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Abstract Although technological developments have provided momentum to
extend the frontier of commercially feasible network deployments, the latest
data from ITU regarding affordability of ICT services shows that the digital
divide between the rich and poor is still an open issue. Therefore, an economic
framework is needed to create conditions for affordable network services. In this
paper, we propose a set-aside mechanism that can satisfy this need by reserving
resources for targeted groups and resolving the practical problem of having
greedy users that rationally compete for cheaper resources. In this mechanism,
prices are tailored to users’ budget capacities. Our simulation results indicate
that it is possible to increase the resource allocation for delivering services to
the poorest by inducing regular users to compete among themselves.
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1 Introduction

The Millennium Development Goals articulated by the United Nations (UN)
include the aim of making the benefits of new technologies available, particu-
larly information and communications, in cooperation with the private sector
[1]. Current data indicate that despite the strong progress in Internet penetra-
tion from 6% in 2000 to nearly 51% in 2019 [2], a growing gap exists between
the adoption rates of rich and poor populations regardless of the ICT price
basket monitored [3]. This condition has resulted in “nearly half of people
with 4G network coverage remain offline, mainly due to high cost of Internet
access”. Previous experiences, for instance, of those in rural settings, recognize
the necessity of a solid economic framework to balance the social goal of offer-
ing services to the poorest and the practical need for incentives for operators
to provide services.

Many studies, such as [4]–[7], have shown that auctions are efficient mech-
anisms for dynamic resource allocation, particularly for selling bandwidth.
Their promising results are partially explained because they can handle un-
certainty, such as estimations of users’ demand functions, and dynamically
control allocation through competition between users. Nevertheless, in scenar-
ios where mixed buying-capacity users compete and tight resource constraints
are common, it is expected that resources may only be allocated to users with
higher budgets.

To counteract this problem, the field of economics has started to study
the benefits of subsidized and set-aside auctions for government procurement
[8]–[10]. These mechanisms have previously been used to spread allocations
favoring selected groups, such as small companies. In subsidy auction schemes,
a selected group is granted a proportionally higher bid such that members
(i.e., low-budget users) can compete with those in nontargeted groups (i.e.,
high-budget users). In set-aside auction schemes, resources are preassigned to
groups to ensure a minimal, guaranteed allocation within the group, while
group members still compete with each other.

Nevertheless, subsidy auction schemes include a number of pitfalls for sell-
ing bandwidth. First, it is not clear who is in charge of funding subsidies;
second, to have a positive effect, the actual subsidy has to be set, which gen-
erally requires a previous study; third, the allocation of units to low-budget
groups is not guaranteed; and fourth, this type of auction does not solve the
problem of determining users who should be granted the subsidy. Set-aside
schemes suffer almost the same problems, but their design offers an allocation
guarantee.

The adoption of a set-aside mechanism is complex in practice. Users cannot
be easily clustered as belonging to a favored group, and higher budget users
have the rational best response of adopting a lower budget role as lower prices
are expected. Our work presents a pricing model that is oriented to reach the
social goal of providing network access to all while simultaneously addressing
these practical challenges. Our pricing strategy introduces a self-selection of
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users based on budget constraints, enabled by new networking technologies.
Specifically, our contributions, sorted by importance, are as follows:

– We present a social-goal-oriented auction mechanism that incentivizes users
to reveal private information by providing rewards or assigning penalties,
and thereby, reducing the probability of receiving allocated units.

– We present and discuss the trade-off of our auction mechanism between
the increased network coverage of low-budget users and the decrease of
operator’s income.

The remainder of this paper is organized as follows. Section 2 presents a
research overview in auction methods for bandwidth allocation as well as the
similarities and differences between our approach and previous methods. Next,
we present the target network deployment scenario and its main elements. In
Section 4, we explain the proposed auction mechanism, starting with a simple
auction of two units and three users and then generalize the auction to many
users and quantities. In Section 5, we present an alternative to calculate the
Nash equilibrium in an actual setting where many users are competing. In
Section 6, we discuss the auction setup, introduce other mechanisms imple-
mented for benchmarking, and explain the scenarios used for the simulations.
Section 7 presents results that compare our proposed mechanism with other
coverage-oriented mechanisms. Finally, Section 8 concludes this paper.

2 Related Work

Dynamic pricing has been intensely studied to enhance network resource allo-
cation; see [11] for a general overview. The present work is close to mechanisms
for quality of service (QoS) for inelastic traffic, which are implemented using a
call admission control (CAC) function. Similar to many access pricing studies
surveyed in [12], we adopt rational users but with uncertain utility functions,
where auctions are particularly well suited. In fact, auctions have primarily
been used to address the lack of information regarding knowledge of users’ be-
havior and their preferences. Under this setting, the problem is how to allocate
scarce resources when QoS is required and the provider wants to pursue a set
of goals. In the following, we describe previous work categorized by goals since
the main contribution of our proposal is to study the problem under a com-
pletely different aim. At the end of the section, we describe those elements that
we use from these studies and that help us to develop the presented approach.

With an efficient goal, i.e., to allocate units to users that value them most,
a series of auction forms have been developed. Progressive second price (PSP)
auctions take advantage of a small message space to sell bandwidth in real
time. The mechanism is introduced in [4] for allocating an arbitrarily divisible
and additive resource (e.g., bandwidth). To operate, every budget-constrained
user submits a two-dimensional bid representing the unit price she is willing
to pay and the requested units. Until an equilibrium is reached, users update
their bids whenever they receive feedback on others’ bids by the auctioneer.
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Quantities are allocated to the highest bids, and a winning user pays the social
opportunity cost, i.e., the declared willingness to pay for those excluded by
the winning user. In this mechanism, the improvement in profits is bounded
when sending an untruthful bid, which implies that risk-averse users send their
true value. Additionally, the mechanism induces a ε−Nash equilibrium with
an allocation maximizing the user total value to within O(

√
ε). [13] extends

the study to a wide network scenario using independent PSP auctions on each
of the links.

Subsequently, [14] verifies PSP’s properties in light of a common scenario
where users arrive and leave the auction. Under this scenario, the authors found
that efficiency is compromised. To overcome this problem in [15], the authors
propose a one-shot multi-bid auction scheme, which is related to PSP, for the
allocation of a divisible resource in a single link. Important properties, such as
incentive compatibility and efficiency, are analytically analyzed and verified.
Then, the authors extend the multi-bid auction to a tree topology network
[16]. Using a different auction form, [17] introduces the MIDAS mechanism
for path pricing. MIDAS runs simultaneous independent per link descending
price auctions with the social opportunity cost pricing rule. This rule is used
to generate an incentive to bid truthfully. This alternative is shown to be
nearly efficient and a revenue maximizer under various network topologies. To
summarize, approaches that pursue the efficiency goal allocate units to higher
bidders; for this reason, an important property to have is the true valuation
revelation.

However, the majority of the previous studies have a complex algorithm as
a result of the social opportunity cost pricing rule, which involves solving as
many optimal allocation problems as the number of users. The revenue equiv-
alence theorem (see [18]) under a set of conditions, e.g., risk-neutral users,
establishes that all auction forms have the same revenue; thus, authors argue
that in the search for revenue that complexity is unneeded, and a first price
auction form should, therefore, be used. In a first-price auction, users pay their
bid and units are allocated to higher bids, which implies that the algorithm
simply sorts bids. [19] assumes a scenario in which providers compete and the
user (auctioneer) forms a path. Referring to specific topology instances, the
authors show that the social opportunity cost pricing rule can lead to cus-
tomers overpaying the real cost of the cheapest path. To resolve this problem,
they introduce three first-price auction forms and derive payment bounds for
their ε−Nash equilibrium. For a scenario in which users compete, [5] proposes
a first-price auction with a single bid to reserve the whole path. The important
feature being incorporated is a multiperiod reservation, where providers take
the risk of reserving ahead of the entire requested time. A similar work but
considering failures during service deployment and providing reimbursement
as a compensation is presented in [20]. Aligned with these papers, our work
uses a simple algorithm to allocate resources, a second uniform price, but the
true valuation revelation property is key for our approach.

In practical scenarios, such as those presented in [7], [21], [22], the provider
does not have a unique goal for the auction and there is a trade-off to be
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addressed. In [21], the trade-off is between congestion reduction and revenue
losses. The authors employ a multi-unit Vickery auction at the link level to ex-
amine the effect of reserve prices on congestion. The study conceives a private
value framework that serves to understand the number of users participating
in the auction as the auctioneer increases reserve prices. Using simulations,
the authors show that the mean system’s delay is reduced with some revenue
losses.

We are aware of two studies for maximizing fairness and the operator’s prof-
its. The authors in [22] propose an auction with M service levels characterized
by a prefixed bandwidth capacity and lower and upper prices proportional to
the service-level bandwidth. The allocation and pricing rules are presented,
as well as the proof of the system being Pareto optimal. In the case of con-
gestion, operators can downgrade the requested service level unilaterally. A
general second-price mechanism (GSP) is proposed in [7] for selling frames (2
ms) in a cellular network context. To operate, users indicate the maximum
price that they are willing to pay (e.g., $/Mb), and the cell tower assigns the
highest priority to the user with the highest measure, calculated as the price
multiplied by the proportional fair value. The price to be paid for that user
corresponds to the price of the user with the next highest measure. The process
proceeds until capacity is exhausted or there are no more users.

