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Abstract: This paper develops a new dynamic network economic model of Cournot-Nash

competition for a service-oriented Internet in the case of service differentiation and quality

competition. Each service provider seeks to maximize its own profit by determining its service

volumes and service quality. We utilize variational inequality theory for the formulation of

the governing Nash equilibrium as well as for the computational approach. We then construct

the projected dynamical systems model, which provides a continuous-time evolution of the

service providers service volumes and service quality levels, and whose set of stationary points

coincides with the set of solutions to the variational inequality problem. We recall stability

analysis results using a monotonicity approach and construct a discrete-time version of the

continuous-time adjustment process, which yields an algorithm, with closed form expressions
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at each iteration. The algorithm is then utilized to compute the solutions to several numerical

examples. A sensitivity analysis is also conducted.

Keywords: game theory, service differentiation, quality competition, service-oriented In-

ternet, variational inequalities, projected dynamical systems

1. Introduction

The Internet has revolutionized the way in which we communicate, obtain news and in-

formation, and conduct a myriad of transactions from shopping to banking and financial

payments. It has also transformed the entertainment landscape with movies that can be

viewed online and music that can be listened to as well as downloaded and purchased. It has

advanced and extended the reach of education, along with research, through online courses

as well as new computing platforms and new collaborative networks.

Although the underlying technology associated with the existing Internet is rather well-

understood, the economics of the associated services has been less studied. Much of the

Internet success comes from its ability to support a wide range of service at the edge of the

network. However, as argued in [34], the Internet offers little choice of data communication

services inside the network. It is widely agreed that this limitation inhibits the deployment

and use of new networking services, protocols, security designs, management frameworks, and

other components that are essential to support the increasingly diverse systems, applications,

and communication paradigms of the future Internet.

It is worth noting that the Internet architecture defines the fundamental principles of how

data communication between different end-systems can be achieved [3] and [4]. While there

are very clear specifications for different protocols used in the Internet (e.g., Internet Protocol

(IP) [25], Transmission Control Protocol (TCP) [26]), there are no prescribed economic

interactions between entities. The importance of the relationship between technology and

economics became apparent in the early days of the commercial Internet (cf. [11]), but there

has been a lack of common metrics for economic analysis in the Internet. Since the Internet is

a network of networks, where different autonomous systems (AS) are managed by different

administrative entities, economic relationships have evolved between these providers. For

example, peering agreements between network providers specify how traffic is forwarded for

mutual benefit ([2] and [36]).

Recently, the scope of the Internet has been expanded from merely providing connectivity
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between system to providing a variety of services. These services can be offered on the

network edge [8] as well as in the core of the network [33]. The importance of quality of

experience in the context of Internet services has been pointed out by van Moorsel [30]. Initial

economic models for an Internet with services have been proposed by Zhang et al. [35]. Their

work, however is limited to two providers with many simplifying assumptions. In our work,

we present a much more detailed model for a service-oriented Internet that considers product

differentiation with different quality levels and that does not require linear functions.

Recent research initiatives are calling for a fresh look at future Internet architectures

and, hence, creating network economic models associated with the existing and prospective

architectures are sorely needed. As discussed in [34], choice is a key aspect since it can

drive innovation. Choice suggests that entities can select from a range of alternative services

that may differ in functionality, performance, and cost. These choices appear at the level of

application services provided by service providers (e.g., web content, streaming media, cloud

computing services, etc.) or at the level of network services by network providers (e.g., high-

bandwidth connections, in-network caching, etc.). For such an environment, it is necessary

to put in place suitable economic processes to ensure that users can choose and reward good

services and that the resulting competition drives innovation.

There is a considerable amount of literature studying the competition among network

providers in the quality, quantity, and price of services. Faulhaber and Hogendorn [7],

Shetty, Schwartz and Walrand [29], and Radonjic et al. [27] analyzed the capacity and

pricing decisions made by network operators competing á la Cournot. Gibbons, Mason,

and Steinberg [10], Niyato and Hossain [20], Parzy and Bogucka [24], and Zhang et al. [37]

modeled a Cournot competition between wireless networks to find an efficient use of all

available spectrum bandwidth.

However, only a few number of articles studied the quality of the services offered by service

providers and their pricing mechanisms. Njoroge et al. [21] and Njoroge et al. [22] addressed

the interconnection between network providers, the endogenous quality choice by network

and service providers, and the market coverage in tandem. They studied the competition

between service providers in the quality levels of their services and the competition between

network providers in their quality levels and prices in a network with two network providers

and multiple service providers.

Different from the literature, our proposed model considered the oligopolistic Cournot

competition among numerous service providers who offer differentiated services with differ-

ent quality levels and transport them to demand markets via multiple network providers.
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Another distinguishing feature of our work is modeling the competition among the service

providers in a dynamic way by capturing the continuous time adjustment process of the

equilibrium solution besides considering the static model. On top of that, in the numerical

example, we evaluated the influence of the network transmission price on the equilibrium

solution of the competition.

In this paper, we develop a dynamic network economic model which can be utilized as the

foundation for exploring many relevant issues, including the pricing of services, the addition

or the removal of service providers, as well as the network providers, and the users, who are

represented by the consumers at the demand markets. One can also consider alternative cost

functions, and demand price functions associated with the services and demand markets.

Our model is inspired, in part, by the recent contribution of [35], who emphasized the need

for new network economic models of the Internet and derived a game theoretic formulation

in the case of two service providers who were Cournot competitors, two network providers

who were Bertrand competitors, and two users (see also [31]). In our framework, we do

not restrict the number of service providers, or network providers, or users. However, we

focus on the Cournot competition among the service providers but allow for alternative

choices associated with network provision. In addition, we construct not only an equilibrium

model, but also describe the underlying dynamics, along with some stability results, and a

computational procedure.

This model allows for service differentiation, and distinct quality levels associated with

the services offered by the service providers. Hence, the dynamic model allows for the

tracking of the evolution not only of the volume of services provided but also the evolution

of the quality levels. The methodologies that we utilize for the network economic model of

the service-oriented Internet are variational inequality theory (cf. [12]) for the equilibrium

version and projected dynamical systems theory (cf. [17]) for the dynamics.

