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Abstract

In this paper we present a Generalized Nash Equilibrium model of supply chain network

competition among blood service organizations which compete not only for blood donors

but also for business from hospitals and medical centers. The model incorporates not only

link capacities and associated arc multipliers to capture perishability, but also bounds on

the number of donors in regions as well as lower and upper bounds on the demands at

the demand points in order to ensure needed amounts for surgeries, treatments, etc., while

reducing wastage. The concept of a variational equilibrium is utilized to transform the

problem into a variational inequality problem, and alternative formulations are given. A

Lagrange analysis yields economic insights. The proposed algorithmic procedure is then

applied to a series of numerical examples in order to illustrate the impacts of disruptions in

the form of a reduction on the number of donors as well as that of decreases in capacities

of critical links such as testing and processing on RBC prices, demands, net revenues of the

blood service organizations, and their overall utilities.

Keywords: game theory, blood supply chains, supply chain competition, Generalized Nash

Equilibrium, variational inequalities, healthcare
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1. Introduction

The efficient and effective management of blood supply chains is crucial as well as chal-

lenging for blood service organizations. Several inherent characteristics of this life-saving

product such as its short shelf life, and the fact that it cannot be manufactured but must

be donated, create difficulties and risks for stakeholders in this healthcare sector. Shortages

in the supply can lead to societal loss through deaths and, at the same time, excess blood

collected from donors can create loss through wastage.

The blood banking industry in the United States is at a crossroads and is trying to adapt

to the changes in the market and to sustain itself economically (cf. Nagurney (2017)). Ac-

cording to the American Red Cross, the leading supplier of blood in the US, with about

40% of the market, there was a 33% decrease in blood transfusions in the period 2010-2014

(Wald (2014)). Faced with decreased demand, resulting, for example, from medical advances

associated with minimally invasive technologies, a rise in competition among blood banks,

and an increase in the cost of testing of collected blood, many blood service organizations

have been running their operations at negative margins (see Mulcahy et al. (2016)). Further-

more, the new economic landscape for this industry has been accompanied by an increasing

number of mergers and acquisitions (cf. Masoumi, Yu, and Nagurney (2017)) with the goal

of identifying and exploiting various synergies, including cost-based ones. Blood banks need

to be prepared financially in order to meet the demand with a steady supply of safe blood.

The supply of blood in the United States, however, depends on voluntary donations and

donors cannot be paid for providing red blood cells (RBCs). Interestingly, according to the

World Health Organization (2017), globally, 74 countries obtain more than 90% of their

blood supply from voluntary unpaid blood donors, whereas 71 countries collect more than

50% of their blood supply from family/replacement or paid donors. On one hand, it may

be difficult to invoke altruism in people and to motivate them to donate blood, and, on

the other hand, individuals who are motivated to donate blood might not qualify to do

so. According to the Food and Drug Administration regulations, in the US, blood donors

have to go through a strict screening procedure. In addition to meeting the age, weight, and

hemoglobin level requirements, as well as the time period between donations, donors are also

screened for disease risk factors and may get deferred for reasons such as exhibiting signs

and symptoms of colds or the flu, and/or relevant transfusion-transmitted infections, i.e.,

HIV, viral hepatitis, etc. (cf. American Association of Blood Banks (2017)). As a result,

38% of the US population is eligible to donate blood at any given time. However, less than

10% actually donates blood in a year (cf. American Red Cross (2017)). Issues of seasonality

place additional pressures on obtaining blood donations since donors may be preoccupied
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with holidays and/or weather-related issues. Hence, since the blood banking industry has to

rely on voluntary donations from altruistic donors, it, despite an overall decrease in demand,

nevertheless, faces major challenges in terms of maintaining a sufficient supply of blood and

will continue to do so, given the aging population.

Industry experts are noting that the blood supply chain is becoming more and more

similar to traditional commercial supply chains. Consequently, although the blood bank-

ing industry is characteristically not for profit, it is not surprising to find the prevalence

of competition among blood service organizations. Competition exists for blood donations

as well as for supply contracts with hospitals and other medical facilities (Snyder (2001),

Hart (2011)). Since 2011, a small Sarasota-based blood bank, SunCoast Communities Blood

Bank, had been competing for blood donations with a much larger organization, Florida

Blood Services, that served hospitals in Tampa and neighboring areas (Smith (2011)). In

2012 the plight of SunCoast Communities Blood Bank in conducting its operations became

more evident when it urged the state of Florida to stop the merger between three blood ser-

vice organizations; namely, Orlando-based Florida’s Blood Centers, the Community Blood

Centers of Lauderhill, and Florida Blood Services of St. Petersburg on grounds of antitrust

issues (Smith (2012)). In 2013 Eastern Maine Medical Center ended its contract with Amer-

ican Red Cross to do business with Puget Sound Blood Center, a Seattle-based community

blood bank (Barber (2013)). This trend is visible all across the country. Stone (2015) notes

that “loyal blood donors will no longer see the iconic red cross on the side of the blood mobile

next time they give blood at one of Mission Health’s 17 facilities in Western North Carolina”

because of a switch of supplier to a regional nonprofit blood bank of South Carolina, The

Blood Connection, from American Red Cross, ending a 30 year old contractual relationship.

Prior to this new three year contract during which The Blood Connection will be the sole

blood provider to Mission Health, it had been providing only a supplemental blood supply

to the Mission hospitals. More recently, at the end of 2016, the American Red Cross lost

its business in Central Arkansas to Arkansas Blood Institute, an affiliate of the Oklahoma

Blood Institute. This resulted in a layoff of 44 Red Cross employees at two blood centers

(Brantley (2017)).

It is evident from the above examples that hospitals and medical centers may have several

options for suppliers not only within the community and region, but also from out of state

blood banks that may offer lower prices. In order to mitigate the risk of shortages due to

possible supply shortfalls, hospitals and trauma medical centers may try to diversify their

supplier base and contract with multiple blood service organizations (Merola (2017)). The

contracts vary in terms of price, quantity, product mix and duration (Merola (2017)). There
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have been cases where reduced prices have led hospitals to switch blood suppliers (Schwartz

(2012)). However, hospitals and medical centers are most sensitive to service failures such

as the inability to meet demand in a timely manner (Wellis (2017)).

The changing dynamics in the blood industry is forcing blood banks (also referred to

as blood service organizations) to be more innovative in conducting their business. Blood

banks need to price their products competitively based on the supplied quantity in order to

recover costs of their operations and to generate revenue for activities such as research and

development required for providing a steady supply of safe blood. Hence, there is a need for

a change in the approach towards blood supply chain management, which should take into

consideration not only the well-defined problems of perishability, outdating, shortage, and

wastage (see, e.g., Nagurney, Masoumi, and Yu (2012)), but also limits on supply capacity

and competition among blood banks.

In this paper, we formulate a supply chain network competition model for blood banks

in which each blood service organization is faced with the objective of utility maximization,

with components of each blood service organization’s utility function comprised of revenue,

cost, and also a weighted altruism component, since they are nonprofits. The blood service

organizations compete noncooperatively for blood donations and on the network economic

activities associated with their blood supply chains, while aiming to be selected by the

hospitals and other medical centers to supply the required quantity of blood to them, with

these institutions expressing their preferences through the prices that they are willing to pay.

The competing blood service organizations face common supply capacity constraints in terms

of number of available donors in the collection regions. In addition, there are lower and upper

bounds associated with the demand for blood at the hospitals and medical centers at the

demand points over the time horizon since the healthcare facilities need to have a sufficient

amount in stock due to scheduled surgeries, possible additional demand due to trauma and

accidents, etc., while, at the same time, they do not want to have an oversupply resulting

in wastage and adding to the costs of storage and upkeep. The competitive supply chain

network model, due to the common, that is, the shared, constraints on the supply side and on

the demand side, is governed by a Generalized Nash Equilibrium (GNE) (cf. von Heusinger

(2009) and Fischer, Herrich, and Schonefeld (2014)) rather than a Nash equilibrium (see

Nash (1950, 1951)), since not only do the utility functions of the blood service organizations

depend on the strategies of the other blood service organizations, but their feasible sets do as

well. We remark that Rosen (1965), in his foundational paper, studied a class of Generalized

Nash Equilibrium problems.

We derive alternative variational inequality formulations of the governing Generalized
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Nash Equilibrium using the concept of a Variational Equilibrium, and also conduct economic

analysis using Lagrange theory. In addition, we propose an effective algorithmic scheme

which is then applied to numerical examples illustrating the generality and flexibility of the

framework.

2. Literature Review

In this section we present a review of the existing literature on blood supply chain op-

timization and that on supply chain competition and game theory, as well as on capacity

constraints and Generalized Nash Equilibrium, with relevance to our competitive blood ser-

vice organizations supply chain network model. We identify the gaps in some of the areas

and also note how our work contributes to bridging those gaps.

2.1 Blood Supply Chain Optimization

The body of literature on blood supply optimization has been growing steadily over the

years with some of the fundamental literature including that of Nahmias (1982) on perish-

able product inventory and that of Cohen and Pierskalla (1979) targeted at hospital and

regional blood banks. Beliën and Forcé (2012) provide a comprehensive review of the supply

chain management of blood products. The authors classify the works according to various

categories such as the type of blood product, the solution method utilized, etc. Given the

uncertainty in demand and supply of blood and the complex nature of blood supply chains,

some authors have used simulation techniques to optimize the inventory levels (see, e.g.,

Rytilä and Spens (2006), Kopach (2008)) while others (see, e.g., Pierskalla (2005), Hemmel-

mayr et al. (2009)) have used mathematical programming to solve associated facility location

and routing problems. Sarhangian et al. (2017) studied the performance of threshold-based

allocation policies for optimizing blood inventory taking into consideration the trade-off be-

tween age of the blood and availability. Ramezanian and Behboodi (2017) used mixed integer

linear programming (MILP) to solve a deterministic location/allocation problem for blood

collection facilities that takes into consideration the utility of blood donors in order to mo-

tivate them. They further utilized a robust optimization method to account for the issue of

uncertainty in demand for blood. Fortsch and Khapalova (2016) tackle some of the issues

of blood supply chain management by using various forecasting techniques to better predict

the demand for blood at the blood centers; thereby, reducing the uncertainty regarding the

demand for blood. Nagurney, Masoumi, and Yu (2012) take into account uncertainty in the

demand for blood and construct the full associated supply chain network of a blood service

organization. El-Amine, Bish, and Bish (2017) focus on blood screening and consider that

the budget-constrained blood center’s goal is to construct a ”robust” postdonation blood-
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screening scheme that minimizes the risk of an infectious donation being released into the

blood supply. Ayer et al. (2017), in turn, consider when and from which mobile collection

sites to collect blood for cryo production, such that the weekly collection target is met while

the collection costs are minimized. Recent interesting work has also considered the design of

a blood supply chain network in a crisis via a robust stochastic model (see Salehi, Mahootchi,

and Husseini (2017). Overall, there are few studies that address the supply side in blood

banking (Fahimnia et al. (2017), Ramezanian and Behboodi (2017)) and especially in the

context of a competitive environment. In this paper, we incorporate supply side capacity

limits that arise due to the dependence on donations from voluntary donors since not only

do blood service organizations have physical capacities associated with collection, and other

network economic activities in their supply chains, but they also vie for donations from a

limited donor pool.