Our work differs from all these alternatives in the aim to reduce the Inter-
net coverage gap between the high-budget (rich) users and low-budget (poor)
users. In other words, it is required to spread allocations among users to reach
the social goal of providing network access to all. As in [20], [21], we assume
a private value framework with a second uniform price rule, where all users
pay the bid of the first losing bid. This assumption enables us to maintain the
true value revelation property for users bidding in the high-budget auction and
to make the allocation algorithm simple. Users are subject to a budget con-
straint, as in [4]; however, we conceive that there are users with budgets that
are completely dissimilar from their valuations, e.g., low-budget users requir-
ing a QoS service. Hence, other problems arise because of the different setting,
such as how to maintain providers’ revenue while retaining the competition
among similar users. Regarding the revenue consideration, this paper is not
going to deliver a theoretical revenue loss bound; rather, we use simulations
based on real data to provide insights regarding the actual loss.

3 The Target Network Deployment Scenario

For our work, we envision a very general target network scenario, in which a
provider offers network services to users and collects payments for their use.
In the following, we describe the agents and assumptions.
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3.1 Network Agents

Users and providers constitute the interested parties. Users (individuals or or-
ganizations) in the coverage area of the provider negotiate resource use through
an agent software.

Providers are responsible for establishing end-to-end connections (using
third party services if applicable) at the negotiated level of (QoS) and for
managing billing and the collection of funds.

The unique characteristic that makes this network scenario different from
conventional network deployments is that some users have severe budget con-
straints. A survey conducted in Ghana, for example, reports $2.50 as the aver-
age spending on mobile connectivity per week, with two cents as the reference
price per megabyte transferred [23]. In rural and isolated geographic areas, we
expect even lower values because the literature describes regions where indi-
viduals’ income is only one US dollar per day. To achieve universal network
access in these areas, it is necessary to favor resource allocations for users with
lower budgets at the cost of higher prices for others (e.g., wealthier users and
organizations).

3.2 Network Services

To characterize network traffic in our system, we model user interactions at
the level of a session to avoid the complexities of modeling traffic at the packet
level [24]. In previous studies (cf. [25]), we proposed a series of service level
agreements (SLA) to communicate service requests. In this paper, we restrict
our attention to the real-time service since models for the other services have
already been studied.

4 The Auction Mechanism Design

The results from [25] suggest that dynamic control is extremely important for
the target scenario to manage tight resource constraints during congestion.
A type of mechanism well-suited for dynamic control is auctioning. Those
mechanisms not only perform the control function, but also first discriminate
users and, by this way, enlarge the potential of pricing to extract revenues
from those high-budget users.

The important issue for reducing the Internet gap is to increase the cov-
erage of low-budget users, which is tightly related to networks’ congestion.
During non-congested (off-peak) periods, there are enough resources to cover
all users’ traffic and the price set by auction protocols is in general low, i.e.,
reserved prices. In contrast, at congested (peak) periods the auction protocol
has to increase prices to discourage demand and coverage is then compro-
mised, i.e., in [21]. In fact, units are allocated to those users with the highest
valuations and budget, so in peak periods units are frequently allocated to
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high-budget users. Other auctions protocols, such as those using a second uni-
form price auction rule, relatively easy to implement, have the same exclusion
outcome.

In order to alleviate the exclusion problem, set-aside models have been
used exhibiting a positive effect on coverage during congestion. Those models
pre-assign a fraction of resources to be sold among the group of low-budget
users (L) and the rest among high-budget users (H). As mentioned, during
off-peak periods coverage is not a problem, so resource splitting is only consid-
ered during peak periods. In particular, set-aside models employ two separate
auctions (L and H) for the sale of pre-allocated units of capacity for users in
L and H, respectively. These auctions have reserve prices of pL and pH for
L and H, respectively. A fine (D) is charged to winning users in the case of
not being able to pay the winning price. For both auctions, the user with the
highest bid is served first, followed by the user with the second highest bid and
so forth until the supply of units is depleted. All served users pay the highest
losing bid or the reserve price if there is not a losing bid or if the losing bid is
lower than the reserve price. In the case of a tie, units are randomly allocated.

A particular fact in the scenario being handled is that always the price
to be paid in the high budget auction is greater than that in the low-budget
auction during congestion. Previous results presented in [25] and theoretical
results such as [26] indicate that reserve prices at congestion are higher than
the maximal budget available for low-budget users, i.e., pH ≥ bL. Thus, a
rational high-budget user able to choose the auction is biased to participate
in L.

We want to ensure that high-budget users truthfully participate in auction
H rather than “cheating” and competing in L. In the following, we analyze
the high-budget bias by studying the game underlying a set-aside scheme; this
study requires some mathematical foundations, which we cover first. Then,
using insights from this analysis, we describe the proposed modifications to
the auction mechanism to avoid the shortcoming.

4.1 The Assumed Auction Framework for Studying Set-Aside Schemes

We base our work on the private value framework explained in [18]. Under
this framework, the information environment is composed of a valuation and
budget structure for users (bidders), where values and budgets are private
information, and a distribution of information available to those users. Specif-
ically, every user u assigns a value Vu for a unit of bandwidth – the maximum
amount that user u is willing to pay for the unit. Vu is independent and iden-
tically distributed on interval [0, 1] according to the increasing accumulated
distribution function FV . Additionally, user u is subject to her budget – the
maximum amount that user u is able to cover for a bandwidth unit. The bud-
get for a user u ∈ L follows an independent and identically distributed WLu

on some interval [0, bL] according to the increasing distribution function FWL
.

The budget for a user u ∈ H follows an independent and identically distributed
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WHu on the interval [bL, bH ] according to the increasing distribution function
FWH

, with 0 < bL < bH ≤ 1. It is assumed that all of the previous distribution
functions F admit a continuous density f ≡ F ′ .

A user u ∈ L knows the realizations vu and wu of Vu and WLu , respectively;
likewise, a user u ∈ H knows the realizations vu and wu of Vu and WHu ,
respectively. Users are aware that other users’ values are independent and
identically distributed according to FV and that their budgets are independent
and identically distributed according to FWH

when users are high-budget users
and according to FWL

when users are low-budget users. Valuations and budgets
are assumed to be independent. A user u enrolls in auctions by sending a bid
βu, which is called the strategy of the user in the auction. Users attempt to
optimize their expected profits, and, for now, all other parts of the model are
known by the users; thus, the distribution and the number of participating
users are common knowledge.

To understand the user’s optimal behavior when bidding, we first analyze
users’ possible actions, i.e., strategies, and the information that are revealing.
First, because low-budget users are constrained by the value bL, a high-budget
user sending a bid greater than bL is revealing that she belongs to H. Second,
low-budget users only participate in L by sending βu = min{vu, wu}. This
result is the conclusion of the optimal bid for a user truly bidding, i.e, bidding
in the auction created for the group that she actually belongs, see proposition 8
(A) and the fact that pH ≥ bL, which is implying that low-budget participating
in H have a maximum pay-off of zero.

Third, a high-budget user u has two strategies, i.e., to compete in H or
in L. However, the user only competes in H when her private realization vu
is greater than bL because, like a low-budget user, her maximum pay-off is
zero when enrolling in L. Therefore, from the auctioneer’s perspective, a high-
budget user with vu ≤ bL has the same behavior as a low-budget user, and
we have an extended set of low-budget users L

′
= L ∪ {u ∈ H|vu ≤ bL} and

a reduced set of high-budget users H
′

= {u ∈ H, vu ≥ bL}. A high-budget
user u with vu ≥ bL competing in L maximizes her expected payoff sending
βu = bL, see proposition 9 (A). To summarize, a user u ∈ H ′ has two strategies
sL = (L, bL) and sH = (H, βu), where βu is defined in proposition 8 (A) and
users in H −H ′ should be modeled as a low-budget user.

Figure 1 shows the framework being used on both auctions when defining
the following random variables for users’ bids and their relative order. We
define as XL = min{V,WL} the minimum of the random variables for the value
and budget. Observe that low-budget user bids are distributed according to
XL. Also, we denote as Y cn the c highest order statistic of n random variables
XL; in other words, Y cn is the random variable that represents the c-highest
bid, and by FY cn the distribution function of Y cn . Assuming cL units of capacity
for sale and NL users competing in L for a unit, the expected payment of a
low-budget user u winning the auction is:

FY cLNL−1
(βu)E[Y cLNL−1|Y

cL
NL−1 ≤ βu] (1)
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Fig. 1 The two auction framework

where FY cLNL−1
(βu) is the probability of winning with bid βu, i.e., the bid βu is

greater than cL other bids; and E[Y cLNL−1|Y
cL
NL−1 ≤ βu] represents the expected

cL highest bid among the remainder of the users in L given that βu is not less.
In a similar way, but for high-budget users, we define XH = min{V,WH},

Zcn as the c highest order statistic of n random variables XH , and by FZcn , the
distribution function of Zcn. Assuming cH units for sale and NH users compet-
ing, the expected payment for that user is FZcHNH−1

(βu)E[ZcHNH−1|Z
cH
NH−1 ≤ βu].