The paper is organized as follows. In Section 2, we develop both the Cournot-Nash

network economic equilibrium model with service differentiation and quality competition

and its dynamic counterpart. In Section 3, we provide some qualitative results including

some stability results. In Section 4, we present the algorithm, which yields closed form

expressions for the service volumes and the quality levels, at each iteration. We then apply

the algorithm to several numerical examples and conduct a sensitivity analysis in Section 5

to gain insights into the network economics and the evolutionary process. We summarize

and present our conclusions in Section 6.
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2. The Network Economic Game Theory Model

In this Section, we develop a dynamic network economic model of a service-oriented Internet

with quality competition. We assume that there are m service providers, with a typical

service provider denoted by i, o network providers, which provide access to the services, with

a typical one denoted by k, and n demand markets associated with the customers/clients for

these services. A typical demand market is denoted by j. The service providers offer multiple

different services such as movies for video streaming, music for downloading, news, etc. Users

can choose among different service offerings (e.g., movie streaming from service provider i1

vs. movie streaming from service provider i2). Different network providers can be used for

data communication over the Internet (i.e., “transport”) between the service providers and

users. In practice, multiple network providers are involved in a single connection over the

Internet. However, for simplicity, our model only considers a single level of network provider.

Also, while we consider different quality levels among service providers, we do not explicitly

handle the quality level among network providers (but allow for differing costs).

The demand for a service is reflected in the demand price function at a demand market.

We allow for consumers to differentiate among the services provided by the service providers

in terms of the service quality. It is assumed that the service providers compete under the

Cournot-Nash equilibrium concept of non-cooperative behavior and select both their service

volumes (quantities) as well as the quality levels of their services. The consumers, in turn,

signal their preferences for the services through the demand price functions associated with

the demand markets. The demand price functions are, in general, functions of the demands

for the services at all the demand markets as well as their quality levels and the fixed network

transmission price.

We first develop the equilibrium model and derive the variational inequality formulation.

We then describe the underlying dynamics associated with the service providers service

outputs as well as quality levels and present the projected dynamical systems model whose

set of stationary points corresponds to the set of solutions of the variational inequality

problem.

Please refer to Figure 1 for the underlying structure of the network economic model with

service differentiation.

There is a distinct (but substitutable) service produced by each of the m service providers

and consumed at the n demand markets. Let si denote the nonnegative service volume

(output) produced by service provider i and let dij denote the demand for the service of
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Figure 1: The structure of the network economic problem

provider i at demand market j. Let Qijk denote the nonnegative service volume of service

provider i to demand market j transported by network provider k. We group the service

quantities into the vector s ∈ Rm
+ , the demands into the vector d ∈ Rmn

+ , and the volumes

of service transported from the service providers for the demand markets into the vector

Q ∈ Rmno
+ . Here qi denotes the quality level, or, simply, the quality of service i, which is

produced by service provider i. We group the quality levels of all service providers into the

vector q ∈ Rm
+ . All vectors here are assumed to be column vectors, except where noted.

All vectors here are assumed to be column vectors. The following conservation of flow

equations must hold:

si =
n∑
j=1

o∑
k=1

Qijk, i = 1, . . . ,m; (1)

dij =
o∑

k=1

Qijk, i = 1, . . . ,m; j = 1, . . . , n, (2)

Qijk ≥ 0, i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , o, (3)

and, since the quality levels must also be nonnegative, we must also have that

qi ≥ 0, i = 1, . . . ,m. (4)

Hence, according to (1), the quantity of the service produced by each service provider is

equal to the sum of the amounts of service transported to all the demand markets, and the

quantity of a service provider’s service consumed at a demand market, according to (2), is

equal to the amount transported from the service provider to that demand market via all

the network providers. Both the service volumes and the quality levels must be nonnegative.

We associate with each service provider i a production cost f̂i, and allow for the general

situation where the production cost of i may depend upon the entire service pattern and on

its own quality level, that is,

f̂i = f̂i(s, qi), i = 1, . . . ,m. (5)
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As noted earlier, consumers located at the demand markets respond not only to the

volumes of services available but also to their quality levels. Hence, we allow the demand

price at a demand market j associated with the service provided by service provider i, and

denoted by ρij, to depend, in general, upon the entire consumption pattern, as well as on all

the levels of quality of all the services:

ρij = ρij(d, q, p), i = 1, . . . ,m; j = 1, . . . , n. (6)

The generality of the expression in (6) allows for modeling and application flexibility. The

demand price functions are, typically, assumed to be monotonically decreasing in service

quantity but increasing in terms of service quality. In addition, the demand price functions

in (6) also depend on the network transmission price p and we expect a negative relationship,

that is, the higher the value of this transmission charge, the lower the price the consumers

are willing to pay for a specific service at a specific demand market.

Let ĉij denote the total provision/transportation cost associated with providing/

transporting access to provider i’s service for demand market j, which is given by the func-

tion:

ĉij =
o∑

k=1

ĉijk(Qijk), i = 1, . . . ,m; j = 1, . . . , n, (7)

where ĉijk is the provision cost of providing access to provider i’s service for demand market

j through network provider k. In our model, it is the service providers that pay for the provi-

sion/transportation of the services. Functions (5), (6) and (7) are assumed to be continuous

and continuously differentiable.

For service provider i, we group all its Qijk into vector Qi. The strategic variables of

service provider i are its service transport volumes {Qi} and its quality level qi.

The profit or utility Ui of service provider i; i = 1, . . . ,m, is, hence, given by the expression

Ui =
n∑
j=1

ρijdij − f̂i −
n∑
j=1

ĉij, (8)

which is the difference between its total revenue and its total cost.

In view of (1) - (8), one may write the profit as a function solely of the service provi-

sion/transportation pattern and quality levels, that is,

U = U(Q, q), (9)

where U is the m-dimensional vector with components: {U1, . . . , Um}.
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LetKi denote the feasible set corresponding to service provider i, whereKi ≡ {(Qi, qi)|Qi ≥
0, and qi ≥ 0} and define K ≡

∏m
i=1K

i.

