q∗22 = 109.17, q∗23 = 160.46, q∗24 = 150.81, µ∗1 = 725.71, µ∗2 = 724.91.

Again, the equilibrium conditions hold with excellent accuracy for this example, as was

the case for all the other numerical example computed solutions. The suppliers of the N95

sell out their supplies. However, the demand points lose in term of supply procurement

for their organizations with the increased demand and competition from and yet another

demand point.

We emphasize that although the above numerical examples are stylized, our mathemati-

cal, computational framework enables the investigation of numerous scenarios and sensitivity

analyses. For example, one can consider the impacts of the removal of supply points and/or

demand points; the addition of supply and/or demand points; changes in the prices of the

medical item under study, as well as changes to the generalized transportation costs. Fur-

thermore, one can investigate the impacts of alternative probability distribution functions.

The above numerical results are consistent with what one can expect to observe in reality

in terms of how organizations would procure critical medical supplies such as N95 masks

under demand unpredictability and competition. The findings confirm that more supply

points with sufficient supplies are needed to ensure that organizations are not deprived

of critical supplies due to competition. As a result of this competition and limited local

availability; in particular in the case of supplies such as masks and even coronavirus test

kits, we are seeing several countries now setting up local production sites (Bradsher (2020)).

6. Summary and Conclusions and Suggestions for Future Research

Medical supplies are essential in the battle against the coronavirus that causes Covid-19.

The demand for medical supplies globally from PPEs to ventilators has created an intense

competition. PPEs are essential in protecting healthcare workers and it now has been recog-
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nized that masks can reduce the transmission of the novel coronavirus. Ventilators, on the

other hand, can be life-saving for patients with severe cases of Covid-19 and convalescent

plasma has become a possible interim treatment. With the pandemic, supply chains, includ-

ing those for medical items, have been disrupted adding to the intense competition for such

supplies.

The Covid-19 pandemic is not limited to space or time and, therefore, there have been

many shortages of medical items. In order to elucidate the competition for such supplies

in this pandemic, we developed a Generalized Nash Equilibrium model that consists of

multiple supply points for the medical items and multiple demand points with the demand

at the latter being stochastic. Using some recently introduced machinery we were able to

provide alternative variational inequality formulations of the equilibrium conditions. We

then utilized the variational inequality with not only medical item product flows as variables

but also the Lagrange multipliers associated with the supply capacities of the medical items

at the supply point. We studied the model both qualitatively and quantitatively - the latter

through illustrative examples that we were able to solve analytically as well as via numerical

examples for which we utilized an algorithm that we proposed. The algorithm, for which we

also provided convergence results, resolved the variational inequality problem into a series

of subproblems for which closed form expressions in the variables were identified.

This work adds to the literature on game theory models for disaster relief with the specific

features of the Covid-19 pandemic. It can be applied to study the network economics of a

spectrum of medical items, both in the near term, and in the longer term, as when vaccines

as well as medicines for Covid-19 become available. We also highlight possible extensions of

this work. For example, the model is amenable to extension to multiple medical items. It

would also be very interesting to have the supplies be elastic, that is, as a function of price.

We leave such research endeavors for the future.

Acknowledgments

This paper is dedicated to all essential workers, including: healthcare workers, first respon-

ders, freight service providers, grocery store workers, farmers, and educators, who sacrificed

so much in the Covid-19 pandemic. Your dedication and courage have graced our planet and

we salute you. We also remember all those who perished because of insufficient supplies of

PPEs.

References

Adida, E., DeLaurentis, P.-C.C., Lawley. M.A., 2011. Hospital stockpiling for disaster

26



planning. IIE Transactions, 43, 348-362.

Aleccia, J., 2020. Market for blood plasma from COVID-19 survivors heats up. NPR, May

11. Available at: https://www.npr.org/sections/health-shots/2020/05/11/852354920/market-

for-blood-plasma-from-covid-19-survivors-heats-up.