Perishability of blood and wastage due to outdating is another common issue in blood

supply chains and, hence, has been incorporated into some studies (Chazan and Gal (1977),

Nagurney, Masoumi, and Yu (2012), Duan and Liao (2014), Wang and Ma (2015)). Much

of the recent work on blood supply chains focuses on the optimization of the inventory

at the hospital and blood bank levels as well as on the optimization of the shipment of

blood from the blood banks to the hospitals (Gunpinar and Centeno (2015), Wang and

Ma (2015)). However, there is a dearth of research on optimization of the entire blood

supply chain network due to its complexity. In their literature review paper, focusing on

quantitative models in blood supply chain management, Osorio, Brailsford, and Smith (2015)

mention a few studies on integrated models or models that include all stages of the blood

supply chain (see also, e.g., Katsaliaki and Brailsford (2007), Delen, Erraguntla, and Mayer

(2011), Nagurney, Masoumi, and Yu (2012)). For example, Nagurney, Masoumi, and Yu

(2012) develop a multicriteria optimization model for a regional blood banking system while

capturing the myriad associated supply chain network activities. Similarly, in this paper we

take a holistic approach and include in our network structure and model the different stages

of the blood supply chain along with the associated activities, such as collection, testing,

processing, distribution, etc., of the multiple blood service organizations.

2.2 Supply Chain Competition Among Nonprofits and Game Theory

A major contribution of our paper is the modeling of the supply chain competition among

blood service organizations using game theory. We identify the network structure in a manner

that it can reflect competition among blood service organizations on a regional basis as well

as on a national level, if need be. To the best of our knowledge, this is the first attempt
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of its kind. While there are some studies on the effects of competition among nonprofit

organizations (see Muggy and Heier Stamm (2014), Nagurney, Alvarez Flores, and Soylu

(2016), Nagurney and Li (2017), and the references therein), a thorough literature search

failed to identify any work on the modeling of competition among blood service organizations

in the framework of their supply chains.

Noncooperative game theory is a powerful tool that is used extensively for formulating

and solving problems where there is competition. While it is primarily used in the case of

profit-making entities, several studies have used game theory to model competition among

nonprofit organizations; see, e.g., Ortmann (1996), Tuckman (1998), Castaneda, Garen,

and Thornton (2008), Bose (2015), and Nagurney and Li (2017). There is, however, a

limited number of works applying game theory in the realm of nonprofit supply chains and

even fewer in the context of blood services. Saxton and Zhuang (2013) argued for the

relevance of game theory in markets for charitable contributions and presented a model

consisting of an organization and a donor. Zhuang, Saxton, and Wu (2011) provided a

sequential game theoretical model of disclosure-donation interactions with one nonprofit

organization and multiple donors. Nagurney, Alvarez Flores, and Soylu (2016) developed a

Generalized Nash Equilibrium network model in which nonprofit organizations are competing

for financial funds for post-disaster relief operations, while minimizing costs associated with

relief item distribution. Nagurney and Dutta (2018) built on that paper and constructed

a game theoretical model that captures the competition among blood banks for voluntary

donations. In this paper, we move forward to develop the competition model for the blood

supply chain networks associated with multiple blood service organizations, which also yields

pricing information, upon solution.

2.3 Supply Capacity Constraints and Generalized Nash Equilibrium

There exists a rich body of literature on capacity constraints in supply chains (Gavir-

neni (2002), Lee and Kim (2002), Choi, Dai, and Song (2004), Goh, Lim, and Meng (2007),

Jung et al. (2008), Nagurney and Li (2016), Nagurney, Yu, and Besik (2017), and Nagur-

ney (2018)). However, the capacities considered in those supply chains pertain to physical

capacities of production plants, distribution channels, freight service providers, etc., which

vary from one firm to another. Similar to commercial firms, blood service organizations

have limited resources in terms of space for collection, processing, and storage, and access

to transportation vehicles, etc. Masoumi, Yu, and Nagurney (2017) introduce upper bounds

on the capacity volume of various activities in the blood supply chain network consisting of

collection, processing, shipment, storage, and distribution along with frequencies of supply
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chain activities. In keeping with their work, we include explicit physical capacities on all

links pertaining to activities, from the collection of blood to the distribution to demand

markets; however, since our work is more on the tactical and strategic levels, we exclude

frequencies. Moreover, we include multiple, competing blood service organizations as well

as novel supply and demand constraints.

A segment of the blood supply literature is focused on donor motivation. Theoretical

works such as those of Andreoni (1990), Mellström and Johanesson (2008), and Evans and

Ferguson (2013) discuss the effect of altruism on blood donor motivation. Several papers (see

Gillespie and Hillyer (2002), Schreiber et al. (2006), Yuan et al. (2011)) study the impact of

operational aspects of blood collection that might motivate or deter blood donation such as

the wait time, the location of the collection center, and the treatment by staff. Based on the

empirical evidence provided in such studies, Nagurney and Dutta (2018) formulated a game

theoretical model that captures the competition for blood donations among blood service or-

ganizations that compete on the quality of service provided. The voluntary donation aspect,

as mentioned earlier, poses another challenge to blood banks since only a segment of the pop-

ulation can donate blood. Hence, we can say that there is an upper bound on the quantity

of blood that can be collected, imposing additional but, now, common/shared, constraints

for the competing blood service organizations. Furthermore, we include common/shared

constraints on the demand side at the demand points. Nagurney, Yu, and Besik (2017)

utilize the concept of a Variational Equilibrium to formulate and solve the Generalized Nash

Equilibrium problem in the case of commercial supply chain network capacity competition

with outsourcing with capacities associated with shared links of storage and freight service

provision. For a detailed discussion of GNE, in the context of a nonprofit, disaster relief

framework, and the associated challenges of formulation and solution, we direct the readers

also to Nagurney, Alvarez Flores, and Soylu (2016) and the references therein.

2.4 Our Contributions

Since Generalized Nash Equilibrium problems are challenging to solve when formulated

as quasivariational inequality problems (Bensoussan (1974)), for which the state-of-the-art in

terms of algorithmic procedures is not as advanced as that for variational inequality problems

(cf. Nagurney (2006) for background on supply chains and variational inequalities), here we

utilize the concept of Variational Equilibrium. In particular, a variational equilibrium, which

is a specialized type of GNE, allows us to formulate and solve our model as a variational

inequality problem. According to Luna (2013), the associated Lagrange multipliers of the

common constraints are then equal to the different players in the game, which provides us
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with an elegant economic interpretation in terms of fairness.

To-date, there has been only a limited literature in terms of supply chain network com-

petition with shared constraints in terms of either commercial applications (see Nagurney,

Yu, and Besik (2017)) or nonprofit ones (cf. Nagurney, Alvarez Flores, and Soylu (2016),

Nagurney et al. (2017)). Moreover, in terms of Lagrange analysis and supply chain network

problems, which are Generalized Nash Equilibrium problems, to-date, the work of Nagurney

et al. (2017) in competitive supply chain models for disaster relief is relevant. However, that

model is a pure network flow model, whereas the model in this paper is a generalized network

model to capture perishability. For Lagrange theory applied to other variational inequality

network models, but not Generalized Nash Equilibrium ones, see: Daniele (2001) (spatial

economic models), Barbagallo, Daniele, and Maugeri (2012) (financial networks), Toyasaki,

Daniele, and Wakolbinger (2014) (end-of-life products networks), Daniele and Giuffrè (2015)

(random traffic networks), Caruso and Daniele (2018) (transplant networks), and Colajanni

et al. (2018) (supply chains and cybersecurity investments).

The supply chain competition model for blood service organizations (BSOs) in this paper

bridges gaps in the literature through the following contributions:

1. We include multiple, competing blood service organizations in which the link cost func-

tions are not assumed to be separable; that is, the cost on a link may, in general, depend not

only on the flow on that link but also on flows on other links of the specific BSO’s supply

chain network as well as on the flows on links of other BSOs’ supply chain networks. In

the case of multiple blood supply chain networks, in contrast, Masoumi, Yu, and Nagurney

(2017) considered link cost functions that were separable and in the case of cost minimiza-

tion. The generality of our cost functions enables the modeling of supply chain network

competition for resources among the BSOs.

2. Common/shared capacities are incorporated on the supply side in terms of blood dona-

tions, and common/shared constraints on the demand side due to demand point constraints

consisting of lower and upper bounds on the blood needed. No model, to-date, considers

such features with the former uniquely relevant to blood supply chain network competition,

not considered until this paper, and the latter also very relevant due to the need to meet the

demand for blood while also minimizing wastage.

3. The utility functions of the blood service organizations contain revenue as well as al-

truism/benefit components with the latter being weighted. Nagurney and Li (2017) also

considered nonprofit competition with revenue and altruism features but in the case of hos-

pital competition on a simpler, bipartite network and with the altruism component of an
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entirely different construct than herein.

4. Not only is the equilibrium blood product flow in terms of RBCs determined for each blood

service organization, given the competition and the constraints, and also perishability, but

also differentiated prices revealed. Hence, our model enables the incorporation of different

factors that would affect prices that distinct hospitals and medical centers would be willing

to pay for RBCs and that different blood service organizations would, therefore, be able to

charge them.

5. We provide alternative variational inequality formulations of the Generalized Nash Equi-

librium problem, along with economic analysis utilizing Lagrange theory associated with the

various capacity constraints as well as the demand constraints.

6. Finally, we propose an effective computational scheme and then apply it to compute the

equilibrium solutions in numerical examples comprising our case study.

The remainder of this paper is organized as follows. In Section 3, the model is constructed,

and alternative variational inequality formulations provided. In addition, Lagrange analysis

is conducted to gain insights into the economic meaning associated with the supply and

demand constraints. In Section 4, the algorithmic scheme is proposed, along with explicit

formulae, at each iteration, for the RBC path flows, and the Lagrange multipliers associated

with the blood collection links, the physical capacity link bounds, and the demand point

upper and lower bounds for RBCs. We then demonstrate the applicability of the framework

through a case study consisting of a series of numerical examples. We summarize our results

in Section 5 and provide suggestions for future research.