Note that XH stochastically dominates XL by definition.
Henceforth, we consider the group of high-budget users H as those in H

′

and the remainder of the users as low-budget users L, and we denote by NH
and NL the respective number of users in these groups.

4.2 The Underlying Set-Aside Auction Game

We start by assuming a game with NH + 1 high-budget users and NL low-
budget users and two units of capacity to allocate, one per auction. Every
user requires a unit of capacity. We use the superscript (+) to indicate the
game induced by the two set-aside auctions. Under this setting, we analyze
as a first step the pure Nash equilibrium to conclude that always at least a
high-budget user enrolls in L and excludes low-budget users. After, we analyze
how this conclusion varies under the more general setting where users decide
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their strategies probabilistically, which corresponds to a Nash equilibrium for
mixed strategies, and introduce important properties of the expected payoff
functions. Finally, we analyze the resulting equations to give the insights that
we used to construct the proposed mechanism.

4.2.1 Pure Strategies

We discuss pure Nash equilibria for this game in terms of high-budget users.
Denote by µ+

u (s, nH) the expected payoff for user u ∈ H when using strategies
s = {sH , sL} and nH other users participate in auction H. On one hand, the
user u can employ the strategy sH . The payoff for this case depends on the
number of users competing in H. In fact, there are two cases: (1) when nH > 0,
the user expects her profits to be equal to the difference between the valuation
and the highest losing bid in case of winning; in other words, the payoff for
this case is equal to the probability of winning when bidding βu multiplied by
the difference between her valuation and the expected first order statistic from
the rest of nH users participating; and (2) when nH = 0, the user is the only
one competing in H. In this case the price to paid is then the reserve price
pH . The following equation shows the expression for both cases:

µ+
u (sH , nH) =

{
FZ1

nH
(βu)(vu − E[Z1

nH |Z1
nH ≤ βu]) , nH > 0

vu − pH , nH = 0.
(2)

On the other hand, when using strategy sL, the high-budget user wins the
unit if she is the only high-budget user participating in L and is randomly
allocated the unit when other high-budget users are also competing in L.
Observe that by bidding bL, the user u ∈ H dominates all other low-budget
users. Therefore, the payoff of using strategy sL is equal to the spread between
the user u valuation and the first order statistic of all low-budget users. The
following equation represents mathematically the strategy payoff when NH −
nH high budget users compete in L.

µ+
u (sL, nH) =

vu − E[Y 1
NL

]

NH − nH
. (3)

Under this setting, low-budget users are completely excluded and their
bids are only used to establish the winning price (E[Y 1

NL
]). However, the unit

is not always allocated to user u due to other high-budget users participating
in auction L. In that case, the random allocation rule is applied, and user u
has probability 1

NH−nH of winning the unit. For nH = NH − 1, we obtain the
maximum payoff possible from 3 and its minimum when nH = 0. In Table 1,
we present an example of the payoffs for the case of two high-budget users.

From Table 1, we can calculate the three possible Nash equilibria ((sL,sH),
(sH ,sL), and (sL,sL)) that depend on 1

2 (vu +E[Y 1
1 ]) ≥ pH ,∀u ∈ H. Thus, the

desired behavior of all high-budget users choosing the auction H it is not a
pure Nash equilibrium, and consequently, splitting resources is not sufficient
to guarantee a low-budget allocation.
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Table 1 Two-auction game’s payoffs for high-budget users

User 2
sH sL

User 1

sH
µ+
1 (sH , 1) = F

Z1
1
(β1)(v1 − E[Z1

1 |Z
1
1 <= β1]), µ+

1 (sH , 0) = v1 − pH ,

µ+
2 (sH , 1) = F

Z1
1
(β2)(v2 − E[Z1

1 |Z
1
1 <= β2]) µ+

2 (sL, 1) = v2 − E[Y 1
1 ]

sL
µ+
1 (sL, 1) = v1 − E[Y 1

1 ], µ+
1 (sL, 0) = 1

2 (v1 − E[Y 1
1 ]),

µ+
2 (sH , 0) = v2 − pH µ+

2 (sL, 0) = 1
2 (v2 − E[Y 1

1 ])

4.2.2 Mixed Strategies

We now study the Nash equilibria with mixed strategies. For this analysis, we
restrict our attention to non-averse risk users. They assume that there exists
a common probability 0 ≤ q < 1 that a user u ∈ H plays strategy sL. The
expected payoff function for a user is modelled as the weighted sum over sH ∈
{0, NH} of the payoffs when sH other users participate inH given by equations
2 and 3 for strategies sH and sL, respectively. The weights correspond to the
probability of the binomial experiment consisting in sH users maintain in H
from NH other users playing sL with probability q. The following states the
equation representing the expected payoff for user u when playing strategy sH
– observe that NH excludes user u–:

π+
u (sH , q) =

NH∑
k=0

B(k,NH , q)µ
+
u (sH , NH − k), (4)

where B(k,NH , q) is the binomial distribution.1 B(k,NH , q) represents the
probability that NH − k users remain in auction H of the NH other users.
Likewise, the expected payoff of strategy sL is given by:

π+
u (sL, q) =

NH∑
k=0

B(k,NH , q)µ
+
u (sL, NH − k). (5)

Figure 2 plots the expected payoff functions for the special setting of two
high-budget users. Note that, for this setting, π+

u (sH , q) is continuous, linear
and non-decreasing with respect to q and that π+

u (sL, q) is continuous, linear
and non-increasing in q. A Nash equilibrium in mixed strategies exists at the
point where the lines π+

u (sH , q) and π+
u (sL, q) intersect for both users. Then,

an existance condition is simply that vu + E[Y 1
NL

] ≥ 2pH ,∀u ∈ {1, 2}. We

denote by q+ = (q+1 , q
+
2 ) the Nash equilibrium, which is shown in the figure.

We now prove that these properties still remain when more users are com-
peting onH and use them to provide a more general condition for the existance
of a Nash Equilibrium in mixed strategies. We start with the following propo-
sition, which states that the high-budget payoff (see equation 2) when using
strategy sH is increasing as less users are competing with her in the same auc-
tion nH . From equation 2, we can say that the high-budget payoff is decreasing
with NH − nH .

1 B(k,NH , q) = C(k,NH)qk(1− q)NH−k with C(k, n), the k combination of n users.
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Fig. 2 Users’ expected payoffs for the set-aside auction game. Y axis: payoff. X axis: prob-
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Proposition 1 The expected payment µ+
u (sH , nH) is a non-increasing func-

tion of the number of users in auction H, which is equivalent to the following
inequality for any nH1

, nH2
with 1 ≤ nH1

< nH2
≤ NH

E[Z1
nH1
|Z1
nH1
≤ βu] ≤ E[Z1

nH2
|Z1
nH2
≤ βu]. (6)

moreover, because vu−E[Z1
nH |Z1

nH ≤ βu] ≥ 0 and FZ1
nH1

(βu) ≥ FZ1
nH2

(βu) ≥
0, we can conclude by applying proposition 1:

1 ≤ nH1
< nH2

≤ NH ⇒ µ+
u (sH , nH1

) ≥ µ+
u (sH , nH2

). (7)

In the following proposition, we study the properties of π+
u (sH , q) and

π+
u (sL, q). This proposition is saying that as long as a user expects that other

users increase their probability of using strategy sL, then when using strategy
sH the expected payoff is greater and when using strategy sL the expected
payoff is lower. Therefore, if there is a probability q where both functions are
equal, she is indifferent between playing strategy sH or playing strategy sL.

Proposition 2 π+
u (sH , q) is a non-decreasing function, and π+

u (sL, q) is a
non-increasing function of q

Now we use the properties studied so far to provide the required conditions
for the existence and uniqueness of a Nash equilibrium in mixed strategies,
which is stated in the following proposition.

Proposition 3 If
NHvu+E[Y 1

NL
]

NH+1 ≥ pH , ∀u ∈ H, then there exists at least
a Nash equilibrium in mixed strategies for the two-auction game, which is
denoted by q+.

We intentionally plot Figure 2 with q+1 , q
+
2 probabilities close to 1. By

competing in L, a high-budget user decreases the number of opponents – only
competes with other high-budget users – and the winning price is lower than
that in H. This is the major shortcoming of applying a set-aside scheme in the
presence of information asymmetries. Indeed, this setting makes the payoff of
strategy sL linearly decreasing in nH by the winning probability. Therefore,
to guarantee the low-budget allocation by discouraging sL, it is necessary to
introduce penalties by reducing its payoff or its winning probability.
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4.2.3 Alternatives for discouraging high-budget users employing sL strategy

We investigate two approaches to maintain high-budget users competing in
H. The first approach is to encourage attachment to auction H by granting a
reward R to users participating in auction H. Combining equations 2 and 3,
the reward R must satisfy ∀u ∈ H:

FZ1
NH

(βu)(vu − E[Z1
NH |Z1

NH ≤ βu] +R) ≥ vu − E[Y 1
NL ],

which means that:

FZ1
NH

(βu)(vu +R) ≥ vu − E[Y 1
NL

] + FZ1
NH

(βu)(E[Y 1
NL

])),

R ≥ (vu − E[Y 1
NL

])
1−F

Z1
NH

(βu)

F
Z1
NH

(βu)
.