American Red Cross, 2020. FAQ: COVID-19 convalescent plasma.

Available online: https://www.redcrossblood.org/faq.html#donating-blood-covid-19-

convalescent-plasma.

Anderson, R.M., Heesterbeek, H., Klinkenberg, D., Hollingsworth, T.D., 2020. How will

country-based mitigation measures influence the course of the COVID-19 epidemic? The

Lancet, 395(10228), 931-934.

Arrow, K.J., Debreu, G., 1954. Existence of an equilibrium for a competitive economy.

Econometrica, 22, 265-290.

Barbarosolu, G., Arda, Y., 2004. A two-stage stochastic programming framework for trans-

portation planning in disaster response. Journal of the Operational Research Society, 55(1),

43-53.

Berklan, J.M., 2020. Analysis: PPE costs increase over 1,000% during COVID-19 crisis.

Available at:

https://www.mcknights.com/news/analysis-ppe-costs-increase-over-1000-during-covid-19-crisis/

Bradsher, K., 2020. China dominates medical supplies, in this outbreak and the next. July

5, The New York Times. Available at:

https://www.nytimes.com/2020/07/05/business/china-medical-supplies.html?smid=

tw-nytimes\&smtyp=cur

Casadevall, A., Pirofski, L.A., 2020. The convalescent sera option for containing COVID-19.

The Journal of Clinical Investigation, 130(4), 1545-1548.

CDC, 2020. Using Personal Protective Equipment (PPE). Available at: https://www.cdc.

gov/coronavirus/2019-ncov/hcp/using-ppe.html

CNN, 2020. Coronavirus outbreak timeline fast facts. Available at: https://www.cnn.com/

2020/02/06/health/wuhan-coronavirus-timeline-fast-facts/index.html

Debreu, G., 1952. A social equilibrium existence theorem. Proceedings of the National

27

https://www.mcknights.com/news/analysis-ppe-costs-increase-over-1000-during-covid-19-crisis/
https://www.nytimes.com/2020/07/05/business/china-medical-supplies.html?smid=tw-nytimes\&smtyp=cur
https://www.nytimes.com/2020/07/05/business/china-medical-supplies.html?smid=tw-nytimes\&smtyp=cur
https://www.cdc.gov/coronavirus/2019-ncov/hcp/using-ppe.html
https://www.cdc.gov/coronavirus/2019-ncov/hcp/using-ppe.html
https://www.cnn.com/2020/02/06/health/wuhan-coronavirus-timeline-fast-facts/index.html
https://www.cnn.com/2020/02/06/health/wuhan-coronavirus-timeline-fast-facts/index.html


Academy of Sciences, 38(10), 886-893.

Diaz, D., Sands, G., Alesci, C., 2020. Protective equipment costs increase over 1,000%

amid competition and surge in demand Available at: https://www.cnn.com/2020/04/16/

politics/ppe-price-costs-rising-economy-personal-protective-equipment/index.

html?utm_medium=social&utm_content=2020-04-16T20%3A45%3A12&utm_term=image&utm_

source=twCNNp

Dong, J., Zhang, D., Nagurney, A., 2004. Supply chain supernetworks with random demands.

European Journal of Operational Research, 156, 194-212.

Duan, K., Liu, B., Li, C., Zhang, H., Yu, T., Qu, J., Zhou, M., Chen, L., Meng, S., Hu, Y.,

Peng, C., 2020. Effectiveness of convalescent plasma therapy in severe COVID-19 patients.

Proceedings of the National Academy of Sciences, 117(17), 9490-9496.

FEMA, 2020. Disasters. Available at: https://www.fema.gov/disasters

Ferguson, N., Laydon, D., Nedjati Gilani, G., Imai, N., Ainslie, K., Baguelin, M., Bhatia,

S., Boonyasiri, A., Cucunuba Perez, Z.U.L.M.A., Cuomo-Dannenburg, G., Dighe, A., 2020.