We consider the oligopolistic market mechanism, in which the m service providers supply

their services in a non-cooperative fashion, each one trying to maximize its own profit. We

seek to determine a nonnegative service volume and quality level pattern (Q∗, q∗) for which

the m service providers will be in a state of equilibrium as defined below. In particular, Nash

[18-19] generalized Cournot’s concept of an equilibrium among several players, in what has

been come to be called a non-cooperative game.

Definition 1: A Network Economic Cournot-Nash Equilibrium with Service D-

ifferentiation, Network provision Choices, and Quality Levels

A service transport volume and quality level pattern (Q∗, q∗) ∈ K is said to constitute a

Cournot-Nash equilibrium if for each service provider i,

Ui(Q
∗
i , q
∗
i , Q̂

∗
i , q̂
∗
i ) ≥ Ui(Qi, qi, Q̂∗i , q̂

∗
i ), ∀(Qi, qi) ∈ Ki, (10)

where

Q̂∗i ≡ (Q∗1, . . . , Q
∗
i−1, Q

∗
i+1, . . . , Q

∗
m); and q̂∗i ≡ (q∗1, . . . , q

∗
i−1, q

∗
i+1, . . . , q

∗
m). (11)

According to (10), an equilibrium is established if no service provider can unilaterally

improve upon its profits by selecting an alternative vector of service volumes and quality

level of its service. Alternative variational inequality formulations of the above equilibrium

are:

Variational Inequality Formulations

We now present alternative variational inequality formulations of the above Cournot-Nash

equilibrium with service differentiation in the following theorem.

Theorem 1

Assume that for each service provider i the profit function Ui(Q, q) is concave with respect

to the variables {Qi1, . . . , Qin}, and qi, and is continuous and continuously differentiable.

Then (Q∗, q∗) ∈ K is a Cournot-Nash equilibrium according to Definition 1 if and only if it

satisfies the variational inequality

−
m∑
i=1

n∑
j=1

o∑
k=1

∂Ui(Q
∗, q∗)

∂Qijk

× (Qijk −Q∗ijk)−
m∑
i=1

∂Ui(Q
∗, q∗)

∂qi
× (qi − q∗i ) ≥ 0,
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∀(Q, q) ∈ K, (12)

or, equivalently, (s∗, d∗, Q∗, q∗) ∈ K1 is an equilibrium production, transport, consumption,

and quality level pattern if and only if it satisfies the variational inequality

m∑
i=1

∂f̂i(s
∗, q∗i )

∂si
× (si − s∗i )−

m∑
i=1

n∑
j=1

ρij(d
∗, q∗, p)× (dij − d∗ij)

+
m∑
i=1

n∑
j=1

o∑
k=1

[
∂ĉijk(Q

∗
ijk)

∂Qijk

−
n∑
l=1

∂ρil(d
∗, q∗, p)

∂dij
× d∗il

]
× (Qijk −Q∗ijk)

+
m∑
i=1

[
∂f̂i(s

∗, q∗i )

∂qi
−

n∑
l=1

∂ρil(d
∗, q∗, p)

∂qi
× d∗il

]
× (qi − q∗i ) ≥ 0, ∀(s, d,Q, q) ∈ K1, (13)

where K1 ≡ {(s, d,Q, q)|Q ≥ 0, q ≥ 0, and (1) and (2) hold}.

Proof: (12) follows directly from [5] and [9].

In order to obtain (13) from (12), we note that, in light of (1) and (2):

for each i, j, and k,

− ∂Ui
∂Qijk

=

[
∂f̂i
∂Qijk

+
∂ĉijk
∂Qijk

− ρij
∂dij
∂Qijk

−
n∑
l=1

∂ρil
∂Qijk

× dil

]

=

[
∂f̂i
∂si

∂si
∂Qijk

+
∂ĉijk
∂Qijk

− ρij −
n∑
l=1

∂ρil
∂dij

∂dij
∂Qijk

× dil

]

=

[
∂f̂i
∂si

+
∂ĉijk
∂Qijk

− ρij −
n∑
l=1

∂ρil
∂dij

× dil

]
, (14)

and for each i,

−∂Ui
∂qi

=

[
∂f̂i
∂qi
−

n∑
l=1

∂ρil
∂qi
× dil

]
. (15)

Multiplying the right-most expression in (14) by (Qijk − Q∗ijk) and summing the resultant

over all i, j, and k; similarly, multiplying the right-most expression in (15) by (qi − q∗i ) and

summing the resultant over all i yields, respectively:

m∑
i=1

n∑
j=1

o∑
k=1

[
∂f̂i
∂si

+
∂ĉijk
∂Qijk

− ρij −
n∑
l=1

∂ρil
∂dij

× dil

]
× (Qijk −Q∗ijk) (16)

and
m∑
i=1

[
∂f̂i
∂qi
−

n∑
l=1

∂ρil
∂qi
× dil

]
× (qi − q∗i ). (17)
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Finally, summing (16) and (17) and then using constraints (1) and (2), yields variational

inequality (13).2

We now put the above oligopolistic market equilibrium problem with service differentia-

tion and quality levels into standard variational inequality form, that is,

Determine X∗ ∈ K ⊂ RN , such that

〈F (X∗), X −X∗〉 ≥ 0, ∀X ∈ K, (18)

where F is a given continuous function from K to RN , and K is a closed and convex set.

We define the (mno+m)-dimensional vector X ≡ (Q, q) and the (mn+m)-

dimensional row vector F (X) = (F 1(X), F 2(X)) with the (i, j, k)-th component, F 1
ijk, of

F 1(X) given by

F 1
ijk(X) ≡ −∂Ui(Q, q)

∂Qijk

, (19)

the i-th component, F 2
i , of F 2(X) given by

F 2
i (X) ≡ −∂Ui(Q, q)

∂qi
, (20)

and with the feasible set K ≡ K. Then, clearly, variational inequality (13) can be put into

standard form (18).

In a similar manner, one can establish that variational inequality (14) can also be put

into standard variational inequality form (18).