The former equation relates the reward R with the winning probability.
Note that whenever FZ1

NH
(βu) → 1, the reward tends to 0. Thus, a user

with a high budget and high valuation does not require any incentive and
always remains in H. Conversely, whenever FZ1

NH
(βu) → 0, the reward tends

to infinity. Therefore, a user with a low budget or valuation almost always
competes in auction L. These observations appear to indicate that rewards
are better for the first group and that penalties might work for the second.

The second approach is to reduce the probability of being assigned a unit
in the auction L. Due to the assignment rule employed, high budget-users
using strategy sL have only competition from other high-budget users. So to
reduce the probability, it is required to involve in the assignment rule all low-
budget users. In particular, if we use a lottery for allocating units in the L,
the denominator value in 3 is rapidly increased and the payoff is reduced.

The proposed mechanism starts rewarding truthful users with a high bud-
get and valuation and reduces untruthful users’ winning probabilities. Rewards
are in the form of allowing users to pay those prices charged for the low-budget
set, and lowering the probability is accomplished by using a random allocation
rule in the low-budget set. Thus, users that are “cheating” have no choice but
to compete with more users.

Moreover, recall from the definition of equilibrium in mixed strategies that
a user u ∈ H is indifferent between playing sH and sL when other users play
sL with probability q+u . Therefore, if a unique probability q+ applies for all
users, then they can delegate to a trustful system the auction decision. In such
a case, they can agree with the system to put them to compete in L with
probability q+. We use this last fact and make the users to act truthfully by
guaranteeing that users sending βu > bL are promoted to auction L with the
calculated Nash equilibrium probability (q+).
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4.3 The Winning Probability Reduction Mechanism (RwP)

Formally, we state that a user is an untruthful user when despite having a
sufficient budget and valuation to compete within the H auction group she
decides to go to the L group. The following rules apply for peak intervals:

– Two parallel auctions occur for high and low budget users.
– A second uniform price auction for high-budget users and a random allo-

cation among users competing in the L group takes place.
– Users can send bids to any auction.
– Users in auction L who have been allocated a unit pay the reserve price for

the group, pL. Winning users in auction H are charged pL with probability
Q and the H auction clearing price with probability (1−Q).

For off-peak periods, a single second uniform price auction is used. 2

4.3.1 Mixed Nash Equilibria

We use the superscript (◦) to indicate the game induced by the RwP and refer
to it as the RwP game. This game has the same users and strategies as the
two set-aside auctions game presented, but it has different payoffs for both
strategies. When there are nH users participating in H, the expected payoff
µ◦u(sH , nH , Q) is defined as:

µ◦u(sH , nH , Q) =

{
µ+
u (sH , nH) +∆◦u(sH , nH , Q), nH > 0
µ+
u (sH , nH) +∆◦u(sH , 0, Q), nH = 0,

(8)

where∆◦u(sH , nH , Q) = QFZ1
nH

(βu)(E[Z1
nH |Z1

nH ≤ βu]−pL]) and∆◦u(sH , 0, Q) =

Q(pH − pL). The mechanism reduces the winning probability when using the
sL strategy. As a user is randomly allocated the unit between all users in auc-
tion L, when there are nH users participating in auction H, the sL strategy’s
payoff is:

µ◦u(sL, nH , Q) =
vu − pL

NL + (NH − nH + 1)
. (9)

From these equations, we can restate user u’s expected payoff for the s ∈
{sH , sL} strategy when she assumes a probability q that all other users employ
the sL strategy,

π◦u(s, q,Q) =

NH∑
k=0

B(k,NH , q)µ
◦
u(s,NH − k,Q). (10)

High-budget users bidding in auction H obtain better payoffs than the
two set-aside auctions game – they can pay pL. The potential problem is the

2 Note that the possible shill bidding strategy of sending many requests to the L auction
can be addressed in the auction software. In fact, users have to specify a flow description,
which includes source and destination IP addresses, for the connection, so that the software
may implement an upper bound for resource requests with the same flow description.
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revenue for the provider. To discourage high-budget users from being untruth-
ful, we decrease providers’ income from low-budget users; thus, it is required
to understand how much revenue is affected by its implementation, which is
studied through simulations in section 7.

Following the same steps for the two auction game, we assume that NH +
1 ≥ 3 high-budget users and NL low-budget users are requesting a unit of
capacity and show that functions π◦u(sL, q,Q) are decreasing in q and that
π◦u(sH , q,Q) are increasing in q. Therefore, we can extend the required condi-
tions given in equation 12. In this case, a mixed Nash equilibrium corresponds
to an NH -tuple such that every user is indifferent between both strategies. The
element u in the tuple corresponds to user u’s probability of playing strategy
sL.

To start, we study the behavior of the payoff for a high-budget user in the
case of the RwP mechanism.

Proposition 4 µ◦u(sH , nh) is a decreasing function of the number of users in
auction H, which is equivalent to the following inequality for any nh1

, nh2
with

1 ≤ nh1
< nh2

≤ NH
µ◦u(sH , nh1

) ≥ µ◦u(sH , nh2
). (11)

Following the same steps as in Proposition 2, we conclude that π◦h(sH , q)
is a non-decreasing function of q. Let q◦ denote the Nash equilibrium in mixed
strategies for the RwP. A mixed Nash equilibrium exists with q◦u < 1, only if
∀u ∈ H:

vu(NL + 1) + pL(1− (NL + 2)Q)

(NL + 2)(1−Q)
≥ pH . (12)

Hence, RwG has a unique mixed Nash equilibrium 3.
If Q = 0, we have the same condition as with the two-auction game; for

Q → 1, the condition is always true as long as vu ≥ E[Y 1
1 ],∀u ∈ H. Thus,

there is always a mixed strategy with q◦u < 1.
The modified game allows the probability of a high-budget user going into

the L auction to be reduced, i.e., (q+u > q◦u),∀u ∈ H; see Figure 2. For the
entire system, the game creates a trade-off between offering rewards (Q) and
the equilibrium probability reduction (q+u − q◦u). To measure this trade-off, we

introduce the formula ztr =
∑2
h=1 q

+
h−q

◦
h

1·Q , which represents the ratio between
the expected number of users induced to remain in the H auction against the
expected number of users that receive the reward. This formula will be used
to calculate parameter Q.

4.4 Extension for M units

Denote by cL, cH the number of available units for L and H auctions. Let us
denote by ec,nL = E[Y cn ] and by ec,nH (βu) = E[Zcn|Zcn ≤ βu]. User u’s payoff

3 The reader can see that π◦h(sL, q) is decreasing by applying the same steps as in Propo-
sition 10.
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µ◦u(sH , nH) =


vu −Qe1,NLL − (1−Q)pH if nH − cH ≤ 0 ∧ cL ≤ 0

vu −QecL,NLL − (1−Q)pH if nH − cH ≤ 0 ∧ cL > 0
µu(sH , nH) +∆◦1u (sH , nH , Q) if nH − cH > 0 ∧ cL ≤ 0
µu(sH , nH) +∆◦2u (sH , nH , Q) if nH − cH > 0 ∧ cL > 0

, (15)

under the two side-aside auctions game when playing strategy sH and nH
other users are participating in auction H is:

µ+
u (sH , nH) =

{
vu − pH , nH − cH ≤ 0
FZcHnH

(βu)(vu − ecH ,nHH (βu)) , nH − cH > 0 . (13)

The first part of this equation nH − cH ≤ 0 occurs when there are not enough
users to deplete the capacity cH and they pay the reserve price pH . The sec-
ond part is the expected value gain by the user minus the expected payment
(ecH ,nHH (βu)) when βu is greater than the cH highest order statistic.

On the one hand, more users (NH − nH) can decide to participate in
L than the available capacity cL; hence, they have to pay the highest order
statistic calculated over the low-budget users, but units are randomly allocated
between them with probability cL

NH−nH+1 as capacity is not sufficient. On the
other hand, there are enough units cL > NH − nH such that users have to
pay the cL− (NH − nH) highest order statistic over the NL low-budget users.
For this case, they always win a unit. Defining cL = cL− (NH −nH), user u’s
payoff for sL strategy under the two set-aside auctions game is given by:

µ+
u (sL, nH) =

{
cL(vu−e

1,NL
L )

NH−nH+1 if cL ≤ 0

(vu − ecL,NLL ) if cL > 0
, (14)

the payoff functions for strategy sH under the RwG game are derived from
the number of users participating in H, but in this case, it makes changes to
the expected payment in both auctions. Therefore, the payoff for strategy sH
has four cases shown in equation (15), where

∆◦1u (sH , nH , Q) = QFZcHnH
(βu)(ecH ,nHH (βu)− e1,NLL )

∆◦2u (sH , nH , Q) = QFZcHnH
(βu)(ecH ,nHH (βu)− ecL,NLL ).