3. The Multiple Blood Service Organizations Supply Chain Network Competi-

tion Model

Blood service organizations (blood banks) collect blood periodically through blood drives

at collection facilities and/or through blood mobile units. Once whole blood is collected at

the collection sites it is sent to component laboratories for processing and testing for disease

markers. The processing involves separation of the whole blood into components such as

red blood cells, plasma, and platelets. Different blood products have distinct shelf lives with

RBCs having to be used within 42 days and platelets within 5 days. Each type of product

also needs to be stored at specific temperatures. Hence, supply chain management strategies

for blood need to be component-specific. We focus on RBCs in our model since these are the

most common type of blood product and are used for transfusions in surgeries, treatments

for cancer and other diseases, etc.
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Figure 1: Supply Chain Network Topology for I Blood Organizations

As depicted in Figure 1, there are I blood service organizations competing with each

other. Each blood service organization i can collect blood at ni
C collection sites. We assume

that there are J regions in which blood banks can set up collection sites or send blood mobiles

to. Each of the ni
C ; i = 1, .., I, collection sites belongs to a region j; j = 1, . . . , J . Collected

blood by i is then shipped to ni
B blood centers. From there, blood is sent to ni

CL component

laboratories for testing and processing and, subsequently, shipped to ni
S storage facilities.

The component laboratories may not be separate physical entities but may exist within the

blood centers (cf. Nagurney, Masoumi, and Yu (2012)). The subsequent tier of the supply
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chain network for i; i = 1, . . . , I, in Figure 1, is comprised of ni
D distribution centers. The

blood banks may serve the same nH demand points consisting of hospitals, medical centers,

etc., and denoted by the bottom nodes: H1, . . . , HnH
in Figure 1. These “demand markets”

may be served by multiple blood banks since this is the case in reality. For example, Baystate

Health in Massachusetts procures blood from the American Red Cross and from the Rhode

Island Blood Bank in addition to having in-house blood collection (Merola (2017)).

Each link between a pair of nodes denotes an activity along the supply chain. The links

from the blood service organizations to the collection sites represent the collection procedure.

The next set of links to the component labs represent the processing and testing of blood. The

successive sets of links denote, respectively, storage, shipment, and distribution to demand

points. There are also some direct links from storage facilities to demand points since in

some cases blood banks work closely with the hospitals and monitor their inventory levels

and ship the required amount of blood directly to reduce cost (Wellis (2017)). Hence, the

network topology corresponding to even a single blood service organization, as depicted in

Figure 1, is more general than those constructed in Nagurney, Masoumi, and Yu (2012) and

in Masoumi, Yu, and Nagurney (2017).

As mentioned earlier, the new model can be used to capture regional as well as nationwide

competition. Moreover, large blood service organizations such as the American Red Cross

and the New York Blood Center have multiple component labs, storage, and distribution

centers, whereas smaller community ones might have one each. In our model we assume the

time horizon in which all the activities are occurring to be one week.

The network topology of the blood service organizations’ supply chains is represented by

G = [N, L] where N and L denote the sets of nodes and links, respectively. We also define

Li as the set of all the directed links corresponding to the sequence of activities pertaining to

the supply chain network of blood service organization i; i = 1, . . . , I. Associated with each

link a is a total operational cost function, denoted by ĉa ∀a ∈ L, representing the cost for

each activity corresponding to collection, processing and testing, storage and distribution.

A path p consists of a sequence of links originating at one of the top origin nodes in Figure

1, ranging from node 1 through node I, and ending at a destination node, corresponding to

one of the demand points: H1, . . . , HnH
.

In order to capture perishability, we utilize a generalized network approach with appro-

priate arc and path multipliers (see also, e.g., Nagurney et al. (2013)) as defined in Table 1.

Moreover, since we are dealing with RBCs those paths that would have a time length greater

than 42 days are explicitly removed from the network(s) in Figure 1 since they would, in
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Table 1: Multiplier Notation for Perishability
Notation Definition

αa The arc multiplier associated with link a, which represents the percent-
age of throughput on link a. αa ∈ (0, 1]; a ∈ L.

αap The arc-path multiplier, which is the product of the multipliers of the
links on path p that precede link a; a ∈ L and p ∈ P ; that is,

αap ≡


δap

∏
b∈{a′<a}p

αb, if {a′ < a}p 6= Ø,

δap, if {a′ < a}p = Ø,

where {a′ < a}p denotes the set of the links preceding link a in path p
and δap = 1, if link a is contained in path p, and 0, otherwise.

µp The multiplier corresponding to the percentage of throughput on path

p; that is, µp ≡
∏
a∈p

αa; p ∈ P .

effect, be infeasible (and against Food and Drug Administration regulations).

Let xp denote the nonnegative flow of blood on path p. Let the weekly demand for

blood from blood service organization i at demand point k be denoted by dik; i = 1, ..., I;

k = H1, . . . , HnH
. Let P i

k denote the set of all paths joining blood service organization node

i with destination node Hk. We group the demands into the vector d ∈ RInH
+ .

The conservation of flow equation that has to hold for each blood service organization i;

i = 1, . . . , I, at each demand point k; k = H1, . . . , HnH
, is∑

p∈P i
k

µpxp = dik, (1)

that is, the demand for blood at each demand point from each blood service organization

has to be satisfied. Observe that, according to (1) the amount of blood product flow along a

path that arrives at a destination node is equal to the path multiplier times the initial flow

on the path since there may be losses due to testing, etc.

Moreover, the path flows must be nonnegative, that is:

xp ≥ 0, ∀p ∈ P, (2)

where P denotes the set of all paths in the network in Figure 1 from origin nodes corre-

sponding to the organizations to the destination nodes corresponding to the demand points.

Let fa denote the flow of blood on link a. Then, the following conservation of flow
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equations must also hold:

fa =
∑
p∈P

xpαap, ∀a ∈ L. (3)

Note that, according to (3), the initial product flow on link a is the sum of the product

flows along paths that contain that link, taking into account possible losses in the preceding

activities.

As mentioned earlier, the raw material in the supply chain for blood products cannot

be manufactured but has to be collected from voluntary donors. Hence, the total amount

of blood that can be collected is restricted in terms of the percentage of population that

is eligible to donate blood in a particular region in a given week. An eligible donor, say,

in Sarasota County in Florida, is unlikely to travel to a distant region in the state or to

another state, unless it is in proximity, to donate blood. Therefore, we specify region-based

populations and recall that, typically, a donor donates one pint of blood at a time. We let

Lj
1 denote the set of top-tier links in the network in Figure 1 representing blood collection

in region j. Then we have the following constraint for each region j; j = 1, . . . , J :∑
a∈Lj

1

fa ≤ Sj, (4)

where Sj represents the total population eligible to donate blood in a given week in region

j; j = 1, . . . , J . Unlike commercial product supply chains with capacity constraints, in this

case, the constraint is not on the physical capacity of the production or collection facilities

but on the actual supply of the raw material. Observe that (4) is a common, that is, a shared

constraint among the blood service organizations if a given region includes collection links

of multiple blood service organizations.

In addition, we incorporate explicit link capacities on all the network links in Figure 1,

which represent the actual physical capacities. Hence, for each blood service organization i;

i = 1, . . . , I, each link a ∈ Li has a positive associated capacity denoted by ua. Then, the

following constraints must also be satisfied:

fa ≤ ua, ∀a ∈ Li, i = 1, . . . , I. (5)

We group all the link flows in the network into the vector f ∈ RnL where nL is the total

number of elements in L, the set of all links.

Finally, hospitals and medical centers, that is, the demand points, have constraints, which

may be included in the contracts with the blood service organizations. In particular, they

contract for a lower bound for the weekly deliveries of blood, while also dealing with upper
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bounds on the amounts that they can safely store in order to also reduce wastage and

associated costs. These constraints are as follows:

I∑
i=1

∑
p∈P i

k

µpxp ≥ dk, k = H1, . . . , HnH
, (6)

I∑
i=1

∑
p∈P i

k

µpxp ≤ d̄k, k = H1, . . . , HnH
, (7)

where dk denotes the lower bound for units of RBCs at demand point k and d̄k denotes the

upper bound at k. Observe that these are common/shared constraints for the blood service

organizations and, hence, will affect their feasible sets, as they compete to serve the hospitals

and medical centers with blood.

The total link cost on link a, denoted by ĉa, ∀a ∈ L, may, in general, be a function of all

the link flows in the network. This is to enable the modeling of competition for resources

across the blood service organizations’ supply chain networks. Hence, we have that

ĉa = ĉa(f), ∀a ∈ L. (8)

For example, blood service organizations may compete for staff to conduct the various supply

chain network activities; moreover, they may compete for freight services for distribution

purposes, etc.

The price that demand point k is willing to pay for a unit of RBCs from blood service

organization i is denoted by ρik for i = 1, . . . , I; k = H1, . . . HnH
and is given by the function:

ρik = ρik(d), i = 1, . . . , I; k = H1 . . . , HnH
. (9)

Hence, the price charged per unit of RBCs may, in general, depend on the vector of demands,

due to the competition among the hospitals and medical centers for blood. The prices

represent the value that a hospital or medical center places on a unit of RBC from a specific

blood service organization and that it is willing to pay. These price functions may incorporate

parameters reflecting the duration of the contract, if the BSO is selected by the particular

hospital, as well as historical information as to the reliability of the former.

In addition, since the majority of blood banks in the US are nonprofits, there is a util-

ity associated with the service that they provide (cf. Nagurney, Alvarez Flores, and Soylu

(2016)). Let γik correspond to a measurement of the satisfaction that blood service or-

ganization i derives from supplying blood to demand point k. The overall such “service”

utility of blood service organization i associated with all the demand points is then given
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by
∑HnH

k=H1
γikdik. This service utility also represents altruism (cf. Nagurney, Alvarez Flores,

and Soylu (2016)). In addition, each blood service organization i associates a weight ωi with

its service utility, which monetizes it. According to the function ωi

∑HnH
k=H1

γikdik, the greater

the amount made available, the more patients that can benefit and, therefore, the greater

the good that can be accomplished.

By synthesizing the above revenue and cost terms as well as what may be considered to be

a weighted altruism function, the utility function of blood service organization i; i = 1, . . . , I,

denoted by Ui, can be expressed as:

Ui =

HnH∑
k=H1

ρik(d)dik + ωi

HnH∑
k=H1

γikdik −
∑
a∈Li

ĉa(f). (10)

The utility function (10) is assumed to be concave and continuously differentiable. It is to

be noted that this is the utility of each blood service organization over a time horizon of a

week.

In our model the blood service organizations are trying to maximize their utility, subject

to constraints (1)-(7), while competing for the quantity of blood to be obtained and to be

supplied to the hospitals and medical centers. Hence, each blood service organization has,

as its strategies, its vector of path flows, Xi, such that

Xi ≡ {{xp}|p ∈ P i} ∈ R
nPi

+ , (11)

where P i denotes the set of all paths associated with i and nP i denotes the number of paths

from i to the demand points. Then, X is the vector of all the blood banks’ path flows, that

is, X ≡ {{Xi}|i = 1, . . . , I}. We, also, for simplicity of notation, use x ≡ X.