For additional background on the variational inequality problem, we refer the reader to

the book [12].

The Projected Dynamical System Model

We now propose a dynamic adjustment process for the evolution of the service providers’

service volumes and service quality levels. Observe that, for a current service volume and

quality level pattern at time t, X(t) = (Q(t), q(t)), −F 1
ijk(X(t)) = ∂Ui(Q(t),q(t))

∂Qijk
given by (19),

is the marginal utility (profit) of service provider i with respect to its transport of services to

demand market j via k. Similarly, −F 2
i (X(t)) = ∂Ui(Q(t),q(t))

∂qi
, given by (20), is the provider’s

marginal utility (profit) with respect to its quality level. In this framework, the rate of

change of the service flow between a provider and demand market pair using k, (i, j, k), is

in proportion to −F 1
ijk(X), as long as the service volume Qijk is positive. Namely, when
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Qijk > 0,

Q̇ijk =
∂Ui(Q, q)

∂Qijk

, (21)

where Q̇ijk denotes the rate of change of Qijk. However, when Qijk = 0, the nonnegativity

condition (3) forces the service volume Qijk to remain zero when ∂Ui(Q,q)
∂Qijk

≤ 0. Hence, in this

case, we are only guaranteed of having possible increases of the transport volume. Namely,

when Qijk = 0,

Q̇ijk = max{0, ∂Ui(Q, q)
∂Qijk

}. (22)

We may write (21) and (22) concisely as:

Q̇ijk =

{
∂Ui(Q,q)
∂Qijk

, if Qijk > 0

max{0, ∂Ui(Q,q)
∂Qijk

}, if Qijk = 0.
(23)

As for the quality levels, when qi > 0, then

q̇i =
∂Ui(Q, q)

∂qi
, (24)

where q̇i denotes the rate of change of qi; otherwise:

q̇i = max{0, ∂Ui(Q, q)
∂qi

}, (25)

since qi must be nonnegative.

Combining (24) and (25), we may write:

q̇i =

{
∂Ui(Q,q)
∂qi

, if qi > 0

max{0, ∂Ui(Q,q)
∂qi
}, if qi = 0.

(26)

Applying (23) to all service provider and demand market pairs (i, j); i = 1, . . . ,m; j =

1, . . . , n, and all network providers k = 1, . . . , o, and applying (26) to all service providers i;

i = 1, . . . ,m, and combining the resultants, yields the following pertinent ordinary differential

equation (ODE) for the adjustment processes of the service transport volumes and quality

levels, in vector form, as:

Ẋ = ΠK(X,−F (X)), (27)

where, since K is a convex polyhedron, according to [6], ΠK(X,−F (X)) is the projection,

with respect to K, of the vector −F (X) at X defined as

ΠK(X,−F (X)) = lim
δ→0

PK(X − δF (X))−X
δ

(28)

11



with PK denoting the projection map:

P(X) = argminz∈K‖X − z‖, (29)

and where ‖ · ‖ = 〈x, x〉. Hence, F (X) = −∇U(Q, q), where ∇U(Q, q) is the vector of

marginal utilities with components given by (19) and (20).

We now interpret the ODE (27) in the context of the network economic model with service

differentiation and quality competition. First, note that ODE (27) ensures that the service

volumes and quality levels are always nonnegative. Indeed, if one were to consider, instead,

the ordinary differential equation: Ẋ = −F (X), or, equivalently, Ẋ = ∇U(X), such an ODE

would not ensure that X(t) ≥ 0, for all t ≥ 0, unless additional restrictive assumptions were

to be imposed. ODE (27), however, retains the interpretation that if X at time t lies in the

interior of K, then the rate at which X changes is greatest when the vector field −F (X) is

greatest. Moreover, when the vector field −F (X) pushes X to the boundary of the feasible

set K, then the projection ΠK ensures that X stays within K. Hence, the service volumes

and quality levels are always nonnegative.

Recall now the definition of F (X) for the network economic model, in which case the dy-

namical system (27) states that the rate of change of the service transport volumes and qual-

ity levels is greatest when the firms’ marginal utilities (profits) are greatest. If the marginal

utilities with respect to the transport volumes are positive, then the service providers will

increase their volumes; if they are negative, then they will decrease them. The same adjust-

ment behavior holds for the service quality levels. This type of behavior is rational from an

economic standpoint. Therefore, ODE (27) is a reasonable continuous adjustment process

for the network economic problem with service differentiation.

Although the use of the projection on the right-hand side of ODE (27) guarantees that

the service flows and the quality levels are always nonnegative, it also raises the question of

existence of a solution to ODE (27), since this ODE is nonstandard due to its discontinuous

right-hand side. Dupuis and Nagurney [6] developed the fundamental theory with regards

to existence and uniqueness of projected dynamical systems as defined by (28). We cite the

following theorem from that paper.

Theorem 2

X∗ solves the variational inequality problem (18) if and only if it is a stationary point of the

ODE (27), that is,

Ẋ = 0 = ΠK(X∗,−F (X∗)). (30)
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This theorem demonstrates that the necessary and sufficient condition for a service flow

and quality level pattern X∗ = (Q∗, q∗) to be a Cournot-Nash equilibrium, according to

Definition 1, is that X∗ = (Q∗, q∗) is a stationary point of the adjustment process defined

by ODE (27), that is, X∗ is the point at which Ẋ = 0.

Consider now the competitive economic system consisting of the service providers, who,

in order to maximize their utilities, adjust their service flow and quality level patterns by

instantly responding to the marginal utilities, according to (27). The following questions

naturally arise and are of interest. Does the utility gradient process defined by (27), approach

a Cournot-Nash equilibrium, and how does it approach an equilibrium? Also, for a given

Cournot-Nash equilibrium, do all the disequilibrium service flow and quality level patterns

that are close to this equilibrium always stay near by? Motivated by these questions, we now

recall the stability analysis of Cournot-Nash equilibrium, under the above utility gradient

process.