The RwG payoff function when using strategy sL is

µ◦u(sL, nH) =
(vu − pL)cL

(1− FXL(pL))NL +NH − nH + 1
. (16)

In general, µ+
u (·) maintains the same behavior as in the one unit scenario;

µ+(sL, ·) is decreasing and µ+(sH , ·) is increasing with respect to NH − nH .
However, additional behaviors are created by the auction’s quantities for sL
and sH . For sL and NH − nH ∈ [0, cL], µ+

u (sL, ·) decreases because of the
increase in auction prices between low-budget users. For NH − nH > cL, as
before, the function decreases as a consequence of the lower probability related
to the random allocation. µ+

u (sH , ·) is constant in the interval nH ≤ cH , where
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users pay the reserve price pH . Applying Proposition 1, we can conclude that
π+
u (·) have the same properties as the one unit case; thus, we have a mixed

Nash equilibrium with q+u < 1,∀u ∈ H whenever:

(Nh + 1− cL)vu − cLe1,NLL

Nh + 1
≥ pH . (17)

µ◦u(sH , ·) is always increasing as the reward is fixed regarding the number
of users participating in L. Again, we can apply Proposition 1 to conclude that
the π◦u(·) have the same properties as the one unit case; thus, there exists a
mixed Nash equilibrium with q◦u < 1,∀u ∈ H whenever µ◦(sH , 0) ≥ µ◦(sL, 0).

5 On a Practical Approach to Calculate Nash Equilibria

In the previous section we described the framework used to model a set-aside
auction design that promotes resource distribution among users considering
their budget constraints. From that study, we concluded that a canibalization
problem previously commented in the revenue management literature [27] is
present, and therefore, adjustments to that model are needed. As an alterna-
tive, we introduce the RwP mechanism to avoid the canibalization problem
and verified the conditions for existence and uniqueness of the Nash equilib-
ria. In this section, we investigate the related problem of how to calculate the
Nash equilibrium in an actual setting where many users are competing and a
regulated provider wants to offer a limited bandwidth for them.

At the first subsection, we consider the case of a unit being offered, e.g., a
Gbps channel being assigned for a specified period of time and users with uni-
form valuations and budgets. For this particular setting, we develop analytic
forms for payoff functions, which are used to calculate the Nash Equilibrium.
This approach, however, is limited as former functions depend on factorial
terms that make them intractable to calculate as long as the number of users
increases. To couple with that problem, we approximate the binomial distribu-
tion by a normal distribution and expected payments by results from extreme
value theory. All of these developments let us calculate equilibrium probabil-
ities used to enforce users to employ as their optimal strategy for the one
revealing their true group assignment.

In the second part, we extend the model for any number of units. We are
interested in the expected value of the NH−cH maximum bid from a sample of
NH bids given a bid βu and its corresponding winning probability. Intermediate
order statistics have been used in the literature to establish bounds and limit
distributions for those values whenever a large user population is present.
We employ the results from this literature to calculate the Nash equilibrium
verifying the required conditions (7) under the uniform assumption. The reader
should also observe that more general resulting distribution functions, such as,
those with an exponential parent, satisfy both the von Mises and derivative
conditions and, therefore, are extremable.
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Distribution Auction Wi Vi density (fX) limit distrib (Gi(y, ni))

Uniform L [0, bL] [0, 1]


0 y < 0
bL+1−2y

bL
0 ≤ y ≤ bL

1 y > bL


0 y < 0

exp
(
y−bl
anl

)
y ≤ bL

1 y > bL

H [bL, 1] [bL, 1]


0 y < bL

2−2y

(1−bL)2
bL ≤ y ≤ 1

1 y > 1


0 y < bL

exp−
(

1−y
anh

)2
bL ≤ y ≤ 1

1 y > 1

Table 2 Distribution functions used and their corresponding limit distribution function,
bH = 1.

The last two subsections are devoted to resolving two practical issues to be
addressed in order to operate the mechanism: (1) how to determine a unique
equilibrium probability for users in the H and (2) how to define an optimal Q,
so that the provider achieves the optimal threshold between the cost of offer-
ing incentives and its corresponding decrease in the high-budget sL strategy
employment.

5.1 The Special Case of a Capacity Unit Per Auction

From now on, we assume that users’ valuations and their budgets are uniformly
distributed according to the parameters in Table 2. From the optimal bidding
strategy already discussed in the previous section, we know that the bid will
be the minimum between the budget and the valuation, so that the bid distri-
bution for each group is the minimum of these two distribution functions. The
distribution densities are shown in Table 2 under the column density (fX). To
calculate the Nash equilibria, we need to calculate π+

u , π
◦
u, by using equations

(4), (5), (10) and these functions depend on the expected payoff E[Y 1
n (y)]

and E[Z1
n(y)|Z1

n(y) ≤ βu] for each of the auctions. The following proposition
presents the analytical formula resulting from replacing bid distributions on
table 2 into the equations defining these values.

Proposition 5 The expected value of the n order statistic from a sample of n
identically, independently distributed random variables XL with uniform par-
ents is given by the formula:

E[Y 1
n (y)] = bL −

n∑
i=1

(n!)2biL
(n+ i)!(n+ 1− i)! −

(n!)2bn+1
L

(2n+ 1)!
;

likewise, the expected conditional value for the n order statistic from a sample
of n identically, independently distributed random variables XH is given by the
formula:

E[Z1
n(y)|Z1

n(y) ≤ βu] = βu −
bn+1
L (n+ 1)−1 + I(n)

(FXH (βu))n
.

To calculate the Nash equilibrium, we can employ any gradient Newton al-
gorithm by employing the expression for the winning probability FNHXH and the
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former two equations until we find a q◦ such that π◦u(sL, Q, q)−π◦u(sH , Q, q) =
0. However, this approach is only computationally tractable as long as nH
and nL are small numbers and, therefore, it is required another approach to
calculate previous values. Here, we assume conditions for approximating the
binomial distribution by the normal distribution; therefore, πu(·, q) is approx-
imately:

π+
u (·, q) =

∫ ∞
−∞

1√
π
exp(−x2)µ+

u (·, n(x))dx (18)

with n(x) = dNH(1 − q) − x
√

2NHq(1− q)e and µ+
u (·, n(x)) = µ+

u (·, 0) for
n(x) < 0 and µ+

u (·, n(x)) = µ+
u (·, NH) for n(x) > NH . Furthermore, the

integration can be evaluated using the Gauss-Hermite formula:

π+
u (·, q) = 1√

π

∫∞
−∞ exp(−x2)µ+

u (·, n(x))dx
∼= 1√

π

∑m
j=1 αjµ

+
u (·, n(xj)),

(19)

where αj and xj are the j weight factor and zero, respectively, of the (2m−1)th-
order Hermite polynomial4.

We are now interested in calculating µ+ and µ◦ such that we can compute
(19). The following proposition allows us to have bounds in the auctions’
expected payments.

Proposition 6 The functions 1
FXH

, 1
FXL

, 1
1−FXH

, and 1
1−FXL

are convex.

The following inequality is valid by Theorem 4.4.9 in [28](pp:79) and Propo-
sition 6 applied to the random variable FXL

F−1XL

(
NL − 1

NL

)
≤ E[Y 1

NL ] ≤ F−1XL
(1) = bL, (20)

where F−1XL
represents the inverse of the distribution function FXL . Addition-

ally, note that E[Z1
nH |Z1

nH ≤ βu] is equal to the expected value from the
truncated distribution (FXH )nH at βu. Proposition 6 can be verified for this
truncated function; thus:

F−1XHβu

(
nH − 1

nH

)
≤ E[Z1

nH |Z1
nH ≤ βu] ≤ F−1XHβu

(1) = βu. (21)

where F−1XHβu
represents the inverse of the distribution function FXH truncated

at βu. These results imply that Y 1
NL

and the truncated version of Z1
nH are

uniformly integrable.
In the following proposition, we use limit distributions [29] to approximate

(FXH (βu))nH , the probability of winning the unit for a bid βu, when nH →∞.

4 We use a polynomial of order 20 to calculate this equation, which yields an error of less
than 10−7.
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Proposition 7 (von Mises conditions) Distributions FXL and FXH are ex-
tremable of the Weibull family. Furthermore, the exponents are α = 1 for XL

and α = 2 for XH with standardizing constants:

an = F−1Xi
(1)− F−1Xi

(
1− 1

n

)
, (22)

where F−1Xi
represents the inverse of the distribution function FXi with i ∈

{L,H} (see Table 2 under the Gi).

5.2 Multiple Units Per Auction

For deriving limit distributions of Y cn , Z
c
n such that the Nash equilibria can

be computed, we review the results from extreme value theory applied to the
current problem. Case (a) corresponds to those networks where resources are
too scarce compared to the demand. This case is similar to the N user case
studied in the previous subsection. Case (b) corresponds to networks with
better rates of available resources over demand.

Case a. Let c = c(n) ∈ {1, .., n}, n ∈ N and c → ∞, c/n → 0. Denote by
pn = (n − c)/n and assume that FXL , FXH satisfy the von Mises conditions,
i.e., both are extremable functions; see Proposition 7. Therefore, the following
result is proven; see [30]:

nfXL(F−1XL
(pn))c−1/2(Y cn − F−1XL

(pn))
d−→ N(0, 1)

nfXH (F−1XH
(pn))c−1/2(Zcn − F−1XH

(pn))
d−→ N(0, 1),

(23)

where fXL and fXH are the probability density functions of FXL and FXH ,
respectively.

