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Abstract In this paper, we develop a sustainable network design / redesign model
for the complex supply chain of human blood, which is a valuable yet highly perish-
able product. Specifically, we consider the optimal design (or redesign) of a blood
banking system consisting of collection sites, blood centers, testing and processing
labs, storage facilities, distribution centers as well as demand points. Our multicrite-
ria system-optimization approach on networks with arc multipliers captures several
critical concerns associated with blood banking systems including but not limited to
the determination of the optimal capacities and the optimal allocations, the induced
supply-side risk, and the induced cost of discarding potentially hazardous blood
waste, while the uncertain demand for blood is satisfied as closely as possible.

1 Introduction

Medical waste, also known as clinical waste, refers to the waste products that can
not be considered as general waste, and that is produced, typically, at health care
premises, including hospitals, clinics, and labs. Due to the potentially hazardous na-
ture of medical waste, both the American Dental Association (ADA) and the Centers
for Disease Control (CDC) recommend that medical waste be removed in accor-
dance with regulations (Pasupathi et al (2011)).

It is interesting to note that the health care facilities in the United States are sec-
ond only to the food industry in producing waste, generating more than 6,600 tons
per day, and more than 4 billion pounds annually (Fox News (2011)). In addition,
according to USA Today (2008), considerable amounts of drugs have been found
in 41 million Americans’ drinking water due to the improper disposal of unused
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or expired drugs placed in domestic trash or discarded in the waste water. In other
countries, up to 4 pounds of waste per hospital bed per day is produced, out of which
0.5 percent might be categorized as risky / potentially hazardous waste (The News
International (2011)).

Disposal of medical waste is not only costly to the health care industry, but also
may harm the environment. Consequently, poor management of such waste may
lead to the contamination of water, the soil, and the atmosphere. While many hos-
pitals choose to have their waste burned so as to avoid polluting the soil through
landfills, the incinerators themselves are one of the nation’s leading sources of toxic
pollutants such as dioxins and mercury (Giusti (2009) and Association of Bay Area
Governments (2003)). Thus, minimizing the amount of medical waste throughout
the health care supply chains will lead to a cleaner environment, which may, in turn,
also reduce illnesses and death.

When it comes to blood supply chains, the scarcity and vitalness of this highly
perishable health care product make such supply chains crucial. Hence, the effec-
tive design and control of such systems can support the health and well-being of
populations and can also positively affect the sustainability of the environment by
reducing the associated waste. Indeed, since blood waste is a significant hazard to
the environment, a major step in attaining a sustainable blood supply chain is to be
able to minimize the outdating of blood products while satisfying the demand.

In this paper, we develop a multicriteria system-optimization framework for the
supply chain network design of a sustainable blood banking system. The frame-
work allows for the simultaneous determination of optimal link capacities through
investments, and the flows on various links, which correspond to such application-
based supply chain network activities as: blood collection, the shipment of collected
blood, its testing and processing, its storage, its shipment to distribution centers, and,
finally, to the points of demand. The system-optimization approach is believed to be
mandated for critical supplies (Nagurney, Yu, and Qiang (2011)) in that the demand
for such products must be satisfied as closely as possible at minimal total cost. The
use of a profit maximization criterion, as in Nagurney (2010a), is not appropriate for
an organization such as, for example, the American Red Cross, due to its non-profit
status.

In particular, the sustainable supply chain network design model for blood bank-
ing developed here is novel for several reasons: 1. it captures the perishability of the
product through the use of arc multipliers; 2. it handles the costs associated with the
discarding of the medical waste, which could be hazardous, 3. it captures the un-
certainty associated with the demand for the product along with the risk associated
with procurement of the product, and 4. it allows for total cost minimization and
the total risk minimization associated with the design and operation of the blood
banking supply chain network.

Our framework is a contribution to the growing literature on sustainable supply
chains and to the design of sustainable supply chains, in particular (cf. Nagurney
and Nagurney (2010) and the references therein). However, our supply chain net-
work design model for sustainable blood systems focuses not on the minimization
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of emissions but rather on the minimization of waste. Moreover, it captures the per-
ishability of this product.

Recently, several authors have applied derivations of integer optimization mod-
els such as facility location, set covering, allocation, and routing to address the op-
timization / design of supply chains of blood or other perishable critical products
(see Pierskalla (2005), Yang (2006), Sahin, Sural, and Meral (2007), Sivakumar,
Ganesh, and Parthiban (2008), Cetin and Sarul (2009), and Ghandforoush and Sen
(2010)). Furthermore, inventory management methods (for instance, see Karaes-
men, Scheller-Wolf, and Deniz (2011)), Markov models (Boppana and Chalasani
(2007)) as well as simulation techniques (Rytila and Spens (2006), and Mustafee,
Katsaliaki, and Brailsford (2009)) have also been utilized to handle blood banking
systems. Our multicriteria system-optimization approach is quite general and takes
into account such critical issues as the determination of optimal capacities and allo-
cations, the induced supply-side risk, uncertain demand, as well as the induced cost
of discarding the waste. Furthermore, our mathematical model can be efficiently
solved.

The paper is organized as follows. In Section 2, we develop the supply chain
network design model for a sustainable blood banking system that allows for the
design of such a network from scratch or the redesign of an existing network. In-
terestingly, the total number of Red Cross testing laboratories in the United States
has decreased from 7 to 5 over the past few years, mainly due to the economic sit-
uation (Rios (2010)). Although the closure of the testing facilities has reduced the
overall costs of the American Red Cross, it has increased the transportation costs
corresponding to the blood service divisions that are far from the testing labs. Our
model enables the reevaluation of such modifications to a blood supply chain net-
work system. We emphasize that Nagurney, Masoumi, and Yu (2010) proposed an
operations management model for blood supply chain networks but did not focus
on the more challenging aspect of the design (and redesign) of such supply chains.
The notation of our model is based on that model but here we make the crucial
extension of including link capacities as decision variables. The formulation and
analysis of the model are done through the theory of variational inequalities (see
Nagurney (1999)), since this enables the creation of a foundation in which other
models, including decentralized ones, can then be constructed.

In Section 3, we propose an algorithmic scheme that yields closed form expres-
sions at each iteration in terms of the product path flows, the link capacities, and
the associated Lagrange multipliers. We then apply the algorithm to a spectrum of
numerical examples, which illustrate the generality and applicability of our method-
ological and computational framework. We provide a summary and our conclusions
in Section 4.
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2 The Sustainable Blood Banking System Supply Chain Network
Design Model

In this section, we develop the supply chain network design model for a blood bank-
ing system. It is important to mention, at the outset, that our sustainable supply chain
network design model is applicable to many perishable products, notably, those as-
sociated with health care, as in the case of medicines and vaccines, with minor
modifications. For continuity purposes, the notation for our model follows closely
that of Nagurney, Masoumi, and Yu (2010).

For definiteness, please refer to Figure 1. Figure 1 depicts a possible network
topology of a blood banking system. In this network, the top level (origin) node
represents the organization. Every other node in the network denotes a compo-
nent/facility in the system. A path connecting the origin node to a destination node,
corresponding to a demand point, consists of a sequence of directed links which
correspond to supply chain network activities that ensure that the blood is collected,
processed, and, ultimately, distributed to the demand point. We assume that, in the
initial supply chain network topology, as in Figure 1, which serves as a template
upon which the optimal supply chain network design is constructed, there exists at
least one path joining node 1 with each destination node. This assumption guar-
antees that the demand at each demand point will be met as closely as possible,
given that we will be considering uncertain demand for blood at each demand point.
The solution of the model yields the optimal investments associated with the vari-
ous links as well as the optimal flows, at minimum total cost and risk, as we shall
demonstrate and, hence, the optimal sustainable supply chain network design. Our
model is sufficiently flexible in that it is capable of handling either the design of
the sustainable network from scratch or the redesign of an existing blood banking
supply chain network since certain existing link capacities can be either enhanced
or reduced.