Using the conservation of flow equations (3), we can rewrite the shared constraint (4), for

each region j = 1, . . . , J , in terms of the strategic variables, i.e., the path flows, as:∑
a∈Lj

1

∑
p∈P

xpδap ≤ Sj, j = 1, . . . , J. (12)

Since collection of blood is the first activity in the network and there are no preceding links,

from the definition of the arc-path multiplier we have αap = δap.

Similarly, the individual blood bank’s capacity constraints for all activities can be rewrit-

ten as follows: ∑
p∈P

xpαap ≤ ua, ∀a ∈ Li, i = 1, . . . , I. (13)
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We define the i-th blood bank’s individual feasible set, Ki, as

Ki ≡ {Xi|(2) and (13) hold for i}. (14)

Further, we define the feasible set consisting of the shared constraints, S, as:

S ≡ {X| (12), (6), and (7) hold}. (15)

Also, in view of (1), we may reexpress the demand price functions (9) as:

ρ̂ik = ρ̂ik(x) ≡ ρik(d), i = 1, . . . , I; k = H1, . . . , HnH
. (16)

Using the conservation of flow equations (1) through (3), and, given the form of the total

link cost functions, the demand price functions, and the weighted altruism functions, we can

define each blood service organization utility function in terms of path flows only, that is,

Ûi(X) ≡ Ui; i = 1, . . . I. We then group these utilities into an I-dimensional vector Û , where

Û = Û(X). (17)

In our model we assume that the blood service organizations compete noncooperatively

in an oligopolistic market framework in which each blood service organization selects its

blood product flows to maximize its utility, until an equilibrium is achieved, according to

the definition below.

Definition 1: Blood Supply Chain Network Generalized Nash Equilibrium

A blood product path flow pattern X∗ ∈ K ≡
∏I

i=1 Ki, X∗ ∈ S, constitutes a blood supply

chain network Generalized Nash Equilibrium if for each blood service organization i; i =

1, ..., I :

Ui(X
∗
i , X̂∗

i ) ≥ Ui(Xi, X̂∗
i ), ∀Xi ∈ Ki,∀X ∈ S, (18)

where

X̂∗
i ≡ (X∗

1 , . . . , X
∗
i−1, X

∗
i+1, . . . , X

∗
I ).

According to (18) an equilibrium is established if no blood service organization can uni-

laterally improve upon its utility by selecting an alternative vector of blood product flows,

given the blood product flows of the other blood service organizations, and subject to the
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capacity constraints, both individual and shared ones, the shared demand constraints, and

the nonnegativity constraints. It is to be noted that K and S are both convex sets.

If there are no coupling, that is, shared, constraints in this problem then X and X∗ in

Definition 1 need only lie in the feasible set K, and, under the assumption of concavity of the

utility functions and that they are continuously differentiable, we know that (cf. Gabay and

Moulin (1980) and Nagurney (1999)) the solution to what would then be a Nash Equilibrium

problem (see Nash (1950, 1951)) would coincide with the solution to the following variational

inequality problem: determine X∗ ∈ K, such that

−
I∑

i=1

〈∇Xi
Ûi(X

∗), Xi −X∗
i 〉 ≥ 0, ∀X ∈ K, (19)

where 〈·, ·〉 denotes the inner product in the corresponding Euclidean space and ∇Xi
Ûi(X)

denotes the gradient of Ûi(X) with respect to Xi.

However, as mentioned earlier, since here the blood service organizations have common

constraints on the amount of blood that can be collected, and on the amounts to be delivered,

the strategies of each BSO affect both the objective functions as well as the feasible sets of

the other BSOs. Consequently, this is a Generalized Nash Equilibrium (GNE) which cannot

be directly formulated as variational inequality problem, but may be formulated as a quasi-

variational inequality.

We now define the variational equilibrium which, as emphasized in Nagurney, Yu, and

Besik (2017) and Nagurney et al. (2017), is a refinement of the Generalized Nash Equilibrium

and is a specific type of GNE (see Kulkarni and Shahbhang (2012)). In a GNE defined by

a variational equilibrium, the Lagrange multipliers associated with the shared constraints

are all the same which provides a fairness interpretation and makes sense from an economic

standpoint. Specifically, we have:

Definition 2: Variational Equilibrium

A strategy vector X∗ is said to be a variational equilibrium of the above Generalized Nash

Equilibrium game if X∗ ∈ K, X∗ ∈ S is a solution of the variational inequality:

−
I∑

i=1

〈∇Xi
Ûi(X

∗), Xi −X∗
i 〉 ≥ 0, ∀X ∈ K, ∀X ∈ S. (20)

Hence, we can take advantage of the well-developed theory of variational inequalities,

including algorithms (see Nagurney (1999) and the references therein), which is in a more
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advanced state of development and application than the algorithms for quasivariational in-

equality problems.

We now expand the terms in the variational inequality (20).

From the definition of a gradient, we know that

−∇Xi
Ûi(X) =

[
−∂Ûi

∂xp

; p ∈ P i
k; k = H1, . . . , HnH

]
. (21)

We also know that, in view of (1) and (10), that for paths p ∈ P i
k:

−∂Ûi

∂xp

= −
∂(

∑HnH
l=H1

ρil(d)
∑

q∈P i
l
µqxq + ωi

∑HnH
l=H1

γil

∑
q∈P i

l
µqxq −

∑
b∈Li ĉb(f))

∂xp

. (22)

Then, making use of (1) and (3) and the expression (16), we have that for p ∈ P i
k:

∂Ĉp(x)

∂xp

≡
∑
a∈Li

∑
b∈Li

∂ĉb(f)

∂fa

αap, (23a)

∂ρ̂il(x)

∂xp

≡ ∂ρil(d)

∂dik

µp, (23b)

and we obtain for p ∈ P i
k:

−∂Ûi

∂xp

=

∂Ĉp(x)

∂xp

− ωiγikµp − ρ̂ik(x)µp −
HnH∑
l=H1

∂ρ̂il(x)

∂xp

∑
q∈P i

l

µqxq

 . (24)

Hence, (20) is equivalent to the variational inequality: determine x∗ ∈ K, x∗ ∈ S such

that:

I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

[
∂Ĉp(x

∗)

∂xp

− ωiγikµp − ρ̂ik(x
∗)µp −

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q

]
× [xp − x∗p] ≥ 0,

∀x ∈ K, x ∈ S. (25)

For simplicity, we refer to ∂Ĉp(x)

∂xp
as the marginal total cost of path p.

Variational inequality (25) is now put into standard form (cf. Nagurney (1999)): deter-

mine Y ∗ ∈ K ⊂ RN , such that

〈F (Y ∗), Y − Y ∗〉 ≥ 0, ∀Y ∈ K, (26)
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where F is a given continuous function from K to RN , K is a closed convex set, and here

N = nP with Y , Y ∗, and F (Y ∗) all being column vectors.

We define Y ≡ X ≡ x, and let the p-th component of F (Y ) for a given i, k, p ∈ P i
k, ∀i, k,

be [
∂Ĉp(x)

∂xp

− ωiγikµp − ρ̂ik(x)µp −
HnH∑
l=H1

∂ρ̂il(x)

∂xp

∑
q∈P i

l

µqxq

]
, (27)

with K ≡ K1 ≡ K ∩ S, then variational inequality (25) can be put into the form (26).

Remark: Existence of an Equilibrium Solution

We assume that the feasible set K is nonempty, which will be the case if the capacities

on the links and blood donor regions are sufficient to satisfy the sum of the demands for

blood at the demand points. An equilibrium blood flow pattern X∗ = x∗ ∈ K satisfying

variational inequality (26); equivalently, variational inequality (25), is guaranteed to exist

since the function F (X) is continuous under the imposed assumptions and the feasible set

K is compact, due to the nonnegative assumption on the blood path flows and the link and

blood donor regional upper bound capacities.

3.1 Alternative Variational Inequality Formulations and Lagrange Analysis with

Economic Interpretation

In this subsection, we first present an alternative variational inequality formulation to

the one in (25), again, in path flows, but using Lagrange multipliers. We then conduct

an economic analysis using Lagrange theory and conclude with, yet, another variational

inequality, which we utilize for computational purposes in Section 4.

Let ηj, ∀j, and θa; a ∈ L, denote the Lagrange multipliers associated with constraints (12)

and (13), respectively. In addition, let σk; ∀k, denote the Lagrange multiplier associated with

the k-th lower bound demand constraint (6) and let εk; ∀k, denote the Lagrange multiplier

associated with the k-th upper bound demand constraint (7). We group the above Lagrange

multipliers into the respective vectors: η ∈ RJ
+, θ ∈ RnL

+ , σ ∈ RnH
+ , and ε ∈ RnH

+ . Also, we

let βp; ∀p ∈ P , denote the Lagrange multiplier associated with each path p nonnegativity

constraint (2) and we group these Lagrange multipliers into the vector β ∈ RnP
+ . We define

the feasible set K2 ≡ {(x, β, η, θ, σ, ε)|x ∈ RnP
+ , β ∈ RnP

+ , η ∈ RJ
+, θ ∈ RnL

+ , σ ∈ RnH
+ , ε ∈

RnH
+ }. Then, we have the following result:
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Theorem 1: Alternative Variational Inequality Formulation of the Variational

Equilibrium in Path Flows

The variational inequlity (25) is equivalent to the variational inequality: determine the vector

of equilibrium path flows and Lagrange multipliers, (x∗, β∗, η∗, θ∗, σ∗, ε∗) ∈ K2, such that:

I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

[
∂Ĉp(x

∗)

∂xp

− β∗p +
J∑

j=1

∑
a∈Lj

1

η∗j δap +
∑
a∈Li

θ∗aαap − ωiγikµp − σ∗kµp + ε∗kµp − ρ̂ik(x
∗)µp

−
HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q

]
× [xp − x∗p]

+
∑
p∈P

x∗p× [βp−β∗p ]+
J∑

j=1

[
Sj−

∑
a∈Lj

1

∑
p∈P

x∗pδap

]
× [ηj−η∗j ]+

I∑
i=1

∑
a∈Li

[
ua−

∑
p∈P

x∗pαap

]
× [θa−θ∗a]

+

HnH∑
k=H1

(
I∑

i=1

∑
p∈P i

k

µpx
∗
p−dk)×(σk−σ∗k)+

HnH∑
k=H1

(d̄k−
I∑

i=1

∑
p∈P i

k

µpx
∗
p)×(εk−ε∗k) ≥ 0, ∀(x, β, η, θ, σ, ε) ∈ K2.

