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Abstract. In this paper we continue the study of the unified dynamics resulting

from the theory of projected dynamical systems and evolutionary variational in-

equalities, initiated by Cojocaru, Daniele, and Nagurney. In the process we make

explicit the interdependence between the two timeframes used in this new theory.

The theoretical results presented here provide a natural context for studying ap-

plied problems in disciplines such as operations research, engineering, in particular,

transportation science, as well as in economics and finance.
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1. Introduction

In [7] the authors built the basis for merging the theory of projected dynamical sys-

tems (PDS) and that of evolutionary variational inequalities (EVI), in order to further

develop the theoretical analysis and computation of solutions to applied problems in

which dynamics plays a central role. The two theories have developed in parallel

and have been advanced by the need to formulate, analyze, and solve a spectrum of

dynamic problems (oftentimes, network-based) in such disciplines as operations re-

search, and in engineering, notably, in transportation science, as well as in economics

and finance.

The intriguing feature of the merger is that it allows for the modeling of problems

that present two (theoretically) distinct timeframes, most simply put, a big scale

time and a small scale time. The existing literature has focused on understanding

human decision-making for a specific timescale rather than viewing decision-making

over multiple timescales (see, e.g, [4], [13], [28], [36], and the references therein). The

ability to capture multiple timescales can also further support combined strategic and

operational decision-making and planning.

There are new exciting questions, both theoretical and computational, arising from

this “multiple time structure.” In the course of answering these questions, a new

theory is taking shape from the synthesis of PDS and EVI, and, as such, it deserves

a name of its own; we shall call it double-layered dynamics.

This paper gives novel theoretical insights into the type of problems modeled by a

double-layered dynamics. Generally, an EVI model gives a curve of equilibria of the

underlying problem, over a finite time interval [0, T ]. For almost all t ∈ [0, T ], there is

a PDS, which we shall call PDSt, that describes the time evolution of the underlying

problem towards an equilibrium point on the curve of equilibria, corresponding to

the moment t. However, this evolution time for the respective PDSt, which we shall

denote by τ , is different from t.

As in the case of PDS theory [23], [4], [47], [37], we can establish results about

the stability of this curve of equilibria. Even more importantly, we make precise the
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relation between t and τ since in order for the PDS/EVI models to be useful, it is

essential that the t and τ are related in an intuitively clear, meaningful way.

The results in this paper are based on various monotonicity properties of the un-

derlying vector field of PDS/EVI. This is extremely valuable, since monotonicity

concepts are present in both PDS and EVI theories; in PDS they are used to study

stability of perturbed equilibria and in EVI they are used as essential conditions for

the existence of solutions.

The outline of the paper is as follows: Section 2 contains brief introductions to

PDS and EVI. Section 3 overviews the rigorous formulation of the double-layered

dynamics theory and discusses the question of uniqueness of such curves of equilibria

in the PDS/EVI context. Section 4 shows the stability properties of such curves in

a given neighborhood and establishes the relation between the two timeframes and

their estimates. Section 5 presents an illustrative dynamic traffic network numerical

example. We close this paper with a few concluding remarks in Section 6.
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2. Brief overview of the foundations of PDS and EVI theories

A thorough introduction to both theories and applications of PDS and EVI has

been presented in our earlier paper [7]. Here we outline only the necessary theoretical

facts in order to insure a self-contained presentation of this work.

2.1. PDS. In the early ’90s, Dupuis and Nagurney [18] introduced a class of dynamics

given by solutions to a differential equation with a discontinuous right-hand side,

namely
dx(t)

dt
= ΠK(x(t),−F (x(t))). (1)

In their formulation K is a convex polyhedral set in Rn, F : K → Rn is a Lipschitz

continuous function with linear growth and ΠK : R × K → Rn is the Gateaux direc-

tional derivative ΠK(x,−F (x)) = lim
δ→0+

PK(x− δF (x))− x

δ
of the projection operator

PK : Rn → K, given by ||PK(z) − z|| = inf
y∈K ||y − z|| (see [17] and [18]). In fact,

ΠK(x,−F (x)) := PTK(x)(−F (x)), where TK(x) is the tangent cone to the set K in Rn.

Theorem 5.1 in [17] proves the existence of local solutions (on an interval [0, l] ⊂ R)

for the initial value problem
dx(t)

dt
= ΠK(x(t),−F (x(t))), x(0) ∈ K. In [18], Dupuis

and Nagurney extended the existence of solutions to the real axis, and introduced the

notion of projected dynamical systems (PDS) in Euclidean space (defined by

these solutions), together with several examples and applications of such dynamics.