In the network in Figure 1, we assume that the organization is considering nC
possible blood collection sites constituting the second tier of the network. Many of
these collection sites are mobile or temporary locations while others are permanent
sites. In the case of drastic shortages; i.e., natural or man-made disasters, the cog-
nizant organizations are likely to need to import blood products from other regions
or even other countries, an aspect that is excluded from this model. The first set of
links, connecting the origin node to the second tier, corresponds to the process of
blood collection where these collection sites are denoted by: C1,C2, . . . ,CnC .

The next set of nodes, located in the third tier, consists of the blood centers. There
exist, potentially, nB of these facilities, denoted, respectively, by B1,B2, . . . ,BnB , to
which the whole blood (WB) is shipped after being collected at the collection sites.
Thus, the next set of links connecting tiers two and three of the network topology
represents the shipment of the collected blood.

The fourth tier of the network is composed of the processing facilities, commonly
referred to as the component labs. The number of these potential facilities is given
by nP. These facilities are denoted by P1, . . . ,PnP , respectively, and are typically
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located within the blood center locations. As discussed in Nagurney, Masoumi, and
Yu (2010), at these labs, the collected blood is usually separated into parts, i.e., red
blood cells and plasma, since most recipients need only a specific component for
transfusions. Every unit of donated whole blood - 450 to 500 milliliters on average
- can provide one unit of red blood cells (RBC) and one unit of plasma. In our
formulation, what we refer to as the flow of product is, actually, the amount of
whole blood (WB) on the first three sets of links. The flow on the links, henceforth,
denotes the number of units of red blood cells (RBC) processed at the component
labs, which are, ultimately, delivered to the demand points.

The safety of the blood supply is a vital issue for blood service organizations. For
example, presently, only 5 testing labs are operating across the United States, and
these labs are shared among 36 blood regions. Only a small sample of every donated
blood unit is sent to the testing labs, overnight, and these samples are discarded
regardless of the results of the tests. Due to the high perishability of many of the
blood products, the two processes of testing and separating take place concurrently
yet sometimes hundreds of miles away. If the result of a test for a specific unit
of donated blood at the testing lab turns out to be positive, the remainder of that
unit will be, subsequently, discarded at the corresponding storage facility. In our
model, the set of the links connecting the component labs to the storage facilities
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corresponds to testing and processing, and the costs on these links represent the
operational costs of testing and processing combined. The fraction of the flow lost
during or, as a result of the testing process, is also included in our model.

The fifth set of nodes denotes the short-term storage facilities. There are, poten-
tially, nS of such nodes in the network, denoted by S1,S2, . . . ,SnS , which are usually
located in the same place as the component labs. The links connecting the upper
level nodes to the storage facilities denote the procedure of “storage” of the tested
and processed blood before it is shipped to be distributed.

The next set of nodes in the network represents the distribution centers, denoted
by D1,D2, . . . ,DnD , where nD is the total number of potential such facilities. Dis-
tribution centers act as transshipment nodes, and are in charge of facilitating the
distribution of blood to the ultimate destinations. The links connecting the storage
tier to the distribution centers are of shipment link type.

Finally, the last set of links joining the bottom two tiers of the network are distri-
bution links, and they terminate in nR demand points. The demands at the demand
points R1,R2, . . . ,RnR are denoted by: dR1 ,dR2 , . . . ,dRnR

, respectively, and the de-
mands are uncertain. Note that, in our design model, the top-tiered node always
exists since it represents the organization. Similarly, the bottom-tiered nodes, which
correspond to the demand points (such as hospitals and surgical medical centers)
also always exist. The solution of our model determines if any of the links should
be removed since the optimal solution will yield zero capacities for such links or
whether the capacities on links should be increased.

Specific components of the system may physically coincide with some others.
Our network model and, hence, the corresponding topology, is process-based rather
than location-based, which is compatible with our blood banking problem. More-
over, as mentioned earlier, in general cases of perishable product supply chains,
these facilities may be located far apart which can be nicely addressed via our frame-
work.

The possible supply chain network topology, as depicted in Figure 1, is repre-
sented by G = [N,L], where N and L denote the sets of nodes and links, respectively.
The ultimate solution of the complete model will yield the the optimal capacity mod-
ifications on the various links of the network as well as the optimal flows.

The formalism that we utilize is that of multicriteria system-optimization, where
the organization wishes to determine at what level the blood collection sites should
operate; the same for the blood centers, the component labs, the storage facilities,
and the distribution centers. Furthermore, the organization seeks to minimize the
total supply-side risk as well as the total costs associated with its blood collection,
shipment, processing, storage, and distribution activities, along with the total in-
vestment corresponding to the enhancement of link capacities (or their construction
from scratch), or the total induced cost of reducing link capacities, as well as the to-
tal cost of discarding the waste/perished product over the links. The demands must
be satisfied as closely as possible with associated shortage penalties if the demands
are not met, in addition to the outdating (surplus) penalties in the case that the orga-
nization delivers excess supply to the demand points.
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With each link of the network, we associate a unit operational cost function that
reflects the cost of operating the particular supply chain activity, that is, the collec-
tion of blood at blood drive sites, the shipment of collected blood, the testing and
processing, the storage, and the distribution. These links are denoted by a,b, etc.
The unit operational cost on link a is denoted by ca and is a function of flow on that
link, fa. The total operational cost on link a is denoted by ĉa, and is constructed as:

ĉa( fa) = fa× ca( fa), ∀a ∈ L. (1)

The link total cost functions are assumed to be convex and continuously differ-
entiable.

Let wk denote the pair of origin/destination (O/D) nodes (1, Rk) and let Pwk
denote the set of paths, which represent alternative associated possible supply chain
network processes, joining (1, Rk). P denotes the set of all paths joining node 1 to
the destination nodes, and np denotes the number of paths.

Let vk denote the projected demand for blood at the demand point Rk;k =
1, . . . ,nR. We assume that the demand at each demand point is uncertain with a
known probability distribution. Recall that dk denotes the actual demand at demand
point Rk;k = 1, . . . ,nR, and is a random variable with probability density func-
tion given by Fk(t). Let Pk be the probability distribution function of dk, that is,
Pk(Dk) = Prob(dk ≤ Dk) =

∫ Dk
0 Fk(t)d(t). Therefore,

∆
−
k ≡ max{0,dk − vk}, k = 1, . . . ,nR, (2)

∆
+
k ≡ max{0,vk −dk}, k = 1, . . . ,nR, (3)

where ∆
−
k and ∆

+
k represent the shortage and surplus of blood at demand point Rk,

respectively.
The expected values of the shortage (∆−

k ) and the surplus (∆+
k ) are given by:

E(∆−
k ) =

∫
∞

vk

(t− vk)Fk(t)d(t), k = 1, . . . ,nR, (4)

E(∆+
k ) =

∫ vk

0
(vk − t)Fk(t)d(t), k = 1, . . . ,nR. (5)

As in Nagurney, Masoumi, and Yu (2010), we associate a relatively large penalty
of λ

−
k with the shortage of a unit of blood at demand point Rk, where λ

−
k corresponds

to the social cost of a death or a severe injury of a patient, due to a blood shortage.
Since blood is highly perishable and will be outdated if not used within a certain
period after being delivered, the outdating penalty of λ

+
k is assigned to the unit of a

possible supply surplus. This surplus penalty is charged to the organization because
human blood is scarce, and the cognizant organization seeks to minimize the amount
of outdated blood at demand points, which actually dominates the amount of blood
waste during the other activities of blood banking, for example, within the American
Red Cross network (Rios (2010)). Hence, in our framework, λ

+
k , in the case of blood

(as for other perishable products), includes the cost of short-term inventory holding
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(cold storage), and the discarding cost of the outdated product. Analogous examples
of penalty costs, due to excessive supplies, as well as to shortages, can be found in
the literature (see, e.g., Dong, Zhang, and Nagurney (2004), and Nagurney, Yu, and
Qiang (2011)). These penalties can be assessed by the authority who is contracting
with the organization to deliver the blood.