Report 9: Impact of non-pharmaceutical interventions (NPIs) to reduce COVID19 mortality

and healthcare demand.

Fischer, A., Herrich, M., Schonefeld, K., 2014. Generalized Nash equilibrium problems -

Recent advances and challenges. Pesquisa Operacional, 34(3), 521-558.

Food and Drug Administration, 2020. Donate COVID-19 plasma. Available at:

https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-

19/donate-covid-19-plasma

Gelles K., Petras, G., 2020. How ventilators work and why COVID-19 patients need them to

survive coronavirus. Available at: https://www.usatoday.com/in-depth/news/2020/04/

10/coronavirus-ventilator-how-works-why-covid-19-patients-need/2942996001/

Glenza, J., 2020 ‘The new gold’: demand for PPE soars again amid shortage as US cases

rise. The Guardian, June 29.

Goudie, C., Markoff, B., Tressel, C., Weidner, R., 2020. Coronavirus USA: Federal fix

sought for ‘Wild West’ COVID-19 PPE competition. Available at: https://abc7chicago.

com/coronavirus-cases-update-map/6072209/

28

https://www.cnn.com/2020/04/16/politics/ppe-price-costs-rising-economy-personal-protective-equipment/index.html?utm_medium=social&utm_content=2020-04-16T20%3A45%3A12&utm_term=image&utm_source=twCNNp
https://www.cnn.com/2020/04/16/politics/ppe-price-costs-rising-economy-personal-protective-equipment/index.html?utm_medium=social&utm_content=2020-04-16T20%3A45%3A12&utm_term=image&utm_source=twCNNp
https://www.cnn.com/2020/04/16/politics/ppe-price-costs-rising-economy-personal-protective-equipment/index.html?utm_medium=social&utm_content=2020-04-16T20%3A45%3A12&utm_term=image&utm_source=twCNNp
https://www.cnn.com/2020/04/16/politics/ppe-price-costs-rising-economy-personal-protective-equipment/index.html?utm_medium=social&utm_content=2020-04-16T20%3A45%3A12&utm_term=image&utm_source=twCNNp
https://www.fema.gov/disasters
https://www.usatoday.com/in-depth/news/2020/04/10/coronavirus-ventilator-how-works-why-covid-19-patients-need/2942996001/
https://www.usatoday.com/in-depth/news/2020/04/10/coronavirus-ventilator-how-works-why-covid-19-patients-need/2942996001/
https://abc7chicago.com/coronavirus-cases-update-map/6072209/
https://abc7chicago.com/coronavirus-cases-update-map/6072209/


Grifols, 2020. Frequently Asked Questions: Why should potential donors donate at a Gri-

fols plasma donor center? https://www.grifolsplasma.com/en/donation-resources/plasma-

donation-faqs

Gutjahr, W.J., Nolz, P.C., 2016. Multicriteria optimization in humanitarian aid. European

Journal of Operational Research, 252, 351-366.

Harvard Health Publishing, 2020. Treatments for COVID-19. Available at:

https://www.health.harvard.edu/diseases-and-conditions/treatments-for-covid-19#:̃:text=In%20order%20to%20donate%20plasma,reinfected%20with%20the%20virus

Hererra, T. 2020. What is convalescent blood plasma, and why do we care about it? April

24, The New York Times. Available at: https://www.nytimes.com/2020/04/24/smarter-

living/coronavirus-convalescent-plasma-antibodies.html.

Herron, J.B.T., Hay-David, A.G.C., Gilliam, A.D., Brennan, P.A., 2020. Personal protec-

tive equipment and Covid 19 - A risk to healthcare staff? The British Journal of Oral &

Maxillofacial Surgery.

Ivanov, D., 2020. Predicting the impacts of epidemic outbreaks on global supply chains: A

simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case.