Case b. Let c = c(n) ∈ {1, .., n}, n ∈ N and c → ∞, c/n → p. The limit dis-
tribution for the intermediate order statistics Y nc and Znc is given by Theorem
5.8 in [31], where the authors explore for a fixed p ∈ [0, 1] the set D(p) of all
distribution functions F for which the c order statistic is asymptotically nor-
mal for all sequences c/n→ p. The following is a restatement of the theorem
using the notation in our paper.

Suppose that FXi is differentiable in yo, where p = FXi(yo) and fXi(yo) >
0. For any sequence c(Ni) = pNi +O(

√
(Ni)), the sequence Y cn (Zcn) is asymp-

totically normal N(µNi , σ
2
Ni

) with µNi = yo + (c−Nip)/NifXi(yo) and σ2
Ni

=
p(1− p)/NifXi(yo)2.

This result can be stated as whenever the distribution function, i.e., the bid
distribution function, has a derivative at the point p = c/n the intermediate
order distribution converges to a normal, so that we can use this asymptote
to calculate both probabilities and expected payments.
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Using the above formulas and the existence of a Nash equilibrium, for every
user u ∈ H and Q, we have a tuple (q+ and q◦). They are found employing an
algorithm that finds the zeros of the following functions:

π+
u (sL, q)− π+

u (sH , q),
π◦u(sL, Q, q)− π◦u(sH , Q, q).

(24)

Now, we derive an approach to calculate a general q◦ and decide which
high-budget users are promoted to auction L before establishing the final allo-
cations. The reader can argue that giving this power to the system generates
another problem, which is the provider does not apply the selection rule and
it maintains all high-budget users in H. However, this behavior can be con-
trolled by users. The provider, who is interested in maintaining a low q◦, must
announce a high Q reward, so this value is a direct signal given to users of
their possibility of being untruthful, see section 7.2. In the following, we show
how to calculate a system’s q+ and q◦ given Q.

5.3 Calculating a general q+ and q◦

We employ an ex-ante assumption, where the provider has an estimate for
the number of users competing in every auction, but not their actual bids, so
that the best guess is to employ the expected equilibrium probability. This
resolving path implies finding the zeros of the expected q+, q◦ functions:

g+(q) = E[π+
u (sL, q)− π+

u (sH , q)],
g◦(Q, q) = E[π◦u(sL, Q, s)− π◦u(sH , Q, q)].

(25)

We develop the procedure only for g+(q) because the same procedure can be
used for g◦. Expanding g+(q), we have:

g+(q) = E[π+((H, w), q)−π+((L, bL), q)|w < v]+E[π+((H, w), q)−π+((L, bL), q)|w ≥ v]
(26)

with

E[π+((H, w), q)|w < v] =

1∫
bL

∫
w<v

π+((H, w), q)f(v, w)dwdv. (27)

Note that the other parts of g+(q) can be derived following the same steps.
We are then interested in studying the behavior of this expected value

when NH → ∞ and NL → ∞, i.e., limNH→∞E[π+((H, w), q)|w < v]. Apply-
ing the Gauss-Hermite formula to the first part of equation 27 and denoting
nj = n(xj), we have by observing from the definition of nj that nj →∞. By
applying the dominated convergence theorem to the following valid inequali-
ties:

vFZcnj
(w) ≤ v

w∫
bL

yfZcnj
(y) ≤ F−1XHw

(1) = w, from (21)
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and by the uniform integrability of yfZcnj
(y), which is a consequence of

Proposition 6 extended to the c order statistic and Theorem 4.4.9 [28](pp:79),
we have:

E[π+((H, w), q)|w < v] =

m∑
j=1

αj√
π

1∫
bL

v∫
bL

lim
nj→∞


FZk

n(xj)
(w)v −

w∫
bL

yfZk
n(xj)

(y)dy

(1− bL)2

 dwdv.
(28)

At this point, we employ the limit distributions for intermediate statistics.
Applying Theorem 5.8 in [31] to E[π+((H, w), q)|w < v], we obtain:

E[π+((H, w), q)|w < v] =

m∑
j=1

αj√
π

∫ 1

bL

v∫
bL


Φ(w)v −

w∫
−∞

yφ(w)dy

(1− bL)2

 dwdv,
(29)

where Φ(w) and φ(w) correspond to the cumulative and density, respectively,
of a normal distribution with mean µnj and standard deviation σnj defined
by the Theorem 5.8 in [31]. This last equation is integrable using once again
the Hermite formula with limits −∞, 0 and 0, w.

Regarding the computational complexity, this method is simple because
of the use of the Hermite formula. In fact, polynomials accompanying e−y

2

have a low degree; thus, we only need few (i.e., 5) roots of the order Her-
mite polynomials. The roots and weights are pre-calculated and stored for the
mechanism’s execution.

5.4 Calculating Q

We have approximated g+(q) and g◦(Q, q)5. We now introduce an optimization
problem that generates the Q that minimizes the expected probability of users
going into the L auction and simultaneously controls the measure z (given as
a parameter). This formulation minimizes the expected probability q◦ to be
used on mechanisms giving that the ztr measure is greater than the threshold
(ztr).

minimize
q,s,Q

s

subject to
−g◦(Q, s) ≤ 0, g+(q) = 0, q − s ≥ ztrQ

0 ≤ q ≤ 1, 0 ≤ s ≤ 1, 0 ≤ Q ≤ 1.

(30)

Finally, a gradient method can be used to resolve this problem.

5 This approximation is the same as the one used for the binomial distribution.
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6 Testbed Description

In the following, we describe the testbed setup and the configuration used to
obtain quantitative results.

6.1 Auction Setup

Operators assign resources for the time interval [0, T ]. An initial partition T
of [0, T ] is formed such that 0 = t0 ≤ t1 ≤ · · · ≤ tS = T . [ts, ts+1),∀s ∈ {1, S}
represents a time slot to be auctioned. For every time slot, the link capacity
is divided into units of equal size s. Users should become involved in periodic
auctions, which are available for future time slots.

Five different auction models are included for testing: (1) a second uniform
price auction (SUPA), where users send an ordered list l = (n, x, q, ts, tf ),
where n indicates the traffic key, x is the price per unit, q is the requested unit
amount, ts is the start date time, and tf is the end date time. (2) A subsidy
auction (SA), which takes the ordered list l and assigns subsidies (20%) to
those users who bid less than a threshold (bL). (3) A PSP auction, which
also takes the ordered list l. (4) A second uniform price auction with perfect
information (PIM), where users decide truthfully the auction to enroll based
on their budget. For this case, users add another parameter i for indicating
the auction to the ordered list l. And finally, an auction following the assign
and price rules proposed by RwP. In this case, users send the same ordered list
as l. All simulations were executed in a new auction system that has already
been implemented 6

6.2 User Session Characteristics

Following the conclusions of [24], we model user arrivals following a non-
homogeneous Poisson process. Arrival rates per hour are calculated using the
data reported in [32] for weekdays. We choose this reference because it reports
traffic statistics from a rural network that has the demographic characteristics
being addressed by this work. Although the authors suggest this scenario as
an extreme case, where there are few users compared to commercial networks.
Being aware of this condition and the fact that intermediate order statistics
depend on the relationship between capacity and demand, we scale the traffic
to study the mechanism’s behavior under the double rate, where most of the
time slots have less capacity than demand. This scenario is called 2x. We run
tests using 32 units of capacity.

The authors in [33] provide empirical cumulative distribution functions
(CDPs) for session length and average data rate per session. Their experiments
are built over a commercial Wi-Fi hotspot provider running operations all

6 An open source implementation for the auction system is available at: https://github.
com/lmarent/Auction_Engine.

https://github.com/lmarent/Auction_Engine.
https://github.com/lmarent/Auction_Engine.
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over Australia. Information is presented for three different user categories by
contract type. We take the reports for the ALL category. For the session length,
we adopt an exponential distribution with the reported mean of 24 minutes.
This assumption is not completely arbitrary. In fact, the group tracking the
traffic network evolution in [32] has suggested that, based on its observations,
traffic is comparable to that in urban settings or the general Internet. The
number of units requested in a particular session follows a discrete probability
distribution computed from the CDF of the average data rate per session (see
Figure 12 in [33]).

7 Results and Observations

In this paper, we study the challenge of dealing with untruthful users for social
goal mechanisms. We use the RwP mechanism to support the hypothesis that
prices can be set to cover the targeted group, even in periods of high demand;
see Subsection 7.1. As part of this study, we first present the results for sim-
ulations, which indicate that the RwP scheme reduces 20% of revenue and
reaches 100% higher coverage for the targeted group compared with SUPA.
Then, we show how the coverage and prices change using different mechanisms
and how these measures are modified with the relationship between capacity
and demand in scenarios 2x, 3x and 4x. In Subsection 7.1.5, we present re-
sults on subsidized auctions as an alternative to set-aside schemes. Based on
them, we suggest that it is better to use the RwP scheme. Finally, Subsection
7.2, analyze how the equilibrium probability q◦ evolve as important auction
variables change.