(28)

Proof: By setting:

V (x) =
I∑

i=1

HnH∑
k=H1

∑
p∈P i

k

[
∂Ĉp(x

∗)

∂xp

−ωiγikµp−ρ̂ik(x
∗)µp−

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q

]
×[xp−x∗p], (29)

variational inequality (25) can be rewritten as:

MinKV (x) = V (x∗) = 0. (30)

Under the previously imposed assumptions we know that all the underlying functions in (30)

are continuously differentiable and convex.

We then let:
bp = −xp ≤ 0, ∀p,
ej =

∑
a∈Lj

1

∑
p∈P

xpδap − Sj ≤ 0, ∀j,

ga =
∑
p∈P

xpαap − ua ≤ 0, ∀a,

hk = dk −
I∑

i=1

∑
p∈P i

k

µpxp ≤ 0, ∀k,

rk =
I∑

i=1

∑
p∈P i

k

µpxp − d̄k ≤ 0, ∀k,

(31)
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and

Γ(x) = (bp, ej, ga, hk, rk)p∈P ;j=1,...,J ;a∈L;k=H1,...,HnH
. (32)

Hence, we can rewrite the feasible set K as

K = {x ∈ RnP
+ : Γ(x) ≤ 0}. (33)

We now construct the Lagrange function:

L(x, β, η, θ, σ, ε) =
I∑

i=1

(−
HnH∑
k=H1

ρ̂ik(x)
∑
p∈P i

k

µpxp − ωi

HnH∑
k=H1

γik

∑
p∈P i

k

µpxp +
∑
a∈Li

ĉa(Ax))

+
∑
p∈P

βpbp +
J∑

j=1

ηjej +
∑
a∈L

θaga +

HnH∑
k=H1

σkhk +

HnH∑
k=H1

εkrk, (34)

∀x ∈ RnP
+ ,∀β ∈ RnP

+ ,∀η ∈ RJ
+,∀θ ∈ RnL

+ ,∀σ ∈ RnH
+ ,∀ε ∈ RnH

+ ,

where A is the arc-path incidence matrix with component ap = 1, if link a is contained in

path p and 0, otherwise; β is the vector with components: {βp,∀p ∈ P}, with η and the

other vectors of Lagrange multipliers as defined above.

It is straightforward to establish that the feasible set K is convex and that the Slater

condition holds. Then, if x∗ is the minimal solution to problem (30), there exist β∗ ∈ RnP
+ ,

η∗ ∈ RJ
+, θ∗ ∈ RnL

+ , σ∗ ∈ RnH
+ , and ε∗ ∈ RnH

+ such that the vector (x∗, β∗, η∗, θ∗, σ∗, ε∗) is a

saddle point of the Lagrange function (34), that is:

L(x∗, β, η, θ, σ, ε) ≤ L(x∗, β∗, η∗, θ∗, σ∗, ε∗) ≤ L(x, β∗, η∗, θ∗, σ∗, ε∗), (35)

∀x ∈ RnP
+ ,∀β ∈ RnP

+ ,∀η ∈ RJ
+,∀θ ∈ RnL

+ ,∀σ ∈ RnH
+ ,∀ε ∈ RnH

+ ,

and

β∗pb
∗
p = 0, ∀p ∈ P,

η∗j e
∗
j = 0, ∀j,

θ∗ag
∗
a = 0, ∀a ∈ L,

σ∗kh
∗
k = 0, ε∗kr

∗
k = 0, ∀k. (36)

From the right-hand side of (35) it follows that x∗ ∈ RnP
+ is a minimal point of L(x, β∗, η∗, θ∗, σ∗, ε∗)

in the entire space RnP and, therefore, we have that for all p ∈ P i
k, ∀i, ∀k:

∂L(x∗, β∗, η∗, θ∗, σ∗, ε∗)

∂xp
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=
∂Ĉp(x

∗)

∂xp

−ωiγikµp−ρ̂ik(x
∗)µp−

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q−β∗p+

J∑
j=1

∑
a∈Lj

1

η∗j δap+
∑
a∈Li

θ∗aαap−σ∗kµp+ε∗kµp = 0,

(37)

together with conditions (36).

Conditions (36) and (37) correspond to an equivalent variational inequality to that in

(25). For example, if we multiply (37) by (xp − x∗p) and sum with respect to p ∈ P i
k, ∀i, ∀k,

we obtain:

I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

∂Ĉp(x
∗)

∂xp

− ωiγikµp − ρ̂ik(x
∗)µp −

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q

× (xp − x∗p)

=
I∑

i=1

HnH∑
k=H1

∑
p∈P i

k

β∗pxp −
I∑

i=1

HnH∑
k=H1

∑
p∈P i

k

β∗px
∗
p

−
I∑

i=1

HnH∑
k=H1

∑
p∈P i

k

J∑
j=1

∑
a∈Li

j

η∗j xpδap +
I∑

i=1

HnH∑
k=H1

∑
p∈P i

k

J∑
j=1

∑
a∈Lj

1

η∗j x
∗
pδap

−
I∑

i=1

HnH∑
k=H1

∑
p∈P i

k

∑
a∈Li

θ∗aαapxp +
I∑

i=1

HnH∑
k=H1

∑
p∈P i

k

∑
a∈Li

θ∗aαapx
∗
p

+
I∑

i=1

HnH∑
k=H1

∑
p∈P i

k

σ∗kµpxp −
I∑

i=1

HnH∑
k=H1

∑
p∈P i

k

σ∗kµpx
∗
p −

I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

ε∗kµpxp +
I∑

i=1

HnH∑
k=H1

∑
p∈P i

k

ε∗kµpx
∗
p.

(38)

Examining the expressions on the right-hand side of the equal sign in (38) we know that

for j = 1, . . . , J , ∀a ∈ L, and for k; k = H1, . . . , HnH
:

I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

βpx
∗
p = 0,

I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

∑
a∈Lj

1

η∗j x
∗
pδap = η∗j Sj,

I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

θ∗aαapx
∗
p = θ∗aua,

I∑
i=1

∑
p∈P i

k

σ∗kµpx
∗
p = σ∗kdk,

I∑
i=1

∑
p∈P i

k

ε∗kµpx
∗
p = ε∗kd̄k. (39)
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Hence, the right-hand side of (38) simplifies to:

I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

β∗pxp −
J∑

j=1

η∗j (
I∑

i=1

∑
a∈Li

j

HnH∑
k=H1

∑
p∈P i

k

xpδap − Sj)−
∑
a∈L

θ∗a(fa − ua)

+

HnH∑
k=H1

σ∗k(
I∑

i=1

∑
p∈P i

k

µpxp − dk)−
HnH∑
k=H1

ε∗k(
I∑

i=1

∑
p∈P i

k

µpxp − d̄k) ≥ 0, (40)

and the conclusion follows. 2

We now provide an economic interpretation of the Lagrange multipliers. We consider a

path p ∈ P i
k for a fixed i and k where x∗p > 0, that is, the equilibrium blood flow on the path

is positive. Then, from the first line of (36) we know that β∗p = 0. In particular, we consider

multiple distinct cases.

Case I: None of the Associated Constraints are Active

We first consider the case when the associated path capacity and demand constraints are

not active, that is, in equality (37) we have that, in addition to β∗p = 0, the corresponding

η∗j = 0, as well as the corresponding θ∗a = 0, with also σ∗k = 0 and ε∗k = 0. Hence, we then

have that (37) satisfies

∂Ĉp(x
∗)

∂xp

− ωiγikµp − ρ̂ik(x
∗)µp −

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q − β∗p +

J∑
j=1

∑
a∈Lj

1

η∗j δap

+
∑
a∈Li

θ∗aαap − µpσ
∗
k + µpε

∗
k = 0

⇐⇒ ∂Ĉp(x
∗)

∂xp

= ωiγikµp + ρ̂ik(x
∗)µp +

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q, (41)

which means that, in this case, the marginal total cost on path p is equal to the marginal util-

ity associated with weighted altruism of the pair (i, k) plus the marginal revenue associated

with the path p.

Case II: The Associated Donor Supply Constraints Are Active but Other Ca-

pacity and Demand Constraints Associated with the Path Are Not

We now consider the situation in which the blood collected in the regions that link a of path

p is contained in is equal to the available supply, in which case the corresponding η∗j of those
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regions j will be positive. Also, the other capacity and demand constraints relevant to path

p are not at their bounds. Hence, we then get from (37) that

∂Ĉp(x
∗)

∂xp

= ωiγikµp + ρ̂ik(x
∗)µp +

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q −

J∑
j=1

∑
a∈Lj

1

η∗j δap, (42)

and, therefore,

∂Ĉp(x
∗)

∂xp

< ωiγikµp + ρ̂ik(x
∗)µp +

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q. (43)

This result is quite intuitive, since it implies that the marginal total cost on path p is less

than the marginal utility associated with the weighted altruism plus the marginal revenue

associated with the path p. This situation is beneficial for BSO i.

Case III: One or More Links on the Path Are at Their Capacities But No Other

Associated Capacity or Demand Constraints Are Active

In this case we know that (37) yields:

∂Ĉp(x
∗)

∂xp

= ωiγikµp + ρ̂ik(x
∗)µp +

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q −

∑
a∈Li

θ∗aαap, (44)

and, therefore,

∂Ĉp(x
∗)

∂xp

< ωiγikµp + ρ̂ik(x
∗)µp +

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q. (45)

This is also reasonable, since if the path p has one or more links at their capacities, then

one would expect that the marginal total cost of that path would be less that the marginal

utility associated with the weighted altruism/benefit function plus the marginal revenue

associated with the path p.

Case IV: The Demand Point That the Path Is Destined to Has Its Demand at

the Lower Bound Whereas No Other Associated Constraints Are Active

In this case we know that σ∗k > 0 and all other relevant Lagrange multipliers are zero so that

expression (37) now yields:

∂Ĉp(x
∗)

∂xp

= ωiγikµp + ρ̂ik(x
∗)µp +

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q + µpσ

∗
k, (46)
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and, hence,

∂Ĉp(x
∗)

∂xp

> ωiγikµp + ρ̂ik(x
∗)µp +

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q. (47)

This is not a desirable situation since the marginal total cost on the path p now exceeds

the marginal utility associated with the weighted altruism/benefit function plus the marginal

revenue associated with the path p.

Case V: The Demand Point That the Path Is Destined to Has Its Demand at

the Upper Bound Whereas No Other Associated Constraints Are Active

We now consider the case when the demand at point k is at its upper bound and no other

associated constraints are active (and, therefore, all other associated Lagrange multipliers

are equal to zero). We know that then ε∗k > 0 and we have that, according to (37):

∂Ĉp(x
∗)

∂xp

= ωiγikµp + ρ̂ik(x
∗)µp +

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q − µpε

∗
k, (48)

and, consequently,

∂Ĉp(x
∗)

∂xp

< ωiγikµp + ρ̂ik(x
∗)µp +

HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q. (49)

According to (49), the marginal total cost on path p, in this case, is less than the marginal

utility associated with the weighted altruism/benefit function plus the marginal revenue of

the BSO and demand point pair (i, k). This is clearly another desirable situation.

