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Abstract. - The Braess Paradox is the counterintuitive phenomenon that can occur in a user-
optimized network system, such as a transportation network, where adding an additional link
to the network increases the cost (travel time) for every user. In electrical circuits, electrons,
analogous to drivers in a transportation network, traverse the network so that no electron can
unilaterally change its cost (voltage drop) from an origin to a destination. In this paper, we show
that the Braess Paradox can occur in electrical circuits consisting of diodes and resistors. We
report measurements confirming the occurrence of the Braess Paradox in two different circuits,
one with highly nonlinear link cost functions (I-V characteristics). These measurements show that
the voltage increases, rather than decreases, when a link is added to the circuit under constant
demand (current). This discovery identifies novel circuits in which the voltage and current can
be independently adjusted. It also yields insights into the Braess paradox and transportation
networks through a new computational mechanism.

Introduction. – The occurrence of counterintuitive
behavior in transportation networks was identified in 1968
by Dietrich Braess [1, 2]. In [1], Braess describes a user-
optimized transportation network (see also [3–6]) in which,
when a link is added, each user traveling in the network be-
comes worse-off in terms of travel cost/time. This discov-
ery was contrary to the conventional wisdom, which indi-
cated that adding a link, which provides travelers with an-
other route option between their origin/destination pair,
would make each user better-off. This counterintuitive
phenomenon has become known as the Braess Paradox
and has been studied by a number of researchers over the
past several decades including [7–15]. The Braess Paradox
in real systems has been identified in road transportation
networks in Stuttgart, Germany, New York City’s 42nd St
during Earth Day [16], and in Seoul, Korea [17], and in
physical network systems such as power and mechanical
networks [15,18–23].

There is, interestingly, a connection between the user-
optimized transportation network and electrical circuits.
Analogous to vehicles in a user-optimized transportation
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network who cannot improve their travel times by uni-
lateral action, electrons in an electrical circuit distribute
themselves so that the voltage drops on any used path
through the circuit are identical. By mapping the Braess
cost functions from [1] directly into the voltage drops
across an electrical network consisting of ideal resistors
and ideal Zener diodes, Cohen and Horowitz [18] predicted
that the Braess Paradox could be observed in an electrical
network.

The purpose of this work is to show that the Braess
Paradox can occur in a macroscopic electrical circuit us-
ing real electrical components and can be measured in
the laboratory. By exploiting the mathematical analysis
for electrical circuits, one can then gain insights into net-
works that exhibit the Braess Paradox. We formulate the
Braess Paradox network as an electrical circuit, present
an analysis using Kirchhoff’s Laws, and discuss how this
analysis yields new insights. We then identify two distinct
macroscopic electrical circuit topologies for which we ex-
hibit examples of the occurrence of the Braess Paradox.

We now, for completeness, and easy reference, recall the
classical Braess Paradox transportation network example.
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Fig. 1: The Braess Network with Three Paths

Please refer to Figure 1.
The link cost functions are:

ca(fa) = 10fa, cb(fb) = fb + 50,

cc(fc) = fc + 50, cd(fd) = 10fd, ce(fe) = fe + 10,

with the flow on link a denoted by fa, the flow on link b
by fb, and so on, and the origin/destination pair of nodes
is (1,4) with a demand of 6 (vehicles per unit time). We
define paths p1, p2, and p3, consisting of links, where p1 =
(a, c), p2 = (b, d), and p3 = (a, e, d). Clearly, if the flows on
the paths are as follows: x∗p1

= x∗p2
= x∗p3

= 2 with the user
costs on paths being Cp1 = ca+cc = Cp2 = cb+cd = Cp3 =
ca + ce + cd = 92, then noone has any incentive to switch,
since switching would result in a higher path cost. Note
that, without link e, and, hence, path p3 in the network
in Figure 1, the user-optimized path flow pattern would
be: x∗p1

= x∗p2
= 3 with path costs of: Cp1 = Cp2 = 82.

Hence, the addition of link e, which results in the new
path p3 makes all travellers or users of the network worse-
off since the cost increases from 83 to 92 with the added
path p3!

While the classical example of the Braess Paradox uses
cost functions that are of the form: a fixed term plus a
term proportional to the flow, other possible cost functions
have been mathematically investigated in transportation
networks, including the Bureau of Public Roads cost func-
tion, which has a term quartic in the flow [7,8, 24].