7.1 Auction Outcomes

The PIM, SUPA and PSP mechanisms are used to benchmark the outcomes
in terms of efficiency and revenue. The RwP mechanism fixes the price for the
low-budget set and, by this way, it loses income. We track the income variation
to determine this cost. Likewise, efficiency is compromised because units that
should be sold to high-budget users are allocated to low-budget users. How
much it modifies coverage for both groups is, therefore, indicating whether the
efficiency cost is worth it.

7.1.1 Results on Network’s Income

Surprisingly, PIM not always generates less income than operating with SUPA
or PSP; see Table 3. Thus, a provider using this mechanism should establish
capacity within a region, so that the PIM mechanism produces more income
than operating with other auction mechanisms. The additional income can be
interpreted as saying that the second uniform price rule, in the case of SUPA,
or the social opportunity cost, in the case of PSP, favors high-budget users,
which indirectly take advantage of the poor to achieve lower prices.
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However, as we expect, income gains from RwP does not prevail as we
increase demand, which is shown in Table 3 for the 2x scenario. These results
indicate that set-aside schemes create more competition in the high-budget
set, which drives their prices up, compensating the operator’s income.

Income Coverage (%)

1x 2x 1x 2x

HBS LBS Total HBS LBS Total HBS LBS HBS LBS

RwP 8927 0 8927 28857 0 28857 78 53 57 38
PSP 6718 1375 8093 32438 4177 36615 85 45 63 31
PIM 13436 2237 15673 48965 10667 59632 82 49 58 37
SUPA 6962 1702 8664 42739 7958 50697 85 48 63 31
Subsidy Auction 1647 383 2030 15722 1617 17339 84 45 63 32

Table 3 Network income and coverage for the mechanisms evaluated.

7.1.2 Allocations per Group

Table 3 also presents coverage. The results indicate that RwP achieves the
desired behavior. It increases the low-budget group coverage and decreases
the high-budget group coverage. For peak periods, unlike SUPA or PSP the
coverage gap between the two groups is reduced as we increase demand. Ob-
serve that RwP gives even more coverage for low-budget users than PIM as
a consequence of how the units are allocated between auctions. RwP assigns
dynamically unused units from the high-budget auction to the low-budget
auction when the sum of requested units are less than capacity.

7.1.3 Coverage vs. Network Income Trade Off

Figure 3 shows peak interval’s income and coverage relative to those in PIM,
the ideal mechanism when everybody is truly revealing their information. RwP
outperforms all the other auction mechanisms for demand 1x, not only it re-
duces the coverage gap, but also it earns more income from the market. Ob-
serve that SUPA results are better than those of PSP, which is the consequence
of using the social opportunity cost (SOC). The SOC rule produces, in general,
lower prices as long as there exist users with low valuations for units, as it is
the case for the network scenario being studied in this paper.

RwP outperforms PSP for simulations executed with demand 2x. In order
to show this assertion, we start to decrease the number of units reserved to
low-budget auction, so that the RwP allocations approaches the SUPA auction
behavior –to have only one auction. The resulting trend is shown in Figure 3,
where allocations move from the bottom-right figure area towards SUPA2x
upper-left area. This path represents a Pareto front for auction mechanisms.
Results are suggesting that there exists a Pareto dominance for some pre-
allocation that makes RwP more appropriate than PSP.
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Fig. 3 Income and coverage relationship for peak intervals. For this graph the reference
auction is PIM. The ideal mechanism should be the one that decreases gap difference and
maintains the greatest amount of income, in other words, low-left figure’s area

To sum-up the income-coverage relationship there are important issues in
terms of agent optimal actions. For low-budget users, it is clear than RwP
increases the coverage as long as cl increases. From dominance in 1x, it can be
suggested that operators are encouraged to increase the coverage within some
region for cl, which is supporting the hypothesis that a set-aside scheme can
be used to guarantee a minimal spread of resources. In addition, these results
can be used for regulators in order to establish low-budget target coverage by
dictating over the rate capacity/demand and cl, ch values.

7.1.4 Price Evolution

Figures 4 and 5 present the frequency and average price per hour using mech-
anisms RwP and SUPA (one auction), respectively. The price for the low-
budget set is in the range 0.0 − 0.1; thus, more than 60% (1 − FYL(0.1)) of
the low-budget population is able to use services. These results support the hy-
pothesis that it is possible to set affordable prices. Of equal importance, Figure
4 shows that self price discrimination is possible. Low budget prices in peaks
correspond to low-demand hours, when all users should compete for resources.
Even on those intervals, prices are lower than those set by SUPA.

7.1.5 Is It Better to Use a Subsidy Mechanism?

In the selling bandwidth case, these results contradict the authors in [10],
where it is suggested that a subsidy auction is better for coverage and rev-
enue combined than a set-aside scheme. In terms of income, subsidy auctions
consistently produce a lower income and they do not have any considerable
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effect on the targeted group coverage, which is almost the same coverage as
SUPA. Consequently, we suggest that using a set-aside scheme is the correct
alternative for spreading resources.
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Fig. 5 Price frequency, mechanisms RwP (high and low-budget) and SUPA (One Auction)

7.2 Sensitivity Analysis of q+ and q◦

Table 4 shows the corresponding q+ and q◦ for mechanisms as long as Q and
NH increase. As we expect, the equilibrium probabilities (q◦) are decreasing in
Q and increasing in NH . This last part can be understood as follows: a high-
budget user is willing to accept more competition for the same units whenever
a higher reward is offered. Although, the RwP mechanism may establish Q
values that makes to be truthful a pure Nash equilibrium, this condition is
infrequent and an operator aiming to improve revenues should expect a positive
q◦. For users, a higher Q value signals less opportunity for the provider not
performing the auction selection.
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Table 4 Expected probability of using the sL strategy at the Nash equilibrium under mixed
strategies. Parameters: NL = 70, NH ∈ [30, 70], cH = cL = 16, bL = 0.5, and PH = 0.5.

Two-Auction Mechanism RwP Mechanism

Q Avg q+ Std desv q+ Avg q◦ Std desv q◦

0 0.5438 0.0153 0.2871 0.0583
0.1 0.2669 0.0538
0.2 0.2028 0.0519
0.3 0.1517 0.0564
0.4 0.1036 0.0603
0.5 0.0694 0.0532

We also verify the outcomes of different parameters; such as, quantities
assigned on both sets and reserve prices. Greater quantities assigned to the
low-budget set as well as an increase in the reserve price of the high budget
auction make q◦ to grow. To preallocate greater quantities for the H auction
than those for L has the opposite effect.

8 Conclusions

Auctions have been identified as a vehicle to increase efficiency and revenues
for selling bandwidth. Studies have also shown that auctions can be used
to increase the coverage of resources. In this paper, we propose a set-aside
scheme for bandwidth allocation that may enlarge the network access of poor
populations, but an untruthful user behavior problem arises. To solve this
problem, we design the RwP mechanism, giving rewards to truthful users
and reducing the chance of an allocation for untruthful users. We studied the
underlying game, showing the existence of a unique Nash equilibrium in mixed
strategies and how to calculate it.

We benchmarked RwP against three previously proposed mechanisms: a
subsidized auction for the targeted group, a progressive second price auction,
and a second price auction for multiple units. The results indicate that (1) us-
ing a single auction drives coverage for the targeted group to starvation (which
also happens with subsidized auctions) and (2) RwP prevents starvation with
a 3% increase in revenues against the second price auction mechanism. Hence,
a certain coverage guarantee can be assured. We suggest that RwP successfully
addresses the problem of untruthful users. Therefore, these results suggest that
our proposal provides an effective operational approach to expand network ac-
cess and to reduce the global digital divide.

Acknowledgements The author Luis Andres Marentes received funding by Colciencias,
Colombia - Conv. 567/2012.
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A Collection of Proofs

Proposition 8 Assume that users signal their true type. The optimal bidding strategy for
user u is to send a bid equal to βu = min{vu, wu}.

Proof (Proof of Proposition 8) Assume there are N users in the auction and {βu, 1 ≤ u ≤ N
} their corresponding bids. For this proof, we refer to the highest bid in the auction among
all users different from u as p−u = max{βj , 1 ≤ j ≤ N, j 6= u}. Assume first that the
user u sends a bid βu higher than her budget realization wu. When p−u < βu she wins. If
p−u > wu, then user u is not able to pay for the unit and has to pay a fine D, so the net
profit is −D. If p−u ≤ wu, then he/she would have won bidding wu. Therefore, irrespective
of the value, it is not optimal to bid above wu. If vu < wu, then it is not optimal to
send a value greater than vu due to in case of winning she may obtain a negative profit
(whenever p−u > vu) or the same profit that she would have obtained in case of sending
vu (p−u ≤ vu). Finally bidding βu < min{vu, wu} is not optimal. The user loses the profit
vu − p−u whenever βu < p−u ≤ vu and receives the same profit if p−u ≤ βu. Summing up
the three results presented, the optimal strategy for any user u is to bid βu = min{vu, wu}.

Proposition 9 Assume a user u ∈ H
′
. If u decides to participate in auction L, then

βu = bL.