Taking into account the Lagrange multipliers, an equivalent variational formulation to

variational inequality (28) is the following: determine the vector of equilibrium path flows

and Lagrange multipliers, (x∗, η∗, θ∗, σ∗, ε∗) ∈ K3, such that:

I∑
i=1

HnH∑
k=H1

∑
p∈P i

k

[
∂Ĉp(x

∗)

∂xp

+
J∑

j=1

∑
a∈Lj

1

η∗j δap +
∑
a∈Li

θ∗aαap − ωiγikµp − σ∗kµp + ε∗kµp − ρ̂ik(x
∗)µp

−
HnH∑
l=H1

∂ρ̂il(x
∗)

∂xp

∑
q∈P i

l

µqx
∗
q

]
× [xp − x∗p]

+
J∑

j=1

[
Sj −

∑
a∈Lj

1

∑
p∈P

x∗pδap

]
× [ηj − η∗j ] +

I∑
i=1

∑
a∈Li

[
ua −

∑
p∈P

x∗pαap

]
× [θa − θ∗a]
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+

HnH∑
k=H1

(
I∑

i=1

∑
p∈P i

k

µpx
∗
p−dk)×(σk−σ∗k)+

HnH∑
k=H1

(d̄k−
I∑

i=1

∑
p∈P i

k

µpx
∗
p)×(εk−ε∗k) ≥ 0, ∀(x, η, θ, σ, ε) ∈ K3,

(50)

where K3 ≡ {(x, η, θ, σ, ε)|x ∈ RnP
+ , η ∈ RJ

+, θ ∈ RnL
+ , σ ∈ RnH

+ , ε ∈ RnH
+ }.

For our case study, we will utilize variational inequality (50). We note that variational

inequality (50) can also be put into standard form (26).

4. Algorithm and Numerical Examples

In this section, before presenting the numerical examples, we outline the algorithm that

is used for the computations, notably, the Euler method which is induced by the general

iterative scheme of Dupuis and Nagurney (1993). Specifically, an iteration τ +1 of the Euler

method (see also Nagurney and Zhang (1996)) is given by:

Y τ+1 = PK(Y τ − aτF (Y τ )), (51)

where PK is the projection on the feasible set K and F is the utility function that enters the

variation inequality problem (19). As shown in Dupuis and Nagurney (1993) and Nagurney

and Zhang (1996), for convergence of the general iterative scheme, the sequence {aτ} must

satisfy:
∑∞

τ=0 = ∞, aτ > 0, aτ → 0, as τ → ∞. Convergence conditions specific to various

applications for the solutions of network-based problems can be found in Nagurney and

Zhang (1996), Nagurney (2006), Nagurney, Masoumi and Yu (2012).

Specifically, the notable feature of this algorithm, when applied to the blood supply chain

network competition model, is that it yields closed form expressions for the variables at each

iteration, resulting in an elegant procedure for computations and solution.

4.1 Explicit Formulae for the Euler Method Applied to the Alternative Varia-

tional Inequality Formulation (50)

In particular, for this problem, we have the following closed form expressions for the path

flows at iteration τ + 1. For each path p ∈ P i
k,∀i, k, we have:

xτ+1
p = max{0, xτ

p +aτ (ρ̂ik(x
τ )µp +

HnH∑
l=H1

∂ρ̂il(x
τ )

∂xp

∑
q∈P i

l

xτ
qµq +ωiγikµp−

∂Ĉp(x
τ )

∂xp

−
J∑

j=1

∑
a∈Lj

1

ητ
j δap

−
∑
a∈Li

θτ
aαap + στ

kµp − ετ
kµp)}. (52)
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The Lagrange multipliers associated with blood collection links a ∈ Lj
1; j = 1, . . . , J , are

computed according to:

ητ+1
j = max{0, ητ

j + aτ (
∑
a∈Lj

1

∑
p∈P

xτ
pδap − Sj)}. (53)

The closed form expression for the Lagrange multipliers for the capacity constraint on

link a ∈ Li; i = 1, . . . , I is:

θτ+1
a = max{0, θτ

a + aτ (
∑
p∈P

xτ
pαap − ua)}. (54)

Next, we provide the closed form expressions for the Lagrange multipliers associated with

the upper and lower bounds on the demands. The explicit formulae for the Lagrange multi-

pliers associated with the lower bounds on the demands at demand points: k = H1, . . . , HnH
,

are:

στ+1
k = max{0, στ

k + aτ (dk −
I∑

i=1

∑
p∈P i

k

µpx
τ
p)}. (55)

The Lagrange multipliers associated with the upper bounds on the demands at the de-

mand points: k = H1, . . . , HnH
, in turn, are computed according to:

ετ+1
k = max{0, ετ

k + aτ (
I∑

i=1

∑
p∈P i

k

µpx
τ
p − dk)}. (56)

The algorithm is assumed to have converged when the absolute value of successive iterates

is less than or equal to the imposed convergence tolerance ε.

4.2 Numerical Examples

The numerical examples are inspired by a particular region of New England in which

there is growing competition between blood service organizations. The examples are stylized

but capture the features of the game theory model and demonstrate the types of insights

that can be revealed.

The Euler method was implemented in FORTRAN and a Linux system at the University

of Massachusetts Amherst was used for the computations. The Euler method was initialized

with all variables identically equal to 0.00. The {aτ} sequence utilized was: .1{1, 1
2
, 1

2
, 1

3
, . . .}.

The convergence tolerance utilized was 10−6; in other words, the algorithm was terminated
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when the absolute value of successive computed variable iterates was less than or equal to

this value. The numerical examples below contain explicit input and output data.

Example 1

We consider two blood service organizations, with Organization 1 being a local one, and

Organization 2 being an iconic national one. Please refer to Figure 2 for the supply chain

network topology for all the numerical examples. Organization 1 has two collection sites, a

single blood center for processing and testing as well as a single component lab and storage

facility, similar to, for example, the Rhode Island Blood Center, which is based in Providence,

Rhode Island. Organization 2, in turn, has three collection sites, two blood centers for testing

and processing, two component labs and storage facilities, as well as distribution centers.

There are four demand points with the first and third, denoted, respectively, by H1 and

H3 denoting major trauma hospitals and the other two: H2 and H4 corresponding to smaller

hospitals.

Also, there are three regions, as depicted in Figure 2, with Region 2 being common (that

is, in proximity) to a collection site of each organization. Here regions correspond to counties.

We now provide the data for this example. Example 1 serves as the baseline from which

other examples are constructed.

The number of people eligible to donate blood in each of the regions are:

S1 = 6000, S2 = 2400, S3 = 3000.

Such values are reasonable since the Northeast has a higher percentage of senior citizens (65

years and above) (Wilson (2013)) and older people are found to be less likely to donate or

retire from donating after a certain age ( Shaz et al. (2011), Aleccia (2017),).

The weekly upper and lower bounds on the demand at each hospital are given below:

dH1
= 200, dH1 = 350,

dH2
= 60, dH2 = 150,

dH3
= 200, dH3 = 300,

dH4
= 100, dH4 = 120.

The link definitions, associated link capacities, arc multipliers, total cost functions, and

computed equilibrium link flows and associated link Lagrange multipliers are provided in
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Figure 2: The Supply Chain Network Topology for Examples 1, 2, 3, and 4

Table 2. Since Organization 2 operates on a national level, it has more resources than

Organization 1 which is reflected in many of the link capacities. The cost functions and de-

mand price functions are constructed using information obtained from Tracy (2010), Carlyle

(2012), Gunpinar and Centeno (2015), and Masoumi, Yu and Nagurney (2017). Also, we

have losses on links associated with testing and processing, and, hence, those arc multipliers

are less than 1.
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The demand price functions are as follows:

Organization 1:

ρ1H1(d) = −0.07d1H1 − 0.02d2H1 + 300, ρ1H2(d) = −0.08d1H2 − 0.03d2H2 + 310,

ρ1H3(d) = −0.05d1H3 − 0.01d2H3 + 300, ρ1H4(d) = −0.04d1H4 − 0.02d2H4 + 280.

Organization 2:

ρ2H1(d) = −0.05d2H1 − 0.01d1H1 + 280, ρ2H2(d) = −0.07d2H2 − 0.04d1H2 + 290,

ρ2H3(d) = −0.03d2H3 − 0.01d1H3 + 280, ρ2H4(d) = −0.05d2H4 − 0.02d1H4 + 270.

We report the equilibrium link solution in Table 2 since the number of paths is quite large

- equal to 60, whereas the number of links is 38.

In addition, we assume that the weights associated with the altruism component of the

BSOs’ objective functions are both equal to 1 so that ω1 = ω2 = 1. Furthermore, we have

that γ1H1 = 2, γ1H2 = 1, γ1H3 = 2, and γ1H4 = 1, whereas γ2H1 = 2, γ2H2 = 1, γ2H3 = 2, and

γ2H4 = 1. Hence, both BSOs assign a higher value to servicing the larger hospitals.

It can be seen from Table 2 that four of the links are at their capacities and these are

links: 13, 34, 36, and 38. All these links are shipment links. Link 13 is associated with BSO

1, whereas the other links are in BSO 2’s supply chain network. The BSOs are advised to

invest in enhancing the capacities in these links.

We also report the additional equilibrium Lagrange multipliers for this example. In

particular, we have that: η∗1 = η∗2 = η∗3 = 0.00, since none of the supply/donor upper bound

constraints in the three regions are binding.