Electrical Circuit Equivalent of the Braess Para-
dox. – An idealized electrical circuit that exhibits the
Braess Paradox behavior is developed by mapping the cost
functions on links in Figure 1 into the voltage drops of
electrical components as illustrated in Figure 2. The de-
mand on the Braess network is analogous to the current
in the electrical circuit in Figure 2, and the cost on a link
is analogous to the voltage drop on the corresponding link
of the circuit. Let Vi; i = 1, . . . , n, where n is the number
of nodes in the electrical circuit, be the voltage at node
i referenced to the bottom node of the circuit which we
refer to as the reference (or ground) node. A node in an
electrical circuit corresponds to a point where two or more
components are connected. Let the demand through the
electrical network be I and the flow through a link i be Ii.
To create the voltage drop analogies for the cost functions,
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Fig. 2: Electrical Circuit Analogue for the Classical Braess
Paradoz

we first note that Ohm’s Law states that in a resistor the
voltage drop is proportional to the current through that
resistor, the proportionality factor is defined as the resis-
tance, R, of that resistor. Thus, a term that has cost
proportional to flow is the equivalent of a resistor. Fixed
cost terms in a link cost function can be modeled as a con-
stant voltage drop. Symbolically this can be represented
as a battery.

Because of the symmetry of the Braess Paradox exam-
ple, in that: cd = ca, cc = cb, we have that Rd = Ra, and
Vc = Vb, Rc = Rb.

In the electrical circuit, the voltage, V1, is the equivalent
of the cost for a user (electron) to flow through the circuit.
Thus, the Braess Paradox occurs if, by adding link e, the
voltage V1 increases.

The electrical circuit equivalent of the Braess Paradox
illustrated in Figure 2 can be analyzed by nodal analysis.
Using Kirchhoff’s current law at each node i; i = 1, 2, 3,
in Figure 2, the nodal equations can be written in matrix
notation as: V1

V2

V3

 = G−1


I + Vb

Rb

−
(

Vb

Rb
+ Ve

Re

)(
Vb

Rb
+ Ve

Re

)
 , (1)

where G is the conductance matrix

G =

 1
Ra

+ 1
Rb

− 1
Ra

− 1
Rb

,
1

Ra
− 1

Ra
− 1

Rb
− 1

Re

1
Re

,
1

Ra

1
Re

− 1
Ra
− 1

Rb
− 1

Re

 .

However, for the case when link e is not in the circuit, we
observe that, by symmetry, the voltage drop on each of the
two paths is the same and that the current splits equally
at the top node, resulting in: Ia = Ib = Ic = Id = I/2. In
this case, it is straightforward to write the node voltages
as

V1 = Vb + (Ra + Rb) I
2

V2 = Vb + Rb
I
2

V3 = Ra
I
2 .

(2)
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Physical Proof of the Occurrence of the Braess Paradox

In this Kirchhoff’s nodal analysis, it is not explicit that
the batteries corresponding to Vb and Ve are passive volt-
age drops and are not generating current. Solutions of the
matrix equation might exist where, for example, the flow
on link a is greater than the flow I since if the battery
supplies current the flow on link b would not be in the
direction from node 1 to node 3. While this type of solu-
tion is mathematically possible, it does not correspond to
a passive electrical circuit example of the Braess Paradox.
To verify that the batteries corresponding to Vb and Ve

are acting as voltage drops, after computing the solutions
for V1, V2, and V3 above, by matrix inversion in equation
(3), the flows on links b and c must be calculated. If the
two inequalities below are satisfied, then the batteries are
acting as voltage drops and the solution corresponds to a
passive electrical circuit:

V1 − Vb − V3

Rb
≥ 0 and

V2 − Vb

Rb
≥ 0. (3)

By substituting in the values from the classical Braess
example [1], where Vb = 50V , Ve = 10V , Ra = 10Ω,
Rb = 1Ω, Re = 1Ω, and I = 6, into (1) and (2) and
calculating the vector of node voltages, the node voltage
V1 becomes V1 = 83V without link e in the circuit and
V1 = 92V when link e is in the network. This reproduces
the transportation network example in the original Braess
article [1, 2].