Proof (Proof of Proposition 9) Assume that user u has realizations vu, wu > bL and sends
a bid βu < bL. Also, assume that nL ≥ NL other users participate in the auction L. That
is NL low-budget users and nL − NL high-budget users. For the same arguments as in
proposition 8 the optimal bidding strategy is to place a bid min{vu, wu}; however, doing
that, she is sending to the auctioneer her true type, high budget, so she is assigned to the
auction H. As in proposition 8 denote by p−u the highest competing bid for the nL users.
If the user bids bL and p−u < bL, then the payoff is equal to vu − p−u. The same payoff is
obtained bidding βu < bL when p−u < βu, but bidding βu < bL leads to payoffs equal to
zero when bL ≥ p−u > βu, then it is optimal for user u once she decides going into L to bid
bL.

Proof (Proof of Proposition 1) By definition:

E[Z1
nH
|Z1
nH
≤ βu] =

∫ βu

0

ynH(FXH (y))nH−1fXH (y)dy

(FXH (βu))nH
,

integrating by parts with u = y and dv = nH(FXH (y))nH−1fXH (y)dy, we obtain:

E[Z1
nH
|Z1
nH
≤ βu] = βu −

∫ βu

0

(
FXH (y)

FXH (βu)

)nH
dy.

Observe now that
FXH

(y)

FXH
(βu)

≤ 1, 0 ≤ y ≤ βu, which means for 0 < nH1 < nH2 ≤ NH :

−
∫ βu

0

(
FXH (y)

FXH (βh)

)nH1

dy ≤ −
∫ βu

0

(
FXH (y)

FXH (βh)

)nH2

dy;

therefore:

E[Z1
nH1
|Z1
nH1

≤ βu] ≤ E[Z1
nH2
|Z1
nH2

≤ βu]

Proof (Proof of Proposition 2)
Let 0 ≤ k1 < k2 ≤ NH and n1 = NH − k1, n2 = NH − k2. It is required to show that

µ+u (sH , n2) ≥ µ+u (sH , n1). From k2 > k1 ⇒ n2 < n1. By Proposition 1

µ+u (sH , n2) ≥ µ+u (sH , n1),
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therefore, applying Proposition 11, π+
u (sH , q) is a non-decreasing function of q. For the

second part, we need to prove that µ+u (sL, n1) ≥ µ+u (sL, n2)

µ+u (sL, n1) =
vu−E[Y 1

NL
]

NH+1−NH+k1

>
vu−E[Y 1

NL
]

k2+1

= µ+u (sL, n2);

therefore, by Proposition 10, π+
u (sL, q) is a non-increasing function of q.

Proposition 10 Let f(n) be a non-increasing function in n; f(n) ≥ 0, 0 ≤ n ≤ N . Then,

π(q, k) =

k∑
j=0

B(j,N, q)f(j) (31)

is a non-increasing function of q.

Proof (Proof of Proposition 10)

Let G(q, k) =
∑k
j=0B(j,N, q) and 0 ≤ q1 < q2 ≤ 1. First, we show that G(q1, k) ≥

G(q2, k), ∀k ∈ [0, N ]. Observe that there exists a k� such that:

B(k,N, q1) ≥ B(k,N, q2), ∀k ∈ [0, k�]
B(k,N, q1) ≤ B(k,N, q2), ∀k ∈ (k�, N ] ;

(32)

therefore, ∀k ∈ [0, k�],
G(q1, k) =

∑k
j=0B(k,N, q1)

≥
∑k
j=0B(k,N, q2)

= G(k, q2).

(33)

Moreover, for k ∈ (k�, N ], we have:

G(q1, k) = 1−
N∑

j=k+1

B(k,N, q1), (34)

and since
N∑

j=k+1

B(k,N, q1) ≤
N∑

j=k+1

B(k,N, q2),

then G(q1, k) ≥ G(q2, k).
Now, we proceed to prove the result by induction. The base case corresponds to k = 0;

that is:
π(q1, 0) = B(0, N, q1)f(0)

= G(q1, 0)f(0)
> G(q2, 0)f(0)
= B(0, N, q2)f(0)
= π(q2, 0).

(35)

Assume that π(q1, k) ≥ π(q2, k); the partial sum up to k + 1 is equal to:

π(q1, k + 1) = aG(q1, k) +B(k + 1, N, q1)f(k + 1) (36)

π(q2, k + 1) = bG(q2, k) +B(k + 1, N, q2)f(k + 1) (37)

with a =
π(q1,k)
G(q1,k)

and b =
π(q2,k)
G(q2,k)

.

Case 1. k+1 ≤ k�. Then, we have that B(k+1, N, q1)f(k+1) ≥ B(k+1, N, q2)f(k+1).
Thus, we sum both inequalities and obtain π(q1, k + 1) ≥ π(q2, k + 1).

Case 2. k + 1 > k�. Then, we have the following two inequalities:

B(k + 1, N, q1)f(k + 1) ≤ B(k + 1, N, q2)f(k + 1) (38)
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G(q1, k + 1) ≥ G(q2, k + 1)
G(q1, k) +B(q1, N, k + 1) ≥ G(q2, k) +B(q2, N, k + 1)
G(q1, k)−G(q2, k) ≥ B(q2, N, k + 1)−B(q1, N, k + 1).

(39)

Observe that a ≥ b ≥ f(k+1) because f(n) is non-increasing; thus, we have the following
inequality:

aG(q1, k)− bG(q2, k) ≥ b(G(q1, k)−G(q2, k)), (40)

adding f(k + 1)(B(q2, N,K)−B(q1, N,K)) to both sides and using 39, we obtain:

π(q1, k + 1)− π(q2, k + 1) ≥ 0 (41)

which completes the proof.

Proposition 11 Let f(n) be a non-decreasing function in n; f(n) ≥ 0, 0 ≤ n ≤ N . Then,

π(q,N) =

N∑
j=0

B(j,N, q)f(j) (42)

is a non-decreasing function of q.

Proof (Proof of Proposition 11)
Define G−1(a, q) : [0, 1] −→ [0, N ], with G(k, q) defined as in Proposition 10

G−1(a, q) = sup{k ≥ 0 : G(k, q) ≤ a}. (43)

The reader can verify that:

π(q,N) =

∫ 1

0
G−1(a, q)f(G−1(a, q))da. (44)

Observe that G(q1, k) ≥ G(q2, k)⇒ G−1(a, q1) ≤ G−1(a, q2). Moreover, by assumption,
f(n) is non-decreasing; therefore, f(G−1(a, q1)) ≤ f(G−1(a, q2)), ∀a. Thus, ∀a ∈ [0, 1],

G−1(a, q1)f(G−1(a, q1)) ≤ G−1(a, q2)f(G−1(a, q2)); (45)

therefore, by the monotonicity of the Lebesgue integral:

π(q1, N) =
∫ 1
0 G
−1(a, q1)f(G−1(a, q1))da

≤
∫ 1
0 G
−1(a, q2)f(G−1(a, q2))da

= π(q2, N).

(46)

Proof (Proof of Proposition 3) By definition

πu(sH , q) =
∑NH−1
k=0 B(k,NH , q)µu(sH , NH − k) + qNH (vu − pH)

≥
∑NH−1
k=0 B(k,NH , q)µu(sH , NH) + qNH (vu − pH), because of 7

= µu(sH , NH)(1− qNH ) + qNH (vu − pH).

The last term is continuous and increasing in q. It starts at µh(sH , NH) and has a
maximum in q = 1, where the function is equal to vu−pH . The expected payoff for strategy
sL is continuous and decreasing in q. Also, observe that πu(sL, q) starts at vu−E[Y 1

NL
] and

ends at
vu−E[Y 1

NL
]

NH+1
. From the condition

NHvu+E[Y 1
NL

]

NH+1
≥ pH , ∀u ∈ H and vu−E[Y 1

NL
] ≥

µu(sH , NH), we have ∀u ∈ H: πu(sL, q) − µu(sH , NH)(1 − qNH ) + qNH (vu − pH), must
have a zero (q∗) in the compact set [0, 1].

Moreover, by definition πu(sH , 0) = µu(sH , NH) and πh(sH , 1) = vu − pH and conti-

nuity of πu(sH , q), it must exist at least a q+ ≤ q∗ , such that:

πu(sH , q
+) = πu(sL, q

+), (47)

which completes the proof.
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Proof (Proof of Proposition 6)
Apply the second derivative criterion for all functions and verify that it is positive; for

instance, we have for 1
FXL

:

d2

dy2

(
1

FXL (y)

)
=

2bL(bL + 1− 2y)2

(ybL + y − y2)3
+

2bL

(ybL + y − y2)2
> 0 (48)

Proof (Proof of Proposition 7)
To prove that FXL belongs to the Weibull family [28](pp:299), it is necessary to prove

for ξ1 = F−1
XL

(1) and FXL that:

lim
y→bL

(bL − y)

(
bL + 1− 2y

bL

)(
1−

(
ybL + y − y2

bL

))−1

= α,

applying L’Hopital’s rule to the resulting undetermined form, we have:

lim
y→bL

(−3bL − 1 + 4y)

(−bL + 2y − 1)
= 1 = α

and for FXH , we verify, applying L’Hopital’s rule two times, that:

lim
y→1

(1− y) (2− 2y)

(1− bL)2 −
(
2y − y2 − 2bL + b2L

) = lim
y→1

2− 4y + 2y2

1− 2y + y2
= 2 = α
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