The equilibrium demands for the RBCs at the demand points from the BSOs are:

d∗1H1
= 55.09, d∗1H2

= 28.39, d∗1H3
= 96.64, d∗1H4

= 40.00,

d∗2H1
= 144.91, d∗2H2

= 71.65, d∗2H3
= 103.36, d∗2H4

= 60.00,

and the associated demand prices for the RBCs at the equilibrium demand solution are:

ρ1H1(d
∗) = 293.25, ρ1H2(d

∗) = 305.58, ρ1H3(d
∗) = 294.13, ρ1H4(d

∗) = 277.20,

ρ2H1(d
∗) = 272.20, ρ2H2(d

∗) = 283.85, ρ2H3(d
∗) = 275.93, ρ2H4(d

∗) = 266.20.
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Table 2: Definition of Links, Associated Weekly Link Capacities, Arc Multipliers, Total
Operational Link Cost Functions, Equilibrium Link Solution, and Link Capacity Equilibrium
Lagrange Multipliers for Example 1

Link a From Node To Node ua αa ĉa(f) f ∗a θ∗a
1 1 C1

1 250 1.00 0.24f 2
1 + 0.6f1 139.33 0.00

2 1 C1
2 200 1.00 0.4f 2

2 + 0.9f2 87.59 0.00
3 C1

1 B1
1 300 1.00 0.06f 2

3 + 0.1f3 139.33 0.00
4 C1

2 B1
1 250 1.00 0.07f 2

4 + 0.16f4 87.59 0.00
5 B1

1 CL1
1 500 0.97 0.36f 2

5 + 0.45f5 226.92 0.00
6 CL1

1 S1
1 500 1.00 0.02f 2

6 + 0.04f6 220.11 0.00
7 S1

1 D1
1 500 1.00 0.03f 2

7 + 0.09f7 166.40 0.00
8 D1

1 H1 50 1.00 0.4f 2
8 + 0.7f8 21.37 0.00

9 D1
1 H2 50 1.00 0.5f 2

9 + 0.9f9 28.38 0.00
10 D1

1 H3 100 1.00 0.15f 2
10 + 0.8f10 76.64 0.00

11 D1
1 H4 60 1.00 0.35f 2

11 + 0.6f11 40.00 0.00
12 S1

1 H1 50 1.00 0.4f 2
12 + 0.9f12 33.71 0.00

13 S1
1 H3 20 1.00 0.7f 2

13 + 1f13 20.00 5.02
14 2 C2

1 250 1.00 0.25f 2
14 + 0.7f14 130.81 0.00

15 2 C2
2 300 1.00 0.2f 2

15 + 0.8f15 148.27 0.00
16 2 C2

3 200 1.00 0.3f 2
16 + 0.5f16 112.99 0.00

17 C2
1 B2

1 100 1.00 0.12f 2
17 + 0.3f17 70.11 0.00

18 C2
1 B2

2 150 1.00 0.08f 2
18 + 0.27f18 60.71 0.00

19 C2
2 B2

1 100 1.00 0.16f 2
19 + 0.45f19 70.86 0.00

20 C2
2 B2

2 200 1.00 0.1f 2
20 + 0.5f20 77.41 0.00

21 C2
3 B2

1 100 1.00 0.2f 2
21 + 0.6f21 35.85 0.00

22 C2
3 B2

2 100 1.00 0.05f 2
22 + 0.08f22 77.14 0.00

23 B2
1 CL2

1 600 0.98 0.36f 2
23 + 0.8f23 176.81 0.00

24 B2
2 CL2

2 500 0.96 0.3f 2
24 + 0.7f24 215.25 0.00

25 CL2
1 S2

1 500 1.00 0.02f 2
25 + 0.05f25 173.28 0.00

26 CL2
2 S2

2 500 1.00 0.03f 2
26 + 0.04f26 206.64 0.00

27 S2
1 D2

1 150 1.00 0.15f 2
27 + 0.4f27 88.02 0.00

28 S2
1 D2

2 150 1.00 0.18f 2
28 + 0.65f28 85.25 0.00

29 S2
2 D2

1 200 1.00 0.09f 2
29 + 0.12f29 116.35 0.00

30 S2
2 D2

2 150 1.00 0.14f 2
30 + 0.5f30 90.30 0.00

31 D2
1 H1 100 1.00 0.24f 2

31 + 0.8f31 48.90 0.00
32 D2

1 H2 80 1.00 0.32f 2
32 + 0.9f32 51.65 0.00

33 D2
1 H3 100 1.00 0.25f 2

33 + f33 63.82 0.00
34 D2

1 H4 40 1.00 0.5f 2
34 + 0.8f34 40.00 3.02

35 D2
2 H1 150 1.00 0.1f 2

35 + 0.35f35 96.01 0.00
36 D2

2 H2 20 1.00 0.5f 2
36 + 0.8f36 20.00 8.80

37 D2
2 H3 80 1.00 0.35f 2

37 + 0.7f37 39.53 0.00
38 D2

2 H4 20 1.00 0.4f 2
38 + 0.9f38 20.00 22.84
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Hence, none of the demands are at the imposed upper bounds and, consequently, all

the associated Lagrange multipliers ε∗k; k = 1, . . . , 4, are equal to 0.00. On the other hand,

three of the demands are at the imposed lower bounds, at demand points: H1, H3, and H4,

and, therefore, the associated Lagrange multipliers: σ∗H1
, σ∗H3

, and σ∗H4
, are all positive. In

particular, these Lagrange multipliers, at equilibrium, have the following computed values:

σ∗H1
= 0.55, σ∗H2

= 0.00, σ∗H3
= 5.80, σ∗H4

= 27.63.

We now report, for completeness, components of the objective function (cf. (10)) for

BSO 1 and for BSO 2. For BSO 1 we have that, at the equilibrium solution, the revenue is

equal to: 64,341.70; the altruism component of the utility function is: 371.84, and the total

cost associated with its supply chain is: 33,099.85, resulting in a net revenue of: 31,241.85

and a utility of: 31,613.70. As for BSO 2, we have that its revenue is equal to: 104,275.07;

its altruism component of its utility function is: 628.19, and the total cost associated with

its supply chain network is: 86,525.06, yielding a net revenue of: 17,750.01 and a utility of:

18,378.20.

Example 2

Example 2 is constructed from Example 1 and has the identical data except that the demand

lower and upper bound constraints at the four hospital demand points are removed. In

Example 2 we are interested in exploring what the potential impacts of removing such

constraints are in terms of the RBC deliveries and the associated prices as well as the

BSOs’ net revenues and utilities. The variational inequality (50) was adapted accordingly to

remove the terms and variables associated with the demand lower and upper bounds and the

Euler method was, as well. The computed equilibrium link flow pattern and link capacity

Lagrange multipliers are reported in Table 3.

The Lagrange multipliers associated with the three regions remain as in Example 1, that

is, we have that η∗1 = η∗2 = η∗3 = 0.00, since none of the supply/donor upper bound constraints

in the three regions are binding. The link capacities at links 13 and 38 are now at their upper

bounds. These were also at their upper bounds in Example 1 but links 34 and 36 are no

longer at their upper bounds.

The equilibrium demands for the RBCs at the demand points from the BSOs are now:

d∗1H1
= 67.08, d∗1H2

= 34.48, d∗1H3
= 99.99, d∗1H4

= 13.32,

d∗2H1
= 158.41, d∗2H2

= 77.42, d∗2H3
= 97.0, d∗2H4

= 41.32,
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Table 3: Link, Equilibrium Link Solution, and Link Capacity Equilibrium Lagrange Multi-
pliers for Example 2

Link a f ∗a θ∗a
1 136.03 0.00
2 85.49 0.00
3 136.03 0.00
4 85.49 0.00
5 221.51 0.00
6 214.87 0.00
7 155.56 0.00
8 27.78 0.00
9 34.48 0.00
10 79.99 0.00
11 13.32 0.00
12 39.30 0.00
13 20.00 13.10
14 128.84 0.00
15 146.03 0.00
16 111.29 0.00
17 69.08 0.00
18 59.76 0.00
19 69.81 0.00
20 76.22 0.00
21 35.31 0.00
22 75.98 0.00
23 174.20 0.00
24 211.96 0.00
25 170.71 0.00
26 203.48 0.00
27 84.32 0.00
28 86.39 0.00
29 111.31 0.00
30 92.17 0.00
31 54.97 0.00
32 57.42 0.00
33 61.40 0.00
34 21.84 0.00
35 103.44 0.00
36 20.00 0.00
37 35.64 0.00
38 19.84 13.60
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and the associated demand prices for the RBCs at the equilibrium demand solution are:

ρ1H1(d
∗) = 292.14, ρ1H2(d

∗) = 304.92, ρ1H3(d
∗) = 294.03, ρ1H4(d

∗) = 278.64,

ρ2H1(d
∗) = 271.41, ρ2H2(d

∗) = 283.20, ρ2H3(d
∗) = 276.09, ρ2H4(d

∗) = 267.67.

Without the imposition of demand bounds at the hospital demand points, the total

equilibrium demand at H1 = 225.49; the total demand at H2 = 111.90; the total demand at

H3 = 197.03, and that at H4 = 54.64.

For BSO 1 we have that, at the equilibrium solution, the revenue is equal to: 63,221.34; the

altruism component of the utility function is: 381.94, and the total cost associated with its

supply chain is: 31,685.55, leading to a net revenue of: 31,535.79 and a utility of: 31,917.73.

As for BSO 2, we have that its revenue is now equal to: 102,772.48; its altruism component

of its utility function is: 629.65, and the total cost associated with its supply chain network

is now: 83,461.70, yielding a net revenue of: 19,310.78 and a utility of: 19,940.43.

Both blood service organizations now enjoy higher net revenues, as well as higher utilities,

without the demand constraints. However, observe that, without those constraints, both

hospitals H3 and H4 may suffer serious shortfalls in terms on needed RBCs since dH3
= 200

and dH4
= 100 and the total deliveries are only, respectively 197.03 and 54.64. This example

illustrates the merits of imposing lower demand bounds, which can be part of the contracts

between the hospital(s) and the BSO(s).

Also, another interesting result is regarding the altruism component of the BSO utility

functions. In Example 1, BSO 1 enjoyed an altruism component value of 371.84, whereas

now, in Example 2, it enjoys an altruism component value of 381.94. BSO 2 enjoyed an

altruism component value of 628.19, whereas, in Example 2, the corresponding value is

629.65. Hence, the respective BSO altruism component values have increased.

Example 3

Example 3 is also constructed from Example 1 and has the same data except for the following.

We now consider a major disruption in the form of a disease so that the number of those

eligible to donate blood drops considerably. In particular, we now have that:

S1 = 500, S2 = 220, S3 = 120.

The new computed equilibrium link flow solution and corresponding Lagrange multipliers

associated with the link capacity constraints are reported in Table 4.
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Table 4: Link, Equilibrium Link Solution, and Link Capacity Equilibrium Lagrange Multi-
pliers for Example 3

Link a f ∗a θ∗a
1 237.60 0.00
2 33.49 0.00
3 237.60 0.00
4 33.49 0.00
5 271.09 0.00
6 262.96 0.00
7 196.94 0.00
8 3.38 0.00
9 23.21 0.00
10 96.67 0.00
11 45.68 0.00
12 46.01 0.00
13 20.00 13.10
14 186.51 0.00
15 68.06 0.00
16 51.94 0.00
17 86.42 0.00
18 100.09 0.00
19 35.42 0.00
20 32.64 0.00
21 18.86 0.00
22 33.07 0.00
23 140.70 0.00
24 165.80 0.00
25 137.89 0.00
26 159.17 0.00
27 68.17 0.00
28 9.72 0.00
29 86.81 0.00
30 72.36 0.00
31 42.78 0.00
32 25.43 0.00
33 52.44 0.00
34 34.33 0.00
35 79.83 0.00
36 11.36 0.00
37 30.89 0.00
38 20.00 13.60
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Observe that now, unlike in Example 1, and due to a much decreased volume of possible

donations, we now have that the constraints for both Regions 2 and 3 are tight and the

associated Lagrange multipliers are now: η∗1 = 0.00, η∗2 = 109.82, and η∗3 = 85.00.