Although the papers above were the first to introduce PDS, a similar line of inquiry

appears in the literature earlier in the papers by Henry [20] (1973), Cornet [10] (1983),

and in the book by Aubin and Cellina [1] (1984), where (1) is a particular case of the

differential inclusion
dx(t)

dt
∈ F̃ (x(t)). (2)

In (2), K is a non-empty, closed, and convex subset of Rn or of a Hilbert space X and

F̃ : K→ 2X is a closed, convex valued upper semicontinuous set-valued mapping. In

[20], [10], and [1], there are results regarding the existence of solutions to (2), but

these are distinct from the one in [18]. In [21], there appears yet another existence

result for the solutions to equation (1), for the particular case of K := Rn
+, but with

no relation to projected dynamics.
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Applications to finite-dimensional PDS are rich and well-established now (see [18],

[29], [30], [32], [33], [34], [35], [36], [37], [38], to cite just a few) and range from dynamic

traffic network problems and spatial price problems to dynamic financial network

problems and even dynamic supply chains; applications to infinite-dimensional PDS

can be found in [7] and [6].

The existence theory for solutions (in the class of absolutely continuous functions)

to equation

dx(t)

dt
= ΠK(x(t),−F (x(t))), x(0) = x0 (3)

on a Hilbert space X of any (finite or infinite) dimension, known as projected

differential equations (PrDE), was established by Cojocaru [4] (see also Cojocaru

and Jonker [9]), with respect to any non-empty, closed and convex subset K ⊂ X and

any Lipschitz continuous vector field F : K → X. Moreover, the linear growth

condition present in [18] was removed. As in the finite case, the right-hand side of

(3) is discontinuous on the boundary of K and nonlinear, and has the expression (cf.

[46]):

ΠK(x,−F (x)) = lim
δ→0+

PK(x− δF (x))− x

δ
=: PTK(x)(−F (x)),

where TK(x) is the tangent cone to the set K at x and NK(x) is the normal cone to

K at the same point x.

It is easy to see that, in fact, another way to express the right-hand side of (3) is

the following:

ΠK(x,−F (x)) := −F (x)− nx, (i.e., − F (x) ∈ NK(x)) (4)

where nx := PNK(x)(−F (x)) ∈ NK(x) is the unique element in the normal cone to K

at x with this property (for a proof of this statement, please see [4], Theorem 5.3).

For completeness, we include the statement of the existence result for PrDE below

(cf. [4], [9]):

THEOREM 2.1. Let X be a Hilbert space of arbitrary dimension and let K ⊂ X

be a non-empty, closed, and convex subset. Let F : K→ X be a Lipschitz continuous
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vector field with Lipschitz constant b. Let x0 ∈ K and L > 0 such that ||x0|| ≤ L.

Then the initial value problem

dx(t)

dt
= ΠK(x(t),−F (x(t))), x(0) = x0 (5)

has a unique solution on the interval [0, l], where l :=
L

||F (x0)||+ bL
.

It is easy to see that the solutions of (3) can be extended to R+ ([4]). As in

the finite-dimensional case, Isac and Cojocaru [23], [24] and Cojocaru [4], defined a

projected dynamical system PDS given by the solutions to such PrDE. It is easily

seen that a projected flow evolves only in the interior of the set K or on its boundary.

The key trait of a projected dynamical system, which we use in this paper, is the

following:

THEOREM 2.2. Let X be a Hilbert space of any dimension and K ⊆ X a closed,

convex subset. The critical points of equation (3) are the same as the solutions to a

variational inequality problem, that is, a problem of the type: given F : K→ X, find

the points x ∈ K such that 〈F (x), y−x〉 ≥ 0, for any y ∈ K, where by 〈·, ·〉 we denote

the inner product on X.

This result was first shown by Dupuis and Nagurney [18] on Rn. In [4] (see also

[9], Theorem 2.2), Cojocaru showed that the same result holds on a Hilbert space of

any dimension, for any closed and convex subset K and a Lipschitz field F .

2.2. EVI. The evolutionary variational inequalities (EVI) were originally introduced

by Lions and Stampacchia [25] and by Brezis [3] to solve problems arising principally

from mechanics. Steinbach [44] studied an obstacle problem with a memory term by

means of a variational inequality. They all provided a theory for the existence and

uniqueness of the solution of such problems.