As noted earlier, the stability of Cournot-Nash equilibrium has been well-studied in the

history of oligopoly theory. Among others, [1] investigated the asymptotical stability of

Cournot-Nash equilibrium (see also [32]). In that paper, in place of the projection operator,

ΠK, a discontinuous matrix function, γ, was used to multiply the utility gradient on the

right-hand side of the ODE (but in a much simpler model than developed here), to ensure

that the adjustment process would evolve within the nonnegative orthant. Okuguchi and

Szidarovszky [23] also studied the asymptotical stability of the utility gradient process at

the Cournot-Nash equilibrium, under the assumptions of linear price functions and quadratic

cost functions, and with no quality levels as strategic variables or with the spatial dimension.

3. Stability Under Monotonicity

We now turn to the questions raised in the previous section, that is, whether and under

what conditions does the adjustment process defined by ODE (27) approach a Cournot-Nash

equilibrium? We first note that Lipschitz continuity of F (X) (cf. [6] and [17]) guarantees

the existence of a unique solution to (31) below, where we have that X0(t) satisfies ODE

(27) with initial service transport volume and quality level pattern (Q0, q0). In other words,

X0(t) solves the initial value problem (IVP)

Ẋ = ΠK(X,−F (X)), X(0) = X0, (31)

with X0(0) = X0. For convenience, we will sometimes write X0 · t for X0(t).
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For the definitions of stability and monotonicity, the stability properties of the gradient

process under various monotonicity conditions, and the associated proofs, please refer to

[17].

We now turn to establishing existence and uniqueness results of the equilibrium pattern

by utilizing the theory of variational inequalities.

In the context of the network economic problem, where F (X) is the vector of negative

marginal utilities as in (18) - (20), we point out that if the utility functions are twice d-

ifferentiable and the Jacobian of the negative marginal utility functions (or, equivalently,

the negative of the Hessian matrix of the utility functions) is positive definite, then the

corresponding F (X) is strictly monotone.

In a practical oligopoly model, it is reasonable to expect that the utility of any service

provider i, Ui(Q, q), would decrease whenever its output has become sufficiently large, that

is, when Ui is differentiable, ∂Ui(Q,q)
∂Qijk

is negative for sufficiently large Qijk, because qi ≥ Qijk,

for all j; the same holds for sufficiently large qi. Hence, the following assumption is not

unreasonable:

Assumption 1

Suppose that in our network economic model there exists a sufficiently large M , such that

for any (i, j, k),
∂Ui(Q, q)

∂Qijk

< 0, (32)

for all service transport volume patterns Q with Qijk ≥M and that there exists a sufficiently

large M̄ , such that for any i,
∂Ui(Q, q)

∂qi
< 0, (33)

for all quality level patterns q with qi ≥ M̄ .

We now give an existence result.

Proposition 1

Any network economic problem, as described above, that satisfies Assumption 1 possesses at

least one equilibrium service transport volume and quality level pattern.

Proof: The proof follows from Proposition 1 in [36]. 2
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We now present the uniqueness result, the proof of which follows from the basic theory

of variational inequalities (cf. [12]).

Proposition 2

Suppose that F is strictly monotone at any equilibrium point of the variational inequality

problem defined in (18). Then it has at most one equilibrium point.

The following Theorem is a natural extension/adaptation of Theorem 6.10 in [12] (see

also [17]) to the more general network economic oligopoly problem formulated here with

service differentiation and quality competition.

Theorem 3

(i). If −∇U(Q, q) is monotone, then every network economic Cournot-Nash equilibrium,

provided its existence, is a global monotone attractor for the utility gradient process.

(ii). If −∇U(Q, q) is strictly monotone, then there exists at most one network economic

Cournot-Nash equilibrium. Furthermore, provided existence, the unique spatial Cournot-

Nash equilibrium is a strictly global monotone attractor for the utility gradient process.

(iii). If −∇U(Q, q) is strongly monotone, then there exists a unique network economic

Cournot-Nash equilibrium, which is globally exponentially stable for the utility gradient pro-

cess.

We now present two examples in order to illustrate some of the above concepts and results.

Example 1

Consider a network oligopoly problem consisting of two service providers, two network

providers, and one demand market, as depicted in Figure 2.
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Figure 2: Example 1

The production cost functions are:

f̂1(s, q1) = s21 + s1 + s2 + 2q21 + 39, f̂2(s, q2) = 2s22 + 2s1 + s2 + q22 + 37,

the total transportation cost functions are:

ĉ111 = 0.5Q2
111 + 0.4Q111, ĉ112 = 0.7Q2

112 + 0.5Q112,

ĉ211 = 0.6Q2
211 + 0.4Q211, ĉ212 = 0.4Q2

212 + 0.2Q212,

and the demand price functions are:

ρ11(d, q) = 100− d11 − 0.4d21 + 0.3q1 + 0.05q2 − p,

ρ21(d, q) = 100− 0.6d11 − 1.5d21 + 0.1q1 + 0.5q2 − p,

where p = 30.

The utility function of service provider 1 is, hence:

U1(Q, q) = ρ11d11 − f̂1 − ĉ111 − ĉ112,

whereas the utility function of service provider 2 is:

U2(Q, q) = ρ21d21 − f̂2 − ĉ211 − ĉ212.

The Jacobian matrix of -∇U(Q, q), denoted by J(Q11, Q21, q1, q2), is

J(Q111, Q112, Q211, Q212, q1, q2) =


5 4 0.4 0.4 −0.3 −0.05
4 5.4 0.4 0.4 −0.3 −0.05

0.6 0.6 8.2 7 −0.1 −0.5
0.6 0.6 7 7.8 −0.1 −0.5
−0.3 −0.3 0 0 4 0

0 0 −0.5 −0.5 0 2

 .
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This Jacobian matrix is positive-definite, since it is strictly diagonally dominant, and,

hence, minus the gradient of the utility functions, that is, -∇U(Q, q) is strongly monotone

(see also [12]). Thus, both the existence and uniqueness of the solution to variational in-

equality (13) with respect to this example are guaranteed. The equilibrium solution is:

Q∗111 = 8.40, Q∗112 = 5.93, Q∗211 = 3.18, Q∗212 = 5.01, q∗1 = 1.08, and q∗2 = 2.05, and it is

globally exponentially stable.