Thus, the expected total penalty at demand point k;k = 1, . . . ,nR, is:

E(λ−
k ∆

−
k +λ

+
k ∆

+
k ) = λ

−
k E(∆−

k )+λ
+
k E(∆+

k ). (6)

Also, as in Nagurney, Masoumi, and Yu (2010), we associate with every link a
in the network, a multiplier αa, which corresponds to the percentage of loss over
that link. This multiplier lies in the range (0,1], for the network activities, where
αa means that αa × 100% of the initial flow on link a reaches the successor node
of that link, with αa = 1, hence, reflecting that there is no waste/loss on link a. For
example, the average percentage of loss due to the testing process was reported to be
1.7% (Sullivan et al. (2007)); consequently, the corresponding multiplier, αa, would
be equal to 1−0.017 = 0.983.

As mentioned earlier, fa denotes the (initial) flow on link a. Let f ′a denote the
final flow on that link; i.e., the flow that reaches the successor node of the link.
Therefore,

f ′a = αa fa, ∀a ∈ L. (7)

The waste/loss on link a, denoted by wa, is equal to:

wa = fa− f ′a = (1−αa) fa, ∀a ∈ L. (8)

The organization is also responsible for disposing this waste which is potentially
hazardous. Contractors are typically utilized to remove and dispose of the waste. The
corresponding discarding cost, ya, is a function of the waste, wa, which is charged
to the organization:

ya(wa) = ya( fa− f ′a) = ya
(
(1−αa) fa

)
, ∀a ∈ L. (9)

Since αa is constant, and known apriori, a new total discarding cost function, ẑa,
can be defined accordingly, which is a function of the flow, fa, and is assumed to be
convex and continuously differentiable:

ẑa = ẑa( fa), ∀a ∈ L. (10)

Let xp represent the (initial) flow of blood (or a general perishable product) on
path p joining the origin node with a destination node. The path flows must be
nonnegative, that is,

xp ≥ 0, ∀p ∈P, (11)

since the product will be collected, shipped, etc., in nonnegative quantities.
Let µp denote the multiplier corresponding to the loss on path p, which is defined

as the product of all link multipliers on links comprising that path, that is,
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µp ≡ ∏
a∈p

αa, ∀p ∈P. (12)

The projected demand at demand point Rk, vk, is the sum of all the final flows on
paths joining (1,Rk):

vk ≡ ∑
p∈Pwk

xpµp, k = 1, . . . ,nR. (13)

Indeed, although the amount of blood that originates on a path p is xp, the amount
(due to perishability) that actually arrives at the destination of this path is xpµp.

As discussed in Nagurney, Masoumi, and Yu (2010), the multiplier, αap, is the
product of the multipliers of the links on path p that precede link a in that path. This
multiplier can be expressed as:

αap ≡


δap ∏

a′<a
αa′ , if {a′ < a} 6= Ø,

δap, if {a′ < a}= Ø,

(14)

where {a′ < a} denotes the set of the links preceding link a in path p. Recall that
δap is defined as equal to 1 if link a is contained in path p; otherwise, it is equal to
zero, and Ø denotes the null set. In other words, αap is equal to the product of all
link multipliers preceding link a in path p. If link a is not contained in path p, then
αap is set to zero. If a belongs to the first set of links, the blood collection links,
this multiplier is equal to 1. The relationship between the link flow, fa, and the path
flows is as follows:

fa = ∑
p∈P

xp αap, ∀a ∈ L. (15)

The blood supply chain organization not only wishes to determine which facili-
ties should operate and at what level, but also is interested in possibly redesigning
the existing capacities with the demand being satisfied as closely as possible, and the
total cost and risk being minimized. Let ūa denote the nonnegative existing capacity
on link a,∀a ∈ L . The organization can enhance/reduce the capacity of link a by
ua,∀a ∈ L. The total investment cost of adding capacity ua on link a, or contrarily,
the induced cost of lowering the capacity by ua, is denoted by π̂a, and is a function
of the change in capacity:

π̂a = π̂a(ua), ∀a ∈ L. (16)

The total capacity investment cost functions can be interpreted as the cost of pur-
chasing/renting additional equipments, hiring extra staff personnel, and expanding
the transportation fleet. On the other hand, the total cost corresponding to capacity
reduction typically includes the relocation of equipment, the reallocation of person-
nel as well as the storing of surplus equipment. These functions are also assumed to
be convex and continuously differentiable. We group the link capacity changes into
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the vector u. Similarly, the path flows, the link flows, and the projected demands are
grouped into the respective vectors x, f , and v.

The total cost minimization objective faced by the organization includes the total
cost of operating the various links, the total discarding cost of waste/loss over the
links, the total cost of capacity modification, and the expected total blood supply
shortage cost as well as the total discarding cost of outdated blood at the demand
points. This optimization problem can be expressed as:

Minimize ∑
a∈L

ĉa( fa)+ ∑
a∈L

ẑa( fa)+ ∑
a∈L

π̂a(ua)+
nR

∑
k=1

(
λ
−
k E(∆−

k )+λ
+
k E(∆+

k )
)

(17)
subject to: constraints (11), (13), and (15), and

fa ≤ ūa +ua, ∀a ∈ L, (18)

−ūa ≤ ua, ∀a ∈ L. (19)

Constraint (18) guarantees that the flow on a link cannot exceed the new ca-
pacity on that link. Furthermore, the change in link capacities can take on posi-
tive/negative values corresponding to the enhancement/reduction of the capacities.
Constraint (19) guarantees that the flow on a link will not be negative by imposing
a lower bound for this link capacity change (see Nagurney (2010b)).

Observe that if ūa = 0, ∀a ∈ L, then the redesign model converts to a “design
from scratch” model in that there will be no capacities on the link apriori. Both
models of redesign and design are consistent with the presented network topology
in Figure 1.

As mentioned earlier, the minimization of total costs is not the only objective of
suppliers of perishable goods. A major challenge for a blood service organization
is to capture the risk associated with different activities in the blood supply chain
network. Unlike the demand, which can be projected according to the historical data,
albeit with some uncertainty involved, the amount of donated blood at the collection
sites has been observed to be highly stochastic. For example, although blood donors
may make appointments in advance, donors may miss their appointments due to
traffic delays, bad weather, etc.