Jacobs, A., Richtel, M., Baker, M., 2020. ‘At war with no ammo’: doctors say shortage of

protective gear is dire. New York Times, 1547-1548. Available at: https://www.nytimes.

com/2020/03/19/health/coronavirus-masks-shortage.html

John Hopkins Medicine, 2020. What is coronavirus? Available at:

https://www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus

Johnson, C.Y., 2020. Blood plasma from people who recovered is a safe covid-19 treatment,

study says. June 18, The Washington Post. Available at: https://www.washingtonpost.com/

health/2020/06/18/blood-plasma-people-who-recovered-is-safe-covid-19-treatment-study-says/.

Kamdar, D., 2020. Global contest for medical equipment amidst the COVID19 pandemic.

Available at:

https://www.orfonline.org/expert-speak/global-contest-for-medical-equipment-amidst-the-covid19-pandemic-66438/

Kinderlehrer, D., Stampacchia, G., 1980. An Introduction to Variational Inequalities and

Their Applications. Academic Press, New York.

Korpelevich, G.M., 1977. The extragradient method for finding saddle points and other

29

https://www.nytimes.com/2020/03/19/health/coronavirus-masks-shortage.html
https://www.nytimes.com/2020/03/19/health/coronavirus-masks-shortage.html
https://www.hopkinsmedicine.org/health/conditions-and-diseases/coronavirus
https://www.orfonline.org/expert-speak/global-contest-for-medical-equipment-amidst-the-covid19-pandemic-66438/


problems. Matekon, 13, 35-49.

Kotsireas, I.S., Nagurney, A., Pardalos, P.M., Editors, 2016. Dynamics of Disasters: Key

Concepts, Models, Algorithms, and Insights. Springer International Publishing Switzerland.

Kotsireas, I.S., Nagurney, A., Pardalos, P.M., Editors, 2018. Dynamics of Disasters: Algo-

rithmic Approaches and Applications. Springer International Publishing Switzerland.

Kulkarni, A. A., Shanbhag, U. V., 2012. On the variational equilibrium as a refinement of

the generalized Nash equilibrium. Automatica, 48(1), 45-55.

Lopez G., 2020. Why America ran out of protective masks and what can be done about it.

Available at: https://www.vox.com/policy-and-politics/2020/3/27/21194402/coronavirus-masks-n95-respirators-personal-protective-equipment-ppe

Mair-Jenkins, J., Saavedra-Campos, M., Baillie, J.K., Cleary, P., Khaw, F.M., Lim, W.S.,

Makki, S., Rooney, K.D., Convalescent Plasma Study Group, Nguyen-Van-Tam, J.S. and

Beck, C.R., 2015. The effectiveness of convalescent plasma and hyperimmune immunoglob-

ulin for the treatment of severe acute respiratory infections of viral etiology: a systematic

review and exploratory meta-analysis. The Journal of Infectious Diseases, 211(1), 80-90.

Mete, H.O., Zabinsky, Z.B., 2010. Stochastic optimization of medical supply location and

distribution in disaster management. International Journal of Production Economics, 126(1),

76-84.

Muggy L., Heier Stamm, J.L., 2014. Game theory applications in humanitarian operations:

A review. Journal of Humanitarian Logistics and Supply Chain Management, 4(1), 4-23.

Nagurney, A., 1999. Network Economics: A Variational Inequality Approach, second and

revised edition. Kluwer Academic Publishers, Dordrecht, The Netherlands.

Nagurney, A., 2020. Perishable food supply chain networks with labor in the Covid-19

pandemic. Accepted for publication in: Dynamics of Disasters - Impact, Risk, Resilience, and

Solutions, I.S. Kotsireas, A. Nagurney, and P.M. Pardalos, Editors, Springer International

Publishing Switzerland.

Nagurney, A., Alvarez Flores, E., Soylu, C., 2016. A Generalized Nash Equilibrium model

for post-disaster humanitarian relief. Transportation Research E, 95, 1-18.