Example 2

We now present another example with the network depicted in Figure 3.

Demand Market 1 1���� ����Demand Market 22
? ?

Firm 1 1���� ����Firm 22
HHHHHHHH

��������� jR 		 R

Figure 3: Example 2

The production cost functions are:

f̂1(s, q1) = s21 + s1 + s2 + 2q21 + 39, f̂2(s, q2) = 2s22 + 2s1 + s2 + q22 + 37,

the total transportation cost functions are:

ĉ111 = 0.5Q2
111 + 0.4Q111, ĉ112 = 0.7Q2

112 + 0.5Q112

ĉ211 = 0.6Q2
211 + 0.4Q211, ĉ212 = 0.4Q2

212 + 0.2Q212,

ĉ121 = 0.3Q2
121 + 0.1Q121, ĉ122 = 0.5Q2

122 + 0.3Q122,

ĉ221 = 0.4Q2
221 + 0.3Q221, ĉ222 = 0.4Q2

222 + 0.2Q222,

and the demand price functions are:

ρ11(d, q) = 100− d11 − 0.4d21 + 0.3q1 + 0.05q2 − p,

ρ12(d, q) = 100− 2d12 − d22 + 0.4q1 + 0.2q2 − p,

ρ21(d, q) = 100− 0.6d11 − 1.5d21 + 0.1q1 + 0.5q2 − p,
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ρ22(d, q) = 100− 0.7d12 − 1.7d22 + 0.01q1 + 0.6q2 − p,

where p = 30.

The utility function of firm 1 is:

U1(Q, q) = ρ11d11 + ρ12d12 − f̂1 − (ĉ111 + ĉ121 + ĉ112 + ĉ122)

with the utility function of firm 2 being:

U2(Q, q) = ρ21d21 + ρ22d22 − f̂2 − (ĉ211 + ĉ221 + ĉ212 + ĉ222).

The Jacobian of −∇U(Q, q), denoted by J(Q111, Q112, Q121, Q122, Q211,

Q212, Q221, Q222, q1, q2), is

J(Q111, Q112, Q121, Q122, Q211, Q212, Q221, Q222, q1, q2)

=



5 4 2 2 0.4 0.4 0 0 −0.3 −0.05
4 5.4 2 2 0.4 0.4 0 0 −0.3 −0.05
2 2 6.6 6 0 0 1 1 −0.4 −0.2
2 2 6 7 0 0 1 1 −0.4 −0.2

0.6 0.6 0 0 8.2 7 4 4 −0.1 −0.5
0.6 0.6 0 0 7 7.8 4 4 −0.1 −0.5
0 0 0.7 0.7 4 4 8.2 7.4 −0.01 −0.6
0 0 0.7 0.7 4 4 7.4 8.2 −0.01 −0.6
−0.3 −0.3 −0.4 −0.4 0 0 0 0 4 0

0 0 0 0 −0.5 −0.5 −0.6 −0.6 0 2


.

Clearly, this Jacobian matrix is also positive-definite, since it is strictly diagonally domi-

nant, and, hence, minus the gradient of the utility functions, that is, -∇U(Q, q) is strongly

monotone (cf. [13]). Thus, both the existence and uniqueness of the solution to variational

inequality (13) with respect to this example are also guaranteed. Moreover, the equilibri-

um solution (stationary point) is: Q∗111 = 6.97, Q∗112 = 4.91, Q∗121 = 2.40, Q∗122 = 3.85,

Q∗211 = 3.58, Q∗212 = 1.95, Q∗221 = 2.77, Q∗222 = 2.89,q∗1 = 1.52, q∗2 = 3.08, and it is globally

exponentially stable.

The stationary points of both Examples 1 and 2 were computed using the Euler method,

which is induced by the general iterative scheme of [6]. In the next Section, we present the

induced closed form expressions at each iteration, along with convergence results.

4. The Algorithm

As mentioned in the introduction, the projected dynamical system yields continuous-time ad-

justment processes. However, for computational purposes, a discrete-time algorithm, which

18



serves as an approximation to the continuous-time trajectories is needed.

We now recall the Euler method, which is induced by the general iterative scheme of [6].

Specifically, iteration τ of the Euler method (see also [12]) is given by:

Xτ+1 = PK(Xτ − aτF (Xτ )), (41)

where PK is the projection on the feasible set K and F is the function that enters the

variational inequality problem (19).

As shown in [6] and [17], for convergence of the general iterative scheme, which induces

the Euler method, the sequence {aτ} must satisfy:
∑∞

τ=0 aτ = ∞, aτ > 0, aτ → 0, as

τ →∞. Specific conditions for convergence of this scheme as well as various applications to

the solutions of other oligopoly models can be found in [13-17].

Explicit Formulae for the Euler Method Applied to the Network Economic Model

of the Internet

The elegance of this procedure for the computation of solutions to our network economic

model of the Internet with service differentiation and quality levels can be seen in the fol-

lowing explicit formulae. In particular, we have the following closed form expression for all

the service volume i = 1, . . . ,m; j = 1, . . . , n; k = 1, . . . , o:

Qτ+1
ijk = max{0, Qτ

ijk + aτ (ρij(d
τ , qτ , p) +

n∑
l=1

∂ρil(d
τ , qτ , p)

∂dij
dτil −

∂f̂i(s
τ , qτi )

∂si

−
∂ĉijk(Q

τ
ijk)

∂Qijk

)}, (42)

and the following closed form expression for all the quality levels i = 1, . . . ,m:

qτ+1
i = max{0, qτi + aτ (

n∑
l=1

∂ρil(d
τ , qτ , p)

∂qi
dτil −

∂f̂i(s
τ , qτi )

∂qi
)} (43)

with the demands being updated according to:

dτ+1
ij =

o∑
k=1

Qτ+1
ijk ; i = 1, . . . ,m; j = 1, . . . , n, (44)

and the supplies being updated according to:

sτ+1
i =

n∑
j=1

o∑
k=1

Qτ+1
ijk , i = 1, . . . ,m. (45)
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We now provide the convergence result. The proof is direct from Theorem 5.8 in [17].