As in Nagurney, Masoumi, and Yu (2010), we introduce a total risk function r̂a
corresponding to link a for every blood collection link. This function is assumed to
be convex and continuously differentiable, and a function of the flow, that is, the
amount of collected blood, on its corresponding link. The organization attempts to
minimize the total risk over all links connecting the first two tiers of the network,
denoted by L1 ⊂ L. The remainder of the links in the network, i.e., the shipment
of collected blood, the processing, the storage, shipment, and the distribution links,
comprise the set LC

1 . The subset L1 and its complement LC
1 partition the entire set of

links L, that is, L1∪LC
1 = L.

Thus, the risk minimization objective function for the organization can be ex-
pressed as:
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Minimize ∑
a∈L1

r̂a( fa), (20)

where r̂a = r̂a( fa) is the total risk function on link a.
The sustainable supply chain network design problem for a blood banking sys-

tem can be expressed as a multicriteria decision-making problem. The organization
seeks to determine the optimal levels of blood processed on each supply chain net-
work link coupled with the optimal levels of capacity escalation/reduction in its
blood banking supply chain network activities subject to the minimization of the
total cost (operational and discarding) as well as the minimization of the total sup-
ply risk. The weight associated with the total cost objective, (17), serves as the
numeraire, and is set equal to 1. On the other hand, corresponding to the total sup-
ply risk objective, (20), a weight of θ is assigned by the decision-maker. Thus, the
multicriteria optimization problem is:

Minimize ∑
a∈L

ĉa( fa)+ ∑
a∈L

ẑa( fa)+ ∑
a∈L

π̂a(ua)

+
nR

∑
k=1

(
λ
−
k E(∆−

k )+λ
+
k E(∆+

k )
)
+ θ ∑

a∈L1

r̂a( fa) (21)

subject to: constraints (11), (13), (15), (18), and (19).
The above optimization problem is in terms of link flows. It can also be expressed

in terms of path flows:

Minimize ∑
p∈P

(
Ĉp(x)+ Ẑp(x)

)
+ ∑

a∈L
π̂a(ua)

+
nR

∑
k=1

(
λ
−
k E(∆−

k )+λ
+
k E(∆+

k )
)
+ θ ∑

p∈P

R̂p(x) (22)

subject to: constraints (11), (13), (15), (18), and (19), where the total operational cost
function, Ĉp(x), the total discarding cost function, Ẑp(x), and the total risk function,
R̂p(x), corresponding to path p are, respectively, derived from Cp(x), Zp(x), and
Rp(x) as follows:

Ĉp(x) = xp×Cp(x), ∀p ∈Pwk ;k = 1, . . . ,nR,

Ẑp(x) = xp×Zp(x), ∀p ∈Pwk ;k = 1, . . . ,nR,

R̂p(x) = xp×Rp(x), ∀p ∈Pwk ;k = 1, . . . ,nR, (23)

with the unit cost functions on path p, i.e., Cp(x),Zp(x), and Rp(x), in turn, defined
as below:

Cp(x)≡ ∑
a∈L

ca( fa)αap, ∀p ∈Pwk ;k = 1, . . . ,nR,

Zp(x)≡ ∑
a∈L

za( fa)αap, ∀p ∈Pwk ;k = 1, . . . ,nR,
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Rp(x)≡ ∑
a∈L1

ra( fa)αap, ∀p ∈Pwk ;k = 1, . . . ,nR. (24)

Next, we present some preliminaries that help us to express the total shortage as
well as the total discarding costs of outdated blood at the demand points solely in
terms of path flow variables. Observe that, for each O/D pair wk:

∂E(∆−
k )

∂xp
= µp

Pk

 ∑
p∈Pwk

xpµp

−1

 , ∀p ∈Pwk ;k = 1, . . . ,nR. (25)

Similarly, for the surplus, we have:

∂E(∆+
k )

∂xp
= µpPk

 ∑
p∈Pwk

xpµp

 , ∀p ∈Pwk ;k = 1, . . . ,nR. (26)

Proof: See Nagurney, Masoumi, Yu (2010) for the proofs of (25) and (26). ut
We associate the Lagrange multiplier γa with constraint (18) for link a, and we

denote the optimal Lagrange multiplier by γ∗a ,∀a∈ L. The Lagrange multipliers may
be interpreted as shadow prices. We group these Lagrange multipliers, respectively,
into the vectors γ and γ∗.

Let K denote the feasible set such that:

K ≡ {(x,u,γ)|x ∈ Rnp
+ , (19) holds, and γ ∈ RnL

+ }. (27)

Before stating the variational inequality formulation of the problem, we recall a
lemma that formalizes the construction of the partial derivatives of the total oper-
ational cost, the total discarding cost, and the total risk functions with respect to a
path flow.

Lemma 1. The partial derivatives of the total operational cost, the total discarding
cost, and the total risk of a path with respect to a path flow are, respectively, given
by:

∂ (∑q∈P Ĉq(x))
∂xp

≡ ∑
a∈L

∂ ĉa( fa)
∂ fa

αap, ∀p ∈Pwk ;k = 1, . . . ,nR,

∂ (∑q∈P Ẑq(x))
∂xp

≡ ∑
a∈L

∂ ẑa( fa)
∂ fa

αap, ∀p ∈Pwk ;k = 1, . . . ,nR,

∂ (∑q∈P R̂q(x))
∂xp

≡ ∑
a∈L1

∂ r̂a( fa)
∂ fa

αap, ∀p ∈Pwk ;k = 1, . . . ,nR. (28)

Proof: See Nagurney, Masoumi, and Yu (2010) for the proof. ut
We now derive the variational inequality formulation of the problem in terms of

path flows and link flows.
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Theorem 1. The optimization problem (22), subject to its constraints, is equivalent
to the variational inequality problem: determine the vector of optimal path flows, the
vector of optimal capacity adjustments, and the vector of optimal Lagrange multi-
pliers (x∗,u∗,γ∗) ∈ K, such that:

nR

∑
k=1

∑
p∈Pwk

∂ (∑q∈P Ĉq(x∗))
∂xp

+
∂ (∑q∈P Ẑq(x∗))

∂xp
+λ

+
k µpPk

 ∑
p∈Pwk

x∗pµp



−λ
−
k µp

1−Pk

 ∑
p∈Pwk

x∗pµp

 + ∑
a∈L

γ
∗
a δap + θ

∂ (∑q∈P R̂q(x∗))
∂xp

]
× [xp− x∗p]

+ ∑
a∈L

[
∂ π̂a(u∗a)

∂ua
− γ

∗
a

]
× [ua−u∗a]+ ∑

a∈L

[
ūa +u∗a− ∑

p∈P

x∗pαap

]
× [γa− γ

∗
a ]≥ 0,

∀(x,u,γ) ∈ K. (29)

The variational inequality (29), in turn, can be rewritten in terms of link flows as:
determine the vector of optimal link flows, the vectors of optimal projected demands
and the link capacity adjustments, and the vector of optimal Lagrange multipliers
( f ∗,v∗,u∗,γ∗) ∈ K1, such that:

∑
a∈L

[
∂ ĉa( f ∗a )

∂ fa
+

∂ ẑa( f ∗a )
∂ fa

+ γ
∗
a +θ

∂ r̂a( f ∗a )
∂ fa

]
× [ fa− f ∗a ]

+ ∑
a∈L

[
∂ π̂a(u∗a)

∂ua
− γ

∗
a

]
× [ua−u∗a]+

nR

∑
k=1

[
λ

+
k Pk(v∗k)−λ

−
k (1−Pk(v∗k))

]
× [vk − v∗k ]

+ ∑
a∈L

[ūa +u∗a− f ∗a ]× [γa− γ
∗
a ]≥ 0, ∀( f ,v,u,γ) ∈ K1, (30)

where K1 denotes the feasible set as defined below:

K1 ≡ {( f ,v,u,γ)|∃x ≥ 0, (11),(13),(15), and (19) hold, and γ ≥ 0}. (31)

Proof. First, we prove the result for path flows (cf. (29)).
The convexity of Ĉp, Ẑp, and R̂p for all paths p holds since ĉa, ẑa, and r̂a were

assumed to be convex for all links a. The convexity of π̂a was also assumed to hold.
We just need to verify that λ

−
k E(∆−

k )+λ
+
k E(∆+

k ) is also convex. We have:
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∂ 2

∂xp2

[
λ
−
k E(∆−

k )+λ
+
k E(∆+

k )
]
= λ

−
k

∂ 2E(∆−
k )

∂xp2 +λ
+
k

∂ 2E(∆+
k )

∂xp2 ,

∀p ∈Pwk ;k = 1, . . . ,nR. (32)

Substituting the first order derivatives from (25) and (26) into (32) yields:

∂ 2

∂xp2

[
λ
−
k E(∆−

k )+λ
+
k E(∆+

k )
]
=

= λ
−
k

∂

∂xp
µp

Pk

 ∑
p∈Pwk

xpµp

−1

 + λ
+
k

∂

∂xp
µpPk

 ∑
p∈Pwk

xpµp


= (λ−

k +λ
+
k )(µp)2Fk

 ∑
p∈Pwk

xpµp

 > 0, ∀p ∈Pwk ;k = 1, . . . ,nR. (33)

The above inequality holds provided that (λ−
k +λ

+
k ), i.e., the sum of shortage and

surplus penalties, is assumed to be positive. Hence, λ
−
k E(∆−

k )+λ
+
k E(∆+

k ), and, as
a consequence, the multicriteria objective function in (22) is also convex.

Since the objective function (22) is convex and the feasible set K is closed and
convex, the variational inequality (29) follows from the standard theory of varia-
tional inequalities (see Nagurney (1999)).

As for the proof of the variational inequality (30), now that (29) is established,
we can apply the equivalence between partial derivatives of total costs on paths
and partial derivatives of total costs on links from Lemma 1. Also, from (13) and
(15), we can rewrite the formulation in terms of link flows and projected demands
rather than path flows. Thus, the second part of Theorem 1, that is, the variational
inequality in link flows (30), also holds. ut

Note that variational inequality (29) can be put into standard form (see Nagurney
(1999)) as follows: determine X∗ ∈K such that:

〈F(X∗)T ,X −X∗〉 ≥ 0, ∀X ∈K , (34)

where 〈·, ·〉 denotes the inner product in n-dimensional Euclidean space.
If we define the feasible set K ≡ K, and the column vector X ≡ (x,u,γ), and

F(X)≡ (F1(X),F2(X),F3(X)), where:

F1(X) =

∂ (∑q∈P Ĉq(x))
∂xp

+
∂ (∑q∈P Ẑq(x))

∂xp
+λ

+
k µpPk

 ∑
p∈Pwk

xpµp
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−λ
−
k µp

1−Pk

 ∑
p∈Pwk

xpµp

+ ∑
a∈L

γaδap + θ
∂ (∑q∈P R̂q(x))

∂xp
;

p ∈Pwk ; k = 1, . . . ,nR
]
,

F2(X) =
[

∂ π̂a(ua)
ua

− γa; a ∈ L
]
,

and

F3(X) =

[
ūa +ua− ∑

p∈P

xpαap; a ∈ L

]
, (35)

then variational inequality (29) can be re-expressed in standard form (34).
We will utilize variational inequality (29) in path flows for our computations

since our proposed computational procedure will yield closed form expressions at
each iteration. Once we have solved problem (29), by using (15), which relates the
links flows to the path flows, we can obtain the solution f ∗ which, along with u∗,
minimizes the total cost as well as the total supply risk (cf. (21)) associated with the
design of the supply chain network of a blood banking system.

We now present the algorithm for the solution of the sustainable blood banking
supply chain network design followed by several numerical examples.

3 The Algorithm and the Numerical Examples

In this Section, we first recall the Euler method, which is induced by the general
iterative scheme of Dupuis and Nagurney (1993). Its realization for the solution of
the sustainable blood bank supply chain design problem governed by variational
inequality (29) (see also (34)) induces subproblems that can be solved explicitly
and in closed form.

Specifically, at an iteration τ of the Euler method (see also Nagurney and Zhang
(1996)), one computes:

Xτ+1 = PK (Xτ −aτ F(Xτ)), (36)

where PK is the projection on the feasible set K and F is the function that enters
the variational inequality problem (34).

As shown in Dupuis and Nagurney (1993); see also Nagurney and Zhang (1996),
for convergence of the general iterative scheme, which induces the Euler method,
among other methods, the sequence {aτ}must satisfy: ∑

∞
τ=0 aτ = ∞, aτ > 0, aτ → 0,

as τ → ∞. Specific conditions for convergence of this scheme can be found for a
variety of network-based problems, similar to those constructed here, in Nagurney
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and Zhang (1996) and the references therein. Applications of this Euler method to
the solution of oligopolistic supply chain network design problems can be found in
Nagurney (2010a).

3.1 Explicit Formulas for the Euler Method Applied to the
Sustainable Blood Supply Chain Network Design Variational
Inequality (29)

The elegance of this procedure for the computation of solutions to the sustainable
blood supply chain network design problem modeled in Section 2 can be seen in the
following explicit formulas. In particular, (36) for the blood supply chain network
design problem governed by variational inequality problem (29) yields the following
closed form expressions for the blood product path flows, the capacity adjustments
corresponding to various links, and the Lagrangian multipliers, respectively:

xτ+1
p = max{0,xτ

p +aτ(λ−
k µp(1−Pk( ∑

p∈Pwk

xτ
pµp))−λ

+
k µpPk( ∑

p∈Pwk

xτ
pµp)

−
∂ (∑q∈P Ĉq(xτ))

∂xp
−

∂ (∑q∈P Ẑq(xτ))
∂xp

− ∑
a∈L

γ
τ
a δap−θ

∂ (∑q∈P R̂q(xτ))
∂xp

)},

∀p ∈Pwk ;k = 1, . . . ,nR; (37)

uτ+1
a = max{−ūa,uτ

a +aτ(γτ
a −

∂ π̂a(uτ
a)

∂ua
)}, ∀a ∈ L; (38)

γ
τ+1
a = max{0,γτ

a +aτ( ∑
p∈P

xτ
pαap− ūa−uτ

a)}, ∀a ∈ L. (39)

We applied the Euler method to compute solutions to numerical blood supply
chain network problems. The initial prospective network topology used in our nu-
merical examples consisted of two blood collection sites, two blood centers, two
component labs, two storage facilities, two distribution centers, and three demand
points, as depicted in Figure 2. The Euler method (cf. (37), (38), and (39)) for the so-
lution of variational inequality (29) was implemented in Matlab. A Microsoft Win-
dows System at the University of Massachusetts Amherst was used for all the com-
putations. We set the sequence {aτ}= .1(1, 1

2 , 1
2 , · · ·), and the convergence tolerance

was ε = 10−6. The algorithm was initialized by setting the projected demand at each
demand point and all other variables equal to zero.

Example 1
In this example, we assumed that the existing capacities of all links in the network
were zero; hence, the goal was to design a sustainable blood supply chain network
from scratch.