Nagurney, A., Daniele, P., Alvarez Flores, E., Caruso, V., 2018. A variational equilib-

rium network framework for humanitarian organizations in disaster relief: Effective product

30

 https://www.vox.com/policy-and-politics/2020/3/27/21194402/coronavirus-masks-n95-respirators-personal-protective-equipment-ppe 


delivery under competition for financial funds. In: Dynamics of Disasters: Algorithmic Ap-

proaches and Applications, Kotsireas, I.S., Nagurney, A., Pardalos, P.M., Editors, Springer

International Publishing Switzerland, pp 109-133.

Nagurney, A., Dutta, P., 2020. A multiclass, multiproduct Covid-19 convalescent plasma

donor equilibrium model. Isenberg School of Management, University of Massachusetts

Amherst.

Nagurney, A., Masoumi, A. H., Yu, M., 2012. Supply chain network operations management

of a blood banking system with cost and risk minimization. Computational management

science, 9(2), 205-231.

Nagurney, A., Masoumi, A.H., Yu, M., 2015. An integrated disaster relief supply chain

network model with time targets and demand uncertainty. In: Regional Science Matters:

Studies Dedicated to Walter Isard, P. Nijkamp, A. Rose, K. Kourtit, Editors, Springer

International Publishing Switzerland, pp 287-318.

Nagurney, A., Nagurney, L.S., 2016. A mean-variance disaster relief supply chain network

model for risk reduction with stochastic link costs, time targets, and demand uncertainty.

In: Dynamics of Disasters: Key Concepts, Models, Algorithms, and Insights, I.S. Kotsireas,

A. Nagurney, P.M. Pardalos, Editors, Springer International Publishing Switzerland, pp

231-255.

Nagurney, A., Qiang, Q., 2009. Fragile Networks: Identifying Vulnerabilities and Synergies

in an Uncertain World. John Wiley & Sons, Hoboken, New Jersey.

Nagurney, A., Salarpour, M., Daniele, P., 2019. An integrated financial and logistical game

theory model for humanitarian organizations with purchasing costs, multiple freight service

providers, and budget, capacity, and demand constraints. International Journal of Produc-

tion Economics, 212, 212-226.

Nagurney, A., Salarpour, M., Dong, J., Nagurney, L.S., 2020. A stochastic disaster relief

game theory network model. SN Operations Research Forum, 1(10), 1-33.

Nagurney, A., Yu, M., Besik, D., 2017. Supply chain network capacity competition with

outsourcing: A variational equilibrium framework. Journal of Global Optimization, 69(1),

231-254.

Nagurney, A., Zhang, D., 1996. Projected Dynamical Systems and Variational Inequalities

with Applications. Kluwer Academic Publishers, Boston, Massachusetts.

31



Namendys-Silva, S.A., 2020. Respiratory support for patients with COVID-19 infection.

The Lancet Respiratory Medicine, 8(4), e18.

Nash, J.F., 1950. Equilibrium points in n-person games. Proceedings of the National

Academy of Sciences, 36(1), 48-49.

Nash, J.F., 1951. Non-cooperative games. Annals of Mathematics, 54, 286-295.

O’Connell, J., 2020. Doctors say their PPE supply could run dry in weeks. The Times-

Tribune, July 6.

O’Kane, S., 2020. Ford will make ventilators for GE, joining General Motors. Available at:

https://www.theverge.com/2020/3/30/21200216/ford-ge-ventilators-coronavirus-covid-19-manufacturing

Pifer, R., 2020. 7 states team up to buy $5B in medical equipment, supplies for COVID-19.

Available at: https://www.healthcaredive.com/news/7-states-team-up-to-buy-5b-in-medical-equipment-supplies-for-covid-19/

577263/

Queiroz, M.M., Ivanov, D., Dolgui, A., Wamba, S.F., 2020. Impacts of epidemic outbreaks

on supply chains: Mapping a research agenda amid the COVID-19 pandemic through a

structured literature review. Annals of Operations Research, 1-38.