The equilibrium demands for the RBCs at the demand points in Example 3 are:

d∗1H1
= 77.39, d∗1H2

= 23.21, d∗1H3
= 116.17, d∗1H4

= 45.68,

d∗2H1
= 122.61, d∗2H2

= 36.79, d∗2H3
= 83.33, d∗2H4

= 54.33.

The associated demand prices for the RBCs at the equilibrium demand solution are:

ρ1H1(d
∗) = 292.13, ρ1H2(d

∗) = 307.04, ρ1H3(d
∗) = 293.33, ρ1H4(d

∗) = 277.09,

ρ2H1(d
∗) = 273.10, ρ2H2(d

∗) = 286.50, ρ2H3(d
∗) = 276.33, ρ2H4(d

∗) = 266.37.

The equilibrium total demands at the four hospital demand points are at their respective

lower bounds. The Lagrange multipliers, at the equilibrium, associated with the lower and

upper bounds on the demands at the four demand points are now:

σ∗H1
= 107.14, σ∗H2

= 90.43, σ∗H3
= 110.02, σ∗H4

= 129.07,

and

ε∗H1
= 0.00, ε∗H2

= 0.00, ε∗H3
= 0.00, ε∗H4

= 0.00.

We now report the values, at the computed equilibrium, of the components of the objective

function (cf. (10)) for BSO 1 and for BSO 2. For BSO 1 we have that the revenue is now

equal to: 76,616.49; the altruism component of the utility function is: 574.02, and the total

costs associated with its supply chain is: 50,978.78 resulting in a net revenue of: 25,637.71

and a utility of: 26,094.73. As for BSO 2, we have that its revenue is now equal to: 81,522.08;

its altruism component of its utility function is: 503.00, and the total cost associated with

its supply chain network is: 87,042.11, yielding a net revenue of: -5,520.03 and a utility of:

-5,017,03.

With a much reduced donor base, the two BSOs still manage to meet their delivery

obligations. However, BSO 1 suffers a reduction in net revenue and utility of approximately

20%, as compared to the corresponding values in Example 1. BSO 2, on the other hand,

experiences not only a significant reduction in net revenue and utility, but these attain

negative values and, hence, BSO 2 incurs a financial loss. This example illustrates that

blood service organizations need to maintain a sufficiently large donor base for the life-saving

product that is blood, which cannot be manufactured, but must be voluntarily donated. This

is especially essential in times such as disease outbreaks as well as during different times of

various seasons when donors may not be available due to holidays or inclement weather.
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Example 4

Example 4 is also constructed from Example 1 but in Example 4 we explore the impacts of

decreased capacity associated with BSO 2’s testing and processing and storage links 24 and

26 due to a natural disaster. The data is the same as in Example 1 except that now the link

upper bounds u24 = 200 and u26 = 200. The computed equilibrium link flow pattern and

associated Lagrange multiplier pattern are reported in Table 5.

Observe that links: 13, 24, 34, 36, and 38 are now at their capacities.

The equilibrium Lagrange multipliers associated with the bounds on donors in the three

regions are: η∗1 = η∗2 = η∗3 = 0.00 since these constraints are not binding.

The equilibrium demands for the RBCs at the demand points in Example 4 are:

d∗1H1
= 57.31, d∗1H2

= 26.22, d∗1H3
= 98.68, d∗1H4

= 40.00,

d∗2H1
= 142.69, d∗2H2

= 66.50, d∗2H3
= 101.32, d∗2H4

= 60.00.

The associated demand prices for the RBCs, in turn, at the equilibrium demand solution

are:

ρ1H1(d
∗) = 293.13, ρ1H2(d

∗) = 305.91, ρ1H3(d
∗) = 294.05, ρ1H4(d

∗) = 277.20,

ρ2H1(d
∗) = 272.29, ρ2H2(d

∗) = 284.30, ρ2H3(d
∗) = 275.97, ρ2H4(d

∗) = 266.20.

The equilibrium total demands at the hospital demand points H1, H3, and H4 are at their

respective lower bounds. The Lagrange multipliers, at the equilibrium, associated with the

lower and upper bounds on the demands at the four demand points are now:

σ∗H1
= 4.11, σ∗H2

= 0.00, σ∗H3
= 9.08, σ∗H4

= 30.20,

and

ε∗H1
= 0.00, ε∗H2

= 0.00, ε∗H3
= 0.00, ε∗H4

= 0.00.

BSO 1’s revenue is now equal to: 64,925.04; the altruism component of the utility function

is: 78.20, and the total costs associated with its supply chain is: 33,706.32. Hence, the

net revenue is: 31,218.71 and the utility is: 31,596.91. BSO 2’s revenue is now equal to:

101,693.17; its altruism component of its utility function is: 614.52, and the total cost

associated with its supply chain network is: 84,635.16, resulting in a net revenue of: 17,058.01

and a utility of: 17,672.53.
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Table 5: Link, Equilibrium Link Solution, and Link Capacity Equilibrium Lagrange Multi-
pliers for Example 4

Link a f ∗a θ∗a
1 140.65 0.00
2 88.43 0.00
3 140.65 0.00
4 88.43 0.00
5 229.08 0.00
6 222.21 0.00
7 167.35 0.00
8 22.45 0.00
9 26.22 0.00
10 78.68 0.00
11 40.00 0.00
12 34.86 0.00
13 20.00 5.71
14 127.67 0.00
15 144.65 0.00
16 109.84 0.00
17 72.21 0.00
18 55.46 0.00
19 72.05 0.00
20 72.60 0.00
21 37.80 0.00
22 71.94 0.00
23 182.15 0.00
24 200.00 17.81
25 178.51 0.00
26 192.00 0.00
27 90.63 0.00
28 87.88 0.00
29 107.11 0.00
30 84.89 0.00
31 48.47 0.00
32 46.50 0.00
33 62.77 0.00
34 40.00 1.74
35 94.22 0.00
36 20.00 5.23
37 38.55 0.00
38 20.00 21.38
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Note that, with decreased capacity on critical links, BSO 2’s net revenue as well as utility

decrease relative to their respective values in Example 1. Interestingly, the reduced capacity

of BSO 2 also affects BSO 1 and, although it now has higher revenues, it also incurs higher

costs, resulting in a reduced value of net revenue (31,218.71 versus 31,241.85). This suggests

that the blood service organizations may gain by cooperating rather than competing.

5. Summary and Suggestions for Future Research

The blood services industry in the United States is undergoing major changes, which

include increasing competition among blood banks, that is, blood service organizations. In

this paper, we presented the first game theory model for competitive supply chain networks

associated with blood service organizations that includes not only perishability but also an

altruism component in their objective functions since they are nonprofit organizations. In

addition to capacities on the links representing the network economic activities associated

with such supply chain networks we also incorporated upper bounds reflecting donations

in different regions as well as lower bounds and upper bounds associated with the demand

for RBCs at the various demand points, which correspond to hospitals and medical centers.

Such demand constraints ensure that each hospital or medical center has the minimum

amount needed for a given week while also guaranteeing that waste will be reduced because

of the upper bounds. The novel features of the competitive supply chain network game

theory model result in a Generalized Nash Equilibrium (GNE), rather than just a Nash

Equilibrium, since the utility function of each blood service organization depends on its own

strategies in the form of blood path flows, as well as those of the other BSOs, and the feasible

sets do as well.

We utilized the concept of a variational equilibrium to transform the problem into a

variational inequality problem in which the Lagrange multipliers corresponding to the shared

/ common constraints are equal among the competitors. This provides a nice economic

fairness interpretation.

We also provided alternative variational inequality formulations and presented a Lagrange

analysis with economic interpretations. An algorithm was outlined which resolves the prob-

lem into closed form expressions at each iteration in terms of path flows and the various

Lagrange multipliers. The algorithm was then applied to compute solutions to a series of

numerical examples for which full input and output data are reported. The examples il-

lustrated the impacts of disruptions as in a reduction in the number of donors as well as

that of decreases in capacities of critical links such as testing and processing on RBC prices,

demands, net revenues of the blood service organizations, and their overall utilities. The
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framework here focused on competition among blood service organizations not only in terms

of blood donations but also for business with hospitals as well as along their supply chain

networks through the generality of the link total cost functions. Future work of interest

includes that of modeling cooperation among blood banks in terms of their various supply

chain network activities.

Acknowledgments

The authors acknowledge helpful conversations with Dr. Louis Katz, Michael Merola, Dr.

David Wellis, Beau Tompkins and Professor Amir H. Masoumi. The authors also thank the

anonymous reviewer and the editor for taking the time to read the paper.

The first author also acknowledges support from the Radcliffe Institute for Advanced

Study at Harvard University, where she was a Summer Fellow in 2018, and from the John

F. Smith Memorial Foundation at the University of Massachusetts Amherst.

References

Aleccia, J., 2017. As loyal blood donors age, industry is out for young blood. USA Today,

September 24.

Available online:https://www.usatoday.com/story/news/health/2017/09/24/loyal-blood-donors-

age-industry-out-young-blood/683714001/

American Association of Blood Banks, 2017. Blood donor screening and testing. Available

online:

http://www.aabb.org/advocacy/regulatorygovernment/donoreligibility/Pages/default.aspx.

American Red Cross, 2017. Blood facts and statistics. Available online:

http://www.redcrossblood.org/learn-about-blood/blood-facts-and-statistics.

Andreoni, J., 1990. Impure altruism and donations to public goods: A theory of warm-glow

giving. The Economic Journal 10(401), 464-477.

Ayer, T., Zhang, C., Zeng, C., White III, C.C., Roshan Joseph, V., 2017. Analysis and

improvement of blood collection operations. Manufacturing & Service Operations Manage-

ment, in press.

Barbagallo, A., Daniele, P., Maugeri, A., 2012. Variational formulation for a general dy-

namic financial equilibrium problem: Balance law and liability formula. Nonlinear Analysis,

Theory, Methods and Applications 75(3), 1104-1123.

41



Barber, A., 2013. EMMC switches blood supplier from American Red Cross to Puget Sound

Blood Center. Bangor Daily News, October 7.

Available online: http://bangordailynews.com/2013/10/07/news/bangor/emmc-switches-blood-

supplier-from-american-red-cross-to-puget-sound-blood-center/?ref=relatedBox.
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