Theorem 4

In the network economics problem of the Internet with service differentiation and quality

levels let F (X) = −∇U(Q, q) be strictly monotone at any equilibrium pattern and assume

that Assumption 1 is satisfied. Also, assume that F is uniformly Lipschitz continuous. Then

there exists a unique equilibrium service volume and quality level pattern (Q∗, q∗) ∈ K and

any sequence generated by the Euler method as given by (41) above, where {aτ} satisfies∑∞
τ=0 aτ =∞, aτ > 0, aτ → 0, as τ →∞ converges to (Q∗, q∗).

In the next Section, we apply the Euler method to compute solutions to numerical network

oligopoly problems.

5. Numerical Examples

We implemented the Euler method, as described in Section 3, using Matlab. The convergence

criterion was ε = 10−6; that is, the Euler method was considered to have converged if, at a

given iteration, the absolute value of the difference of each service volume and each quality

level differed from its respective value at the preceding iteration by no more than ε.

The sequence {aτ} was: .1(1, 1
2
, 1
2
, 1
3
, 1
3
, 1
3
. . .). We initialized the algorithm by setting each

service volume Qijk = 2.5, ∀i, j, k, and by setting the quality level of each firm qi = 0.00, ∀i.

Example 1 Revisited

In Section 3, we recalled stability analysis and presented results for two numerical examples.

We now provide additional results for these examples.

The Euler method required 72 iterations for convergence to the equilibrium pattern for

Example 1 described in Section 3. A graphical depiction of the iterates, consisting of the

service volumes and the quality levels is given, respectively, in Figure 4. The utility/profit

of firm 1 was 567.35 and that of firm 2 was 216.94.
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Figure 4: Service volumes and quality levels for Example 1

Example 2 Revisited

For Example 2 described in Section 3, in which there are two service providers, two network

providers, and two demand markets, the Euler method required 84 iterations for convergence.

A graphical depiction of the service volume and quality level iterates is given, respectively,

in Figure 5. The profit of firm 1 was 547.60, whereas that of firm 2 was 292.79.
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Figure 5: Service volumes and quality levels for Example 2

The trajectories in Figures 4 and 5 provide a discrete-time evolution of the service volumes

and quality levels of the service providers as they respond to the feedback from the consumers

as to the demands for the services and the quality levels from the preceding iteration (time

period).

We note that we verified the properties of the Jacobian matrix above in order to also

evaluate the stability of the utility gradient process as well as to check whether conditions

for convergence of the algorithm are satisfied. One should realize, however, that the algo-

rithm does not require strong monotonicity of minus the gradient of the utility functions for

convergence. Moreover, if the algorithm converges, it converges to a stationary point of the

projected dynamical systems; equivalently, to a solution of the variational inequality problem

governing the Nash-Cournot equilibrium conditions for our network oligopoly model.

Example 3

The third numerical network oligopoly example consisted of two firms and three demand

markets, as depicted in Figure 6.
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Figure 6: Example 3

This example was built from Example 2 with the production cost functions of the original

two demand markets expanded and the original demand price functions as well. The new

demand market, demand market 3, is farther than demand markets 1 and 2. We also added

new data for the new firm. The complete data for this example are given below.

The production cost functions are:

f̂1(s, q1) = s21 + s1 + s2 + 2q21 + 39, f̂2(s, q2) = 2s22 + 2s1 + s2 + q22 + 37.

The total transportation cost functions are:

ĉ111 = 0.5Q2
111 + 0.4Q111, ĉ112 = 0.7Q2

112 + 0.5Q112

ĉ211 = 0.6Q2
211 + 0.4Q211, ĉ212 = 0.4Q2

212 + 0.2Q212,

ĉ121 = 0.3Q2
121 + 0.1Q121, ĉ122 = 0.5Q2

122 + 0.3Q122,

ĉ221 = 0.4Q2
221 + 0.3Q221, ĉ222 = 0.4Q2

222 + 0.2Q222,

ĉ131 = Q2
131 + 0.5Q131, ĉ132 = Q2

132 + 0.6Q132,

ĉ231 = 0.8Q2
231 + 0.5Q231, ĉ232 = Q2

232 + 0.7Q232,

and the demand price functions are:

ρ11(d, q) = 100− d11 − 0.4d21 + 0.3q1 + 0.05q2 − p,

ρ12(d, q) = 100− 2d12 − d22 + 0.4q1 + 0.2q2 − p,

ρ13(d, q) = 100− 1.7d13 − 0.7d23 + 0.5q1 + 0.1q2 − p,

ρ21(d, q) = 100− 0.6d11 − 1.5d21 + 0.1q1 + 0.5q2 − p,
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ρ22(d, q) = 100− 0.7d12 − 1.7d22 + 0.01q1 + 0.6q2 − p,

ρ23(d, q) = 100− 0.9d13 − 2d23 + 0.2q1 + 0.7q2 − p,

The utility function expressions of firm 1, firm 2, and firm 3 are, respectively:

U1(Q, q) = ρ11d11 + ρ12d12 + ρ13d13 − f̂1 − (ĉ111 + ĉ121 + ĉ112 + ĉ122 + ĉ131 + ĉ132)

with the utility function of firm 2 being:

U2(Q, q) = ρ21d21 + ρ22d22 + ρ23d23 − f̂2 − (ĉ211 + ĉ221 + ĉ212 + ĉ222 + ĉ231 + ĉ232).