Raker, E.J., Zacher, M., Lowe, S.R., 2020. Lessons from Hurricane Katrina for predicting

the indirect health consequences of the COVID-19 pandemic. PNAS May 18.

Ranney, M.L., Griffeth, V., Jha, A.K., 2020. Critical supply shortages The need for ventila-

tors and personal protective equipment during the Covid-19 pandemic. New England Journal

of Medicine. Available at: https://www.nejm.org/doi/full/10.1056/NEJMp2006141

SCCM, 2020. United States resource availability for COVID-19. Available at: https:

//sccm.org/Blog/March-2020/United-States-Resource-Availability-for-COVID-19

Schlanger, Z., 2020. Begging for thermometers, body bags, and gowns: U.S. health care

workers are dangerously ill-equipped to fight COVID-19. Available at: https://time.com/

5823983/coronavirus-ppe-shortage/

Secon H., Woodward A., Mosher D., 2020. A comprehensive timeline of the new coronavirus

pandemic, from China’s first COVID-19 case to the present. Available at: https://www.

businessinsider.com/coronavirus-pandemic-timeline-history-major-events-2020-3

The Society for Healthcare Organization Procurement Professionals, 2020. SHOPP Covid

32

https://www.theverge.com/2020/3/30/21200216/ford-ge-ventilators-coronavirus-covid-19-manufacturing
https://www.healthcaredive.com/news/7-states-team-up-to-buy-5b-in-medical-equipment-supplies-for-covid-19/577263/
https://www.healthcaredive.com/news/7-states-team-up-to-buy-5b-in-medical-equipment-supplies-for-covid-19/577263/
https://www.nejm.org/doi/full/10.1056/NEJMp2006141
https://sccm.org/Blog/March-2020/United-States-Resource-Availability-for-COVID-19
https://sccm.org/Blog/March-2020/United-States-Resource-Availability-for-COVID-19
 https://time.com/5823983/coronavirus-ppe-shortage/
 https://time.com/5823983/coronavirus-ppe-shortage/
https://www.businessinsider.com/coronavirus-pandemic-timeline-history-major-events-2020-3
https://www.businessinsider.com/coronavirus-pandemic-timeline-history-major-events-2020-3


PPD Costs analysis; available at:

http://cdn.cnn.com/cnn/2020/images/04/16/shopp.covid.ppd.costs.analysis_.pdf.

UNICEF, 2020. COVID-19 impact assessment and outlook on personal protective equip-

ment. Available at: https://www.unicef.org/supply/stories/covid-19-impact-assessment-and-outlook-personal-protective-equipment

Van Griensven, J., Edwards, T., de Lamballerie, X., Semple, M.G., Gallian, P., Baize, S.,

Horby, P.W., Raoul, H., Magassouba, N.F., Antierens, A., Lomas, C., 2016. Evaluation of

convalescent plasma for Ebola virus disease in Guinea. New England Journal of Medicine,

374(1), 33-42.

Wan, W., 2020. America is running short on masks, gowns and gloves. Again. The Wash-

ington Post, July 8.

WHO, 2020a. Rolling updates on coronavirus disease (COVID-19). Available at:

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen

WHO, 2020b. Coronavirus. Available at: https://www.who.int/health-topics/coronavirus#

tab=tab_1

Winkler, A.M., Koepsell, S.A., 2015. The use of convalescent plasma to treat emerging

infectious diseases: focus on Ebola virus disease. Current Opinion in Hematology, 22(6),

521-526.

33

 http://cdn.cnn.com/cnn/2020/images/04/16/shopp.covid.ppd.costs.analysis_.pdf
https://www.unicef.org/supply/stories/covid-19-impact-assessment-and-outlook-personal-protective-equipment
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/events-as-they-happen
https://www.who.int/health-topics/coronavirus#tab=tab_1
https://www.who.int/health-topics/coronavirus#tab=tab_1