We assumed that R1 was a small surgical center while R2 and R3 were large
hospitals with higher demand for red blood cells. The demands at these demand
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points followed the uniform probability distribution on the intervals [5,10], [40,50],
and [25,40], respectively. Hence,

P1
(

∑
p∈Pw1

µpxp
)

=

∑
p∈Pw1

µpxp−5

5
, P2

(
∑

p∈Pw2

µpxp
)

=

∑
p∈Pw2

µpxp−40

10
,

P3
(

∑
p∈Pw3

µpxp
)

=

∑
p∈Pw3

µpxp−25

15
,

where w1 = (1,R1),w2 = (1,R2), and w3 = (1,R3).
The shortage and outdating penalties for each of the three demand points - de-

fined by the organization, such as the American Red Cross Regional Division Man-
agement - were:

λ
−
1 = 2800, λ

+
1 = 50,

λ
−
2 = 3000, λ

+
2 = 60,

λ
−
3 = 3100, λ

+
3 = 50.
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The total risk functions corresponding to the blood collection links were:

r̂1( f1) = 2 f 2
1 , and r̂2( f2) = 1.5 f 2

2 ,

and the weight associated with the risk criterion, θ , was 0.7.
The total cost functions corresponding to the capacity adjustment are as reported

in Table 1. In addition, the multipliers corresponding to the links, the total cost func-
tions, and the total discarding cost functions are also reported there. Most of these
numbers have been selected based on the average historical data for the American
Red Cross Northeast Division Blood Services (Rios (2010)).

Table 1 also provides the computed optimal solutions.

Table 1 Total Cost, Total Discarding Cost, and Total Investment Cost Functions, and Solution for
Numerical Example 1

Link a αa ĉa( fa) ẑa( fa) π̂a(ua) f ∗a u∗a γ∗a
1 .97 6 f 2

1 +15 f1 .8 f 2
1 .8u2

1 +u1 47.18 47.18 76.49
2 .99 9 f 2

2 +11 f2 .7 f 2
2 .6u2

2 +u2 39.78 39.78 48.73
3 1.00 .7 f 2

3 + f3 .6 f 2
3 u2

3 +2u3 25.93 25.93 53.86
4 .99 1.2 f 2

4 + f4 .8 f 2
4 2u2

4 +u4 19.38 19.38 78.51
5 1.00 f 2

5 +3 f5 .6 f 2
5 u2

5 +u5 18.25 18.25 37.50
6 1.00 .8 f 2

6 +2 f6 .8 f 2
6 1.5u2

6 +3u6 20.74 20.74 65.22
7 .92 2.5 f 2

7 +2 f7 .5 f 2
7 7u2

7 +12u7 43.92 43.92 626.73
8 .96 3 f 2

8 +5 f8 .8 f 2
8 6u2

8 +20u8 36.73 36.73 460.69
9 .98 .8 f 2

9 +6 f9 .4 f 2
9 3u2

9 +2u9 38.79 38.79 234.74
10 1.00 .5 f 2

10 +3 f10 .7 f 2
10 5.4u2

10 +2u10 34.56 34.56 375.18
11 1.00 .3 f 2

11 + f11 .3 f 2
11 u2

11 +u11 25.90 25.90 52.80
12 1.00 .5 f 2

12 +2 f12 .4 f 2
12 1.5u2

12 +u12 12.11 12.11 37.34
13 1.00 .4 f 2

13 +2 f13 .3 f 2
13 1.8u2

13 +1.5u13 17.62 17.62 64.92
14 1.00 .6 f 2

14 + f14 .4 f 2
14 u2

14 +2u14 16.94 16.94 35.88
15 1.00 .4 f 2

15 + f15 .7 f 2
15 .5u2

15 +1.1u15 5.06 5.06 6.16
16 1.00 .8 f 2

16 +2 f16 .4 f 2
16 .7u2

16 +3u16 24.54 24.54 37.36
17 .98 .5 f 2

17 +3 f17 .5 f 2
17 2u2

17 +u17 13.92 13.92 56.66
18 1.00 .7 f 2

18 + f18 .7 f 2
18 u2

18 +u18 0.00 0.00 1.00
19 1.00 .6 f 2

19 +4 f19 .4 f 2
19 u2

19 +2u19 15.93 15.93 33.86
20 .98 1.1 f 2

20 +5 f20 .5 f 2
20 .8u2

20 +u20 12.54 12.54 21.06

As seen in Table 1, the optimal capacity on link 18 was zero (and, as expected,
so was its flow), which means that D1 was the only distribution center to serve the
demand point R1. The values of the total investment cost and the cost objective
criterion, (17), were 42,375.96 and 135,486.43, respectively.

The computed amounts of projected demand for each of the three demand points
were:

v∗1 = 5.06, v∗2 = 40.48, and v∗3 = 25.93.

It is interesting to note that for all the demand points, the values of the projected
demand were closer to the lower bounds of their uniform probability distributions
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due to the relatively high cost of setting up a new blood supply chain network from
scratch.

Next, we examine the effect of increasing the shortage penalties - while retaining
the other costs - with the purpose of reducing the risk of having shortages at our
demand points.

Example 2
Example 2 had the exact same data as Example 1 with the exception of the penalties
per unit shortage. The new penalties corresponding to the demand points 1,2, and 3
were as follows:

λ
−
1 = 28000, λ

−
2 = 30000, λ

−
3 = 31000.

Table 2 shows the optimal solution for Example 2; that is, when the shortage
penalties are ten times larger than those of Example 1.

Table 2 Total Cost, Total Discarding Cost, and Total Investment Cost Functions, and Solution for
Numerical Example 2

Link a αa ĉa( fa) ẑa( fa) π̂a(ua) f ∗a u∗a γ∗a
1 .97 6 f 2

1 +15 f1 .8 f 2
1 .8u2

1 +u1 63.53 63.53 102.65
2 .99 9 f 2

2 +11 f2 .7 f 2
2 .6u2

2 +u2 53.53 53.53 65.23
3 1.00 .7 f 2

3 + f3 .6 f 2
3 u2

3 +2u3 34.93 34.93 71.85
4 .99 1.2 f 2

4 + f4 .8 f 2
4 2u2

4 +u4 26.08 26.08 105.34
5 1.00 f 2

5 +3 f5 .6 f 2
5 u2

5 +u5 24.50 24.50 50.00
6 1.00 .8 f 2

6 +2 f6 .8 f 2
6 1.5u2

6 +3u6 27.96 27.96 86.89
7 .92 2.5 f 2

7 +2 f7 .5 f 2
7 7u2

7 +12u7 59.08 59.08 839.28
8 .96 3 f 2

8 +5 f8 .8 f 2
8 6u2

8 +20u8 49.48 49.48 613.92
9 .98 .8 f 2

9 +6 f9 .4 f 2
9 3u2

9 +2u9 52.18 52.18 315.05
10 1.00 .5 f 2

10 +3 f10 .7 f 2
10 5.4u2

10 +2u10 46.55 46.55 504.85
11 1.00 .3 f 2

11 + f11 .3 f 2
11 u2

11 +u11 35.01 35.01 71.03
12 1.00 .5 f 2

12 +2 f12 .4 f 2
12 1.5u2

12 +u12 16.12 16.12 49.36
13 1.00 .4 f 2

13 +2 f13 .3 f 2
13 1.8u2

13 +1.5u13 23.93 23.93 87.64
14 1.00 .6 f 2

14 + f14 .4 f 2
14 u2

14 +2u14 22.63 22.63 47.25
15 1.00 .4 f 2

15 + f15 .7 f 2
15 .5u2

15 +1.1u15 9.33 9.33 10.43
16 1.00 .8 f 2

16 +2 f16 .4 f 2
16 .7u2

16 +3u16 29.73 29.73 44.62
17 .98 .5 f 2

17 +3 f17 .5 f 2
17 2u2

17 +u17 19.89 19.89 80.55
18 1.00 .7 f 2

18 + f18 .7 f 2
18 u2

18 +u18 0.00 0.00 1.00
19 1.00 .6 f 2

19 +4 f19 .4 f 2
19 u2

19 +2u19 18.99 18.99 39.97
20 .98 1.1 f 2

20 +5 f20 .5 f 2
20 .8u2

20 +u20 18.98 18.98 31.37

A comparison of the optimal capacities in Examples 1 and 2 confirms that raising
the shortage penalties, while keeping all operational and investment costs constant,
increased the level of activities in all the network links, except for link 18 which
stayed inactive. Due to the increased capacities, the new projected demand values
were:

v∗1 = 9.33, v∗2 = 48.71, and v∗3 = 38.09.
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As seen above, unlike Example 1, here the projected demand values were closer
to the upper bounds of their uniform probability distributions. As a result, the values
of the total investment cost and the cost objective criterion, were 75,814.03 and
177,327.31, respectively, which were significantly higher than Example 1.

Example 3
In this example, we assumed positive capacities for all the activities of the supply
chain network. Thus, the problem became one of redesigning an existing blood sup-
ply chain network as opposed to designing one from scratch.

The existing capacity for each link, ūa, was chosen close to the corresponding
optimal solution for capacity, u∗a, in Example 1, as reported in Table 3. All other
parameters were the same as in Example 1.

Table 3 Total Cost, Total Discarding Cost, and Total Investment Cost Functions, Initial Capacities,
and Solution for Numerical Example 3

Link a αa ĉa( fa) ẑa( fa) π̂a(ua) ūa f ∗a u∗a γ∗a
1 .97 6 f 2

1 +15 f1 .8 f 2
1 .8u2

1 +u1 48.00 54.14 6.14 10.83
2 .99 9 f 2

2 +11 f2 .7 f 2
2 .6u2

2 +u2 40.00 43.85 3.85 5.62
3 1.00 .7 f 2

3 + f3 .6 f 2
3 u2

3 +2u3 26.00 29.64 3.64 9.29
4 .99 1.2 f 2

4 + f4 .8 f 2
4 2u2

4 +u4 20.00 22.35 2.35 10.39
5 1.00 f 2

5 +3 f5 .6 f 2
5 u2

5 +u5 19.00 20.10 1.10 3.20
6 1.00 .8 f 2

6 +2 f6 .8 f 2
6 1.5u2

6 +3u6 21.00 22.88 1.88 8.63
7 .92 2.5 f 2

7 +2 f7 .5 f 2
7 7u2

7 +12u7 44.00 49.45 5.45 88.41
8 .96 3 f 2

8 +5 f8 .8 f 2
8 6u2

8 +20u8 37.00 41.40 4.40 72.88
9 .98 .8 f 2

9 +6 f9 .4 f 2
9 3u2

9 +2u9 39.00 43.67 4.67 30.04
10 1.00 .5 f 2

10 +3 f10 .7 f 2
10 5.4u2

10 +2u10 35.00 38.95 3.95 44.70
11 1.00 .3 f 2

11 + f11 .3 f 2
11 u2

11 +u11 26.00 29.23 3.23 7.45
12 1.00 .5 f 2

12 +2 f12 .4 f 2
12 1.5u2

12 +u12 13.00 13.57 0.57 2.72
13 1.00 .4 f 2

13 +2 f13 .3 f 2
13 1.8u2

13 +1.5u13 18.00 22.05 4.05 16.07
14 1.00 .6 f 2

14 + f14 .4 f 2
14 u2

14 +2u14 17.00 16.90 −0.10 1.81
15 1.00 .4 f 2

15 + f15 .7 f 2
15 .5u2

15 +1.1u15 6.00 6.62 0.62 1.72
16 1.00 .8 f 2

16 +2 f16 .4 f 2
16 .7u2

16 +3u16 25.00 25.73 0.73 4.03
17 .98 .5 f 2

17 +3 f17 .5 f 2
17 2u2

17 +u17 14.00 18.92 4.92 20.69
18 1.00 .7 f 2

18 + f18 .7 f 2
18 u2

18 +u18 0.00 0.00 0.00 1.00
19 1.00 .6 f 2

19 +4 f19 .4 f 2
19 u2

19 +2u19 16.00 17.77 1.77 5.53
20 .98 1.1 f 2

20 +5 f20 .5 f 2
20 .8u2

20 +u20 13.00 12.10 −0.62 0.00

As expected, in Example 3, because of the positive link capacities a priori, the
computed values of capacity adjustment, u∗a, were relatively small. Therefore, the
optimal Lagrangian multipliers, γ∗a , which denote the shadow prices of constraints
(18), ∀a ∈ L, were considerably smaller than their counterparts in Example 1. Fur-
thermore, the respective values of the capacity investment cost and the cost criterion
were 856.36 and 85,738.13.
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It is also important to note that, for links 14 and 20, the optimal amounts of ca-
pacity adjustment were negative, meaning that the existing capacities were slightly
higher than the optimal levels given the probability distribution demands.

The Euler method in Example 3 computed the following projected demand val-
ues:

v∗1 = 6.62, v∗2 = 43.50, and v∗3 = 30.40.

Example 4
Example 4 was another case of redesigning the blood supply chain network, this
time with increased demands. The existing capacities, the shortage penalties, and
the cost functions were the same as in Example 3.

The new demands at the three hospitals followed a uniform probability distribu-
tion on the intervals [10,17], [50,70], and [30,60], respectively. Thus, the cumulative
distribution functions corresponding to the above demands were:

P1
(

∑
p∈Pw1

µpxp
)

=

∑
p∈Pw1

µpxp−10

7
, P2

(
∑

p∈Pw2

µpxp
)

=

∑
p∈Pw2

µpxp−50

20
,

P3
(

∑
p∈Pw3

µpxp
)

=

∑
p∈Pw3

µpxp−30

30
.

Table 4 reports the corresponding cost functions as well as the computed optimal
solution for Example 4.

As seen in Table 4, a 50% increase in demand resulted in significant positive
capacity changes as well as positive flows on all 20 links in the network, including
link 18, which was not constructed/used under our initial demand scenarios. The
values of the total investment function and the cost criterion were 5,949.18 and
166,445.73, respectively, and the projected demand values were now:

v∗1 = 10.65, v∗2 = 52.64, and v∗3 = 34.39.