This Kirchhoff’s nodal analysis of the Braess Paradox
circuit can also provide additional insights into the condi-
tions on the cost functions of the networks that will exhibit
the Braess Paradox. For example, by looking at the right-
hand-side of equation (1), one notes that Ve only occurs
in the sum Vb + Ve

Rb

Re
. This indicates that there might be

networks that exhibit the Braess Paradox behavior with-
out a fixed cost term in the added link e. This will be
shown experimentally later in this paper.

A Circuit that Exhibits the Braess Paradox Us-
ing Zener Diodes and Resistors. – It was proposed
in [18] that a Wheatstone Bridge circuit consisting of
Zener diodes and resistors could exhibit the Braess Para-
dox. However, [18] noted that their circuit had unrealistic
values in practice, but convenient for illustration. To con-
struct a circuit with values that could be realized in prac-
tice, consider the following. If the conductance matrix, G,
is made dimensionless by factoring out R−1

b to become

G = ĜR−1
b ,

then (1) becomes

 V1

V2

V3

 = Ĝ−1


IRb + Vb

−
(
Vb + Ve

Rb

Re

)(
Vb + Ve

Rb

Re

)
 . (4)

To calculate other possible component values for an elec-
trical circuit that will display the Braess Paradox, we first
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Fig. 3: Electrical Circuit using Zener Diodes for the Braess
Paradox Measurements

note that the matrix, Ĝ, depends only on the ratios Rb

Ra

and Rb

Re
, which in the classical Braess example are .1 and 1,

respectively. Because multiplying both sides of a matrix
equation by a constant does not change the equation, we
can scale Vb, Ve, and the quantity IRb by the same factor
and still have an electrical circuit that exhibits the Braess
Paradox behavior. This allows the choice of realistic com-
ponent values, and current, I. The batteries can then be
replaced by Zener diodes, which, to a good approximation,
can be modeled as voltage drops.

For example, if we scale both sides of equation (4) by
.1, a circuit consisting of

Vb = 5V, Ve = 1V, I = 6mA,

Rb = Re = 100Ω, and Ra = 1000Ω,

should exhibit the Braess Paradox with the voltage V1 =
8.3V with link e removed and V1 = 9.2V with link e in
the circuit.

To construct a circuit with real components inspired by
the classical Braess example, we note that scaled Vb should
be near 5V . The closest standard Zener diode (1N4733A)
has Zener voltage 5.1V. Since the ratio of Vb/Ve is 10 in
the ideal electrical analogue of the classical Braess exam-
ple, we select the diode in link e to be a forward biased
silicon diode (1N4002) that has a forward voltage drop of
approximately .6 V. To choose the value for Rb, we note
that the quantity IRb should equal .6 V . For convenience,
we then select Rb = 100Ω and I = 6 mA. Then, since the
ratios of Rb/Ra and Rb/Re in the classical Braess exam-
ple are .1 and 10, respectively, we select Re = Rb = 100 Ω
and Ra = 10Rb = 1000 Ω. It is verified computationally
through the use of equations (1), (2), and (3), that for
these choices of component values, the Braess Paradox is
observed in the circuit.

The complete physically constructed circuit, which we
use for the first set of Braess Paradox measurements, is
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shown in the schematic in Figure 3. The current, I, is
generated by a fixed voltage 12 V power supply. There
are two additional resistors, Rsense and Radj , between the
fixed 12 V power supply and the Braess circuit. Radj con-
sists of a 680Ω resistor in parallel with a 10KΩ adjustable
resistor. The 10KΩ adjustable resistor is adjusted dur-
ing the measurement to set the current I, the demand, to
6 mA. The 100Ω sense resistor is included so that the cur-
rent can be determined by measuring the voltage across
Rsense. For the desired current of 6 mA, the voltage across
Vsense would be .6 V.

The voltages at nodes V1, V2, and V3, and the voltage
across Rsense are measured using the 4 analog input chan-
nels of a National Instruments USB-6009 Multifunction
I/O Data Acquisition system. The USB-6009 system was
programmed using Labview running on a PC. From these
measurements and the knowledge of the resistor values Ra,
Rb, and Re, the link and path flows are calculated.