The Jacobian of −∇U(Q, q), denoted by J(Q111, Q112, Q121, Q122, Q131, Q132, Q211,

Q212, Q221, Q222, Q231, Q232, q1, q2), is

J(Q111, Q112, Q121, Q122, Q131, Q132, Q211, Q212, Q221, Q222, Q231, Q232, q1, q2)

= [J(Q111, Q112, Q121, Q122, Q131, Q132, Q211)|J2(Q212, Q221, Q222, Q231, Q232, q1, q2)],

where

J1 =



5 4 2 2 2 2 0.4
4 5.4 2 2 2 2 0.4
2 2 6.6 6 2 2 0
2 2 6 7 2 2 0
2 2 2 2 7.4 5.4 0
2 2 2 2 5.4 7.4 0

0.6 0.6 0 0 0 0 8.2
0.6 0.6 0 0 0 0 7
0 0 0.7 0.7 0 0 4
0 0 0.7 0.7 0 0 4
0 0 0 0 0.9 0.9 4
0 0 0 0 0.9 0.9
−0.3 −0.3 −0.4 −0.4 −0.5 −0.5 0

0 0 0 0 0 0 −0.5



.
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J2 =



0.4 0 0 0 0 −0.3 −0.05
0.4 0 0 0 0 −0.3 −0.05
0 1 1 0 0 −0.4 −0.2
0 1 1 0 0 −0.4 −0.2
0 0 0 0.7 0.7 −0.5 −0.1
0 0 0 0.7 0.7 −0.5 −0.1
7 4 4 4 4 −0.1 −0.5

7.8 4 4 4 4 −0.1 −0.5
4 8.2 7.4 4 4 −0.01 −0.6
4 7.4 8.2 4 4 −0.01 −0.6
4 4 4 9.6 8 −0.2 −0.7
4 4 4 8 10 −0.2 −0.7
0 0 0 0 0 4 0
−0.5 −0.6 −0.6 −0.7 −0.7 0 2



.

The above Jacobian matrix J is positive-definite, since it is strictly diagonally dominant,

and, hence, minus the gradient of the utility functions, that is, −∇U(Q, q) is strongly mono-

tone. Thus, both the existence and uniqueness of the solution to variational inequality (13)

with respect to this example are guaranteed.

The Euler method converged to the equilibrium solution: Q∗111 = 5.80, Q∗112 = 4.07,

Q∗121 = 3.50, Q∗122 = 1.90, Q∗131 = 2.91, Q∗132 = 2.86,Q∗211 = 1.65, Q∗212 = 2.73, Q∗221 = 2.25,

Q∗222 = 2.38, Q∗231 = 1.94, Q∗232 = 1.45, q∗1 = 2.00, q∗2 = 3.67, in 84 iterations, and the

equilibrium solution is globally exponentially stable. The profits of the firms were: U1 =

655.28 and U2 = 324.18. Graphical depictions of the product shipment and the quality level

iterates are given, respectively, in Figure 7.

In addition, with the above examples, we wish to illustrate the types of problems with not

unrealistic features and underlying functions that can be theoretically effectively analyzed

as to their qualitative properties and also their solutions computed.
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Figure 7: Service volumes and quality levels for Example 3

Sensitivity Analysis for Example 3

After obtaining the equilibrium solution to Example 3, we are interested in the following

question: how the changes in the network transmission price p influence the equilibrium

solutions and the profit? We then conduct a sensitivity analysis based on the data given in

Example 3, and attain the following results in Table 1 and Figure 8.
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Figure 8: Sensitivity Analysis for Example 3

Table 1: Computed Optimal Service Volumes, quality levels, and profits as p increases

p = 10 p = 20 p = 30 p = 40 p = 50 p = 60 p = 70

Q111 7.48 6.64 5.80 4.96 4.12 3.28 2.44
Q112 5.27 4.67 4.07 3.47 2.87 2.27 1.67
Q121 4.48 3.99 3.50 3.01 2.53 2.04 1.55
Q122 2.49 2.20 1.90 1.61 1.32 1.02 0.73
Q131 3.75 3.33 2.91 2.48 2.06 1.64 1.22
Q132 3.70 3.28 2.86 2.43 2.01 1.59 1.17
Q211 2.16 1.90 1.65 1.40 1.14 0.89 0.64
Q212 3.49 3.11 2.73 2.35 1.97 1.58 1.20
Q221 2.92 2.59 2.25 1.92 1.58 1.24 0.91
Q222 3.05 2.71 2.38 2.04 1.71 1.37 1.03
Q231 2.50 2.22 1.94 1.66 1.38 1.11 0.83
Q232 1.90 1.68 1.45 1.23 1.01 0.79 0.56
q1 2.59 2.29 2.00 1.71 1.42 1.13 0.83
q2 4.74 4.21 3.67 3.14 2.60 2.07 1.53
Profit of firm 1 1117.81 871.72 655.28 468.49 311.36 183.89 86.08
Profit of firm 2 576.43 441.90 324.18 223.28 139.20 71.94 21.49

As indicated in Figure 8, service volumes, quality levels and the profits are negatively
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related to the network transmission price. The reason should be as following. As the net-

work transmission price becomes higher, consumers would purchase less from the network

providers as well as the service providers, which leads to the decreasing in service volumes.

Then, as the service volumes decrease, there would be less incentive for the firms to improve

their quality levels, so the quality levels would also decrease.

6. Conclusions

We developed a new dynamic network economic game theory model of a service-oriented

Internet. The model handles service differentiation and includes service providers, production

cost functions and demand price functions that capture both demand for the substitutable

services as well as their quality levels. The model is a Cournot-Nash model in which the

strategic variables of each service provider are its services volumes as well as the quality

level of its service. We derived the governing equilibrium conditions and provided alternative

variational inequality formulations.

We then proposed a continuous-time adjustment process and showed how our projected

dynamical systems model guarantees that the service volumes and quality levels remain

nonnegative. We provided qualitative properties of existence and uniqueness of the dynamic

trajectories and also gave conditions, using a monotonicity approach, for stability analysis

and associated results. We described an algorithm, which yields closed form expressions for

the service volumes and quality levels at each iteration, and applied it to solve numerical

examples and a sensitivity analysis.

Our network economic model of a service-oriented Internet contributes to the literature in

a way that does not limit the number of service providers and network providers, or require

specific functional forms. Moreover, this model captures quality levels both on the supply

side as well as on the demand side, with linkages through the provision costs, yielding an

integrated economic network framework. We hope that the ideas and results in this paper

can serve as the basis for future explorations on the network economics of a service-oriented

Internet.
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