Example 5
Example 5 was similar to Example 4, but now the demand suffered a decrease from
the original demand scenario rather than the increase that we studied in Example 4.
The new demand at demand points 1, 2, and 3 followed a uniform probability distri-
bution on the intervals [4,7], [30, 40], and [15,30], respectively, with the following
functions:

P1
(

∑
p∈Pw1

µpxp
)

=

∑
p∈Pw1

µpxp−4

3
, P2

(
∑

p∈Pw2

µpxp
)

=

∑
p∈Pw2

µpxp−30

10
,
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Table 4 Total Cost, Total Discarding Cost, and Total Investment Cost Functions, Initial Capacities,
and Solution for Numerical Example 4

Link a αa ĉa( fa) ẑa( fa) π̂a(ua) ūa f ∗a u∗a γ∗a
1 .97 6 f 2

1 +15 f1 .8 f 2
1 .8u2

1 +u1 48.00 65.45 17.45 28.92
2 .99 9 f 2

2 +11 f2 .7 f 2
2 .6u2

2 +u2 40.00 53.36 13.36 17.03
3 1.00 .7 f 2

3 + f3 .6 f 2
3 u2

3 +2u3 26.00 35.87 9.87 21.74
4 .99 1.2 f 2

4 + f4 .8 f 2
4 2u2

4 +u4 20.00 26.98 6.98 28.91
5 1.00 f 2

5 +3 f5 .6 f 2
5 u2

5 +u5 19.00 24.43 5.43 11.86
6 1.00 .8 f 2

6 +2 f6 .8 f 2
6 1.5u2

6 +3u6 21.00 27.87 6.87 23.60
7 .92 2.5 f 2

7 +2 f7 .5 f 2
7 7u2

7 +12u7 44.00 59.94 15.94 234.92
8 .96 3 f 2

8 +5 f8 .8 f 2
8 6u2

8 +20u8 37.00 50.21 13.21 178.39
9 .98 .8 f 2

9 +6 f9 .4 f 2
9 3u2

9 +2u9 39.00 52.94 13.94 85.77
10 1.00 .5 f 2

10 +3 f10 .7 f 2
10 5.4u2

10 +2u10 35.00 47.24 12.24 134.64
11 1.00 .3 f 2

11 + f11 .3 f 2
11 u2

11 +u11 26.00 35.68 9.68 20.35
12 1.00 .5 f 2

12 +2 f12 .4 f 2
12 1.5u2

12 +u12 13.00 16.20 3.20 10.61
13 1.00 .4 f 2

13 +2 f13 .3 f 2
13 1.8u2

13 +1.5u13 18.00 26.54 8.54 32.23
14 1.00 .6 f 2

14 + f14 .4 f 2
14 u2

14 +2u14 17.00 20.70 3.70 9.40
15 1.00 .4 f 2

15 + f15 .7 f 2
15 .5u2

15 +1.1u15 6.00 10.30 4.30 5.40
16 1.00 .8 f 2

16 +2 f16 .4 f 2
16 .7u2

16 +3u16 25.00 30.96 5.96 11.34
17 .98 .5 f 2

17 +3 f17 .5 f 2
17 2u2

17 +u17 14.00 20.95 6.95 28.81
18 1.00 .7 f 2

18 + f18 .7 f 2
18 u2

18 +u18 0.00 0.35 0.35 1.69
19 1.00 .6 f 2

19 +4 f19 .4 f 2
19 u2

19 +2u19 16.00 21.68 5.68 13.36
20 .98 1.1 f 2

20 +5 f20 .5 f 2
20 .8u2

20 +u20 13.00 14.14 1.14 2.83

P3
(

∑
p∈Pw3

µpxp
)

=

∑
p∈Pw3

µpxp−15

15
.

Table 5 displays the optimal solution to this example.
As expected, most of the computed capacity changes were negative as a result of

the diminished demand for blood at our demand points. Accordingly, the projected
demand values were as follows:

v∗1 = 5.52, v∗2 = 35.25, and v∗3 = 23.02.

The value of the total cost criterion for this Example was 51,221.32.
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Table 5 Total Cost, Total Discarding Cost, and Total Investment Cost Functions, Initial Capacities,
and Solution for Numerical Example 5

Link a αa ĉa( fa) ẑa( fa) π̂a(ua) ūa f ∗a u∗a γ∗a
1 .97 6 f 2

1 +15 f1 .8 f 2
1 .8u2

1 +u1 48.00 43.02 −0.62 0.00
2 .99 9 f 2

2 +11 f2 .7 f 2
2 .6u2

2 +u2 40.00 34.54 −0.83 0.00
3 1.00 .7 f 2

3 + f3 .6 f 2
3 u2

3 +2u3 26.00 23.77 −1.00 0.00
4 .99 1.2 f 2

4 + f4 .8 f 2
4 2u2

4 +u4 20.00 17.54 −0.25 0.00
5 1.00 f 2

5 +3 f5 .6 f 2
5 u2

5 +u5 19.00 15.45 −0.50 0.00
6 1.00 .8 f 2

6 +2 f6 .8 f 2
6 1.5u2

6 +3u6 21.00 18.40 −1.00 0.00
7 .92 2.5 f 2

7 +2 f7 .5 f 2
7 7u2

7 +12u7 44.00 38.99 −0.86 0.00
8 .96 3 f 2

8 +5 f8 .8 f 2
8 6u2

8 +20u8 37.00 32.91 −1.67 0.00
9 .98 .8 f 2

9 +6 f9 .4 f 2
9 3u2

9 +2u9 39.00 34.43 −0.33 0.00
10 1.00 .5 f 2

10 +3 f10 .7 f 2
10 5.4u2

10 +2u10 35.00 30.96 −0.19 0.00
11 1.00 .3 f 2

11 + f11 .3 f 2
11 u2

11 +u11 26.00 23.49 −0.50 0.00
12 1.00 .5 f 2

12 +2 f12 .4 f 2
12 1.5u2

12 +u12 13.00 10.25 −0.33 0.00
13 1.00 .4 f 2

13 +2 f13 .3 f 2
13 1.8u2

13 +1.5u13 18.00 18.85 0.85 4.57
14 1.00 .6 f 2

14 + f14 .4 f 2
14 u2

14 +2u14 17.00 12.11 −1.00 0.00
15 1.00 .4 f 2

15 + f15 .7 f 2
15 .5u2

15 +1.1u15 6.00 5.52 −0.48 0.63
16 1.00 .8 f 2

16 +2 f16 .4 f 2
16 .7u2

16 +3u16 25.00 20.68 −2.14 0.00
17 .98 .5 f 2

17 +3 f17 .5 f 2
17 2u2

17 +u17 14.00 16.15 2.15 9.59
18 1.00 .7 f 2

18 + f18 .7 f 2
18 u2

18 +u18 0.00 0.00 0.00 1.00
19 1.00 .6 f 2

19 +4 f19 .4 f 2
19 u2

19 +2u19 16.00 14.58 −1.00 0.00
20 .98 1.1 f 2

20 +5 f20 .5 f 2
20 .8u2

20 +u20 13.00 7.34 −0.62 0.00

4 Summary and Conclusions

In this paper, we developed a sustainable supply chain network design model for a
highly perishable health care product – that of human blood. The process incorpo-
rated the determination of the optimal capacities of the various activities of a blood
banking system, consisting of such activities as the procurement of, the testing and
processing of, and the distribution of this product. The model has several novel fea-
tures:
1. it captures the perishability of this life-saving product through the use of arc
multipliers;
2. it contains discarding costs associated with waste/disposal;
3. it determines the optimal enhancement/reduction of link capacities as well as the
determination of the capacities from scratch;
4. it can capture the cost-related effects of shutting down specific modules of the
supply chain due to an economic crisis;
5. it handles uncertainty associated with demand points;
6. it assesses costs associated with shortages/surpluses at the demand points, and
7. it quantifies the supply-side risk associated with procurement.

We illustrated the model through several numerical examples, which vividly
demonstrate the flexibility and generality of our sustainable supply chain network
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design model for blood banking systems. For the sake of generality, and the estab-
lishment of the foundations that will enable further extensions and applications, we
used a variational inequality approach for both model formulation and solution.

The framework developed here can be applied, with appropriate adaptation, to
other perishable products, also in the health care arena, such as medicines and vac-
cines, as well as to agricultural products, including food.
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