For this circuit, five measurements are made for cases
corresponding, respectively, to: Case 1: link e absent,
Case 2: link e present with Ve = .62 V and Re = 100 Ω
(analogous to the classical Braess example), and three ad-
ditional measurements with variations on the link e cost
functions: Case 3: link e present with only Re = 100Ω,
Case 4: link e present with only Ve = .62 V , and Case 5:
link e is a short circuit, i.e., Re = 0. For all cases the cost
functions on links a− d are as below:

Cost on link a ca : 1000fa = 1000Ia

Cost on link b cb : 5.1 + 100fb = 5.1 + 100Ib

Cost on link c cc : 5.1 + 100fc = 5.1 + 100Ic

Cost on link d cd : 1000fd = 1000Id.

The experimental results are summarized in Table 1.

Form of
Case Ve Re V1 Link e Cost Function

1 - ∞ 8.13 Link e not in network
2 .62 100 9.21 Ve + IeRe

3 0 100 9.72 IeRe

4 .62 0 8.14 Ve

5 - 0 9.88 Link e is a short circuit

Table 1: Measured Voltage Across an Electrical Circuit using
Zener Diodes Exhibiting the Braess Paradox

The results from Table 1 are interpreted as follows. In
all cases, when link e is added, the voltage at node 1, V1,
increases, showing that the Braess Paradox occurs in the
circuit. In electrical circuits one would normally expect
the voltage to drop when a link is added. These multiple
examples prove that, in contrast, the opposite can happen.
This is the first experimental observation of the Braess
Paradox in electrical circuits with physical proof.

The first and second cases correspond to the Braess
Paradox transportation example scaled for real compo-
nents. The first case is the circuit with link e not present.

The second case is the circuit with link e added with a
voltage drop of .62 V + 100Ie for flow from node 2 to
node 3 (to the right in Figure 3). If the voltage at node 2
was not greater than the voltage at node 3 by .62V, there
would be no flow between these two nodes. The cost for
the flow through the circuit is 8.13 V in the absence of link
e and 9.21V in the presence of link e; thus, confirming the
observation of the Braess Paradox in the circuit.

The last three cases of Table 1 correspond to other func-
tional forms of the cost functions for link e, again scaled for
real components. The third case in the table corresponds
to the case in which link e’s cost is only proportional to
the flow. From our analysis of equation (4), we note that
if the Braess Paradox exists in a circuit for a set of val-
ues I, Vb, and Ve, one can choose another set of values,
V ′

b = Vb + Ve, V ′
e = 0, and I ′ = I − (Ve/Re), without

changing the right-hand-side of equation (1). Thus, the
Braess Paradox does occur in this modified circuit and is
measured.

The fourth case of Table 1 is the case where link e is a
fixed cost link. Because of the I − V characteristics of a
forward biased diode, the actual voltage drop is a sharp
exponential, whose limit approaches a fixed value. How-
ever, as noted in the previous section, the fixed voltage
drop model is only an approximation to the behavior of
the real diode and, in fact, the voltage drop on a link will
always depend at least slightly upon the current through
that link. For this case the circuit only marginally illus-
trates the Braess Paradox.

Finally, Case 5 in Table 1 corresponds to the case of a
zero cost link e. In practice, this was constructed by using
a piece of wire for the link. This link may be analyzed as
a circuit with a resistor in parallel with the series Zener
diode-resistor combination. The measured V1 in this case
is less than either twice the Zener voltage (10.2V ) or the
total current through the resistors, Ra (12V ), which may
be interpreted by assuming non-ideal behavior of the re-
verse leakage current of a Zener diode.

Electrical Circuit Using Diodes/Resistors. –
The extension of the Braess Paradox analysis to other

forms of cost functions has been mathematically investi-
gated in [7,8,24]. The driving force for these investigations
has been that realistic travel cost functions are based upon
the Bureau of Public Roads (BPR) travel cost functions
which model the cost on a link as

ca(fa) = t0a

(
1 + k

(
fa

ua

)β
)

, (5)

where t0a, k, ua, and β are positive constants. A full inter-
pretation of the BPR cost functions can be found in [5]. In
practice, k = .15, β = 4, and ua is the practical capacity
of link a.

While it is impossible to find a passive electrical com-
ponent whose I − V characteristics are identical in form
to the BPR cost functions, the I − V characteristics of
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Fig. 4: Diode Resistor Circuit for Braess Paradox Measurement

a forward biased diode have an exponential shape. The
Shockley diode model predicts that the voltage across any
diode, VD, may be modeled as

VD = VT ln
(

ID

IS

)
, (6)

where VT is the thermal voltage approximately 26 mV at
room temperature and IS is the saturation current ap-
proximately 1 pA for a silicon diode.

The first approximation to (6) is the piecewise linear
model which models the diode as a voltage source in series
with a resistor. This model for the diode voltage drop is
identical in form to the voltage drop on links b and c of
our initial circuit. Equation (6) can be expanded as a
power series in I producing higher order terms similar to
those suggested as more complicated transportation cost
functions [7, 8, 24].

Consider the electrical circuit as in Figure 4 with links b
and c implemented by forward-biased silicon diodes. This
topology was implied in [7, 8] but in the context of trans-
portation networks. Unlike the earlier Zener diode elec-
trical circuit example, it is not possible to write a direct
matrix equation such as (1) to analyze the circuit. The
circuit can, nevertheless, be analyzed by standard electri-
cal circuit simulation software such as SPICE to predict
the occurrence of the Braess paradox.

To verify the Braess Paradox in a diode resistor cir-
cuit, the circuit in Figure 4 is constructed. Diodes Db are
1N4148 silicon diodes. The two resistors labeled Ra are
330 Ω. The current (demand), I, is chosen to be 1 mA.
The value of the fixed power supply voltage is changed to
5 V and the value Rsense is set to 1000Ω. As in the pre-
vious experiments, Radj is adjusted to set the current in
this case to 1 mA.

The value of Re is varied from a short circuit, Re = 0,
to an open circuit, Re = ∞, i.e., from a zero-cost link to
when link e is not in the circuit. The results of the mea-

-

6
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Fig. 5: Measured Node 1 Voltage for a Diode Resistor Circuit

surements are graphically illustrated in Figure 5. The up-
per horizontal line in the figure corresponds to the voltage
at node 1, V1, when link e is not included in the system.
The lower horizontal line in the figure corresponds to V1

when link e is a short circuit (wire). The circles are the
measured values of V1 at that value of resistance for link
e.

If the Braess Paradox does not occur, the addition of a
resistor as link e would lower the voltage at node 1, V1,
which would result in all measured values of V1 being be-
tween the two horizontal lines. As can be seen from Figure
5, for link e resistances greater than 100 Ω, the results for
the circuit illustrate that the equivalent resistance of the
circuit increases when a resistor is added for link e; thus,
confirming Braess Paradox behavior.

Summary. – In this paper, we explore the behavior
of electrons flowing through an electrical circuit, which
is physically revealed to be governed by the same re-
lationship that governs travelers driving in a road net-
work and seeking their optimal routes of travel from ori-
gin nodes to destinations, acting independently. We then
prove, through several physically constructed electrical
circuits, that the Braess Paradox, originally proposed in
user-optimized transportation networks, also can occur in
electrical circuits, where the addition of a new link results
in an increase in the voltage, rather than a decrease, as is
the expectation. We provide examples in which cost func-
tions are both linear as well as highly nonlinear and the
same counterintuitive phenomenon is observed.

From an electrical circuit perspective, the circuits con-
structed and described in this paper demonstrate the de-
velopment of a circuit structure where the current and
voltage at a node may be independently controlled. This
result enables the development of alternative circuit struc-
tures that can be exploited in constructing more complex
circuits, which can be embedded in macro, micro, and
mesoscale electrical circuit systems. In addition, because
of our results, appropriately designed electrical circuits
can be used as testbeds to further explore the properties
and range of occurrence of the Braess Paradox in different
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network systems, including transportation.
Because of the contribution in this paper, there now ex-

ists the possibility of further testing the occurrence of the
Braess Paradox in controlled laboratory settings, which is
not possible in real-world transportation networks. This,
we expect, will further enable the understanding of the un-
derlying mechanisms producing the Braess paradox since
we now have a reproducible system in the form of an elec-
trical circuit system, which guarantees user-optimized be-
havior. We hope that this research will also stimulate and
advance research in the econophysics of socio-behavioral
network systems.
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