In this paper, we are interested in studying an evolutionary variational inequality

in the form proposed by Daniele, Maugeri, and Oettli (1998) ([15]) and (1999) ([16]).

They modeled and studied the traffic network problem with feasible path flows which

have to satisfy time–dependent capacity constraints and demands. They were able to
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solve the delicate and crucial problem of establishing how the eventual solutions of

the time-dependent model depend on time and if a solution with such a dependence

exists. The problem was solved assuming as a functional setting the Lebesgue space

Lp([0, T ],Rq) with p > 1. In this way they proved that the equilibrium conditions (in

the form of generalized Wardrop [45] (1952) conditions) can be expressed by means

of an EVI, for which existence theorems and computational procedures were given

based on the subgradient method.

In addition, the EVI for spatial price equilibrium problems (see Daniele and Maugeri

[14] and Daniele [12], [11]) and for financial equilibria (see Daniele [13]) have been

derived.

The same framework has been used also by Scrimali in [42], who studied a special

convex set K which depends on the solution of the evolutionary variational inequality,

and gives rise to an evolutionary quasi–variational inequality. In Gwinner ([19]), the

author presents a survey on several classes of time–dependent variational inequalities.

The EVI unified framework we used in [7] comes from time-dependent traffic net-

work problems, spatial equilibrium problems with either quantity or price formula-

tions, and a variety of financial equilibrium problems and is presented next.

We consider a nonempty, convex, closed, bounded subset of the reflexive Banach

space Lp([0, T ],Rq) given by:

K =
⋃

t∈[0,T ]

{
u ∈ Lp([0, T ],Rq) |λ(t) ≤ u(t) ≤ µ(t) a.e. in [0, T ];

q∑
i=1

ξjiui(t) = ρj(t) a.e. in [0, T ], ξji ∈ {0, 1}, i ∈ {1, .., q}, j ∈ {1, . . . , l}
}

. (6)

We let λ, µ ∈ Lp([0, T ],Rq), ρ ∈ Lp([0, T ],Rl) be convex functions in the above

definition. For chosen values of the scalars ξji, of the dimensions q and l, and of

the boundaries λ, µ, we obtain each of the previous above-cited model constraint set

formulations as follows:

• for the traffic network problem (see [15], [16]) we let ξji ∈ {0, 1}, i ∈ {1, .., q},
j ∈ {1, . . . , l}, and λ(t) ≥ 0 for all t ∈ [0, T ];
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• for the quantity formulation of spatial price equilibrium (see [11]) we let q =

n + m + nm, l = n + m, ξji ∈ {0, 1}, i ∈ {1, .., q}, j ∈ {1, . . . , l}; µ(t) large

and λ(t) = 0, for any t ∈ [0, T ];

• for the price formulation of spatial price equilibrium (see [12] and [14]) we let

q = n + m + mn, l = 1, ξji = 0, i ∈ {1, .., q}, j ∈ {1, . . . , l}, and λ(t) ≥ 0 for

all t ∈ [0, T ];

• for the financial equilibrium problem (cf. [13]) we let q = 2mn + n, l = 2m,

ξji = {0, 1} for i ∈ {1, .., n}, j ∈ {1, . . . , l}; µ(t) large and λ(t) = 0, for any

t ∈ [0, T ].

We remark that this formulation was first introduced in [7], as a unified constraint

set model.

Recall that ¿ φ, u À:=

∫ T

0

〈φ(t), u(t)〉dt is the duality mapping on Lp([0, T ],Rq),

where φ ∈ (Lp([0, T ],Rq))∗ and u ∈ Lp([0, T ],Rq). Let F : K → (Lp([0, T ],Rq))∗.

The standard form of the evolutionary variational inequality (EVI) we work with is

therefore:

find u ∈ K such that ¿ F (u), v − u À≥ 0, ∀v ∈ K. (7)

In the general theory of variational inequalities ([2], [27], [22]), of which EVI are

a part, as well as in Nonlinear Analysis and Optimization ([28], [26], [37]), the

concept of monotone mappings and its extensions have been extensively used in

existence/uniqueness-type results. We assume that the reader is familiar with the

definition of monotone single-valued, as well as monotone set-valued mappings on

Banach spaces. From among the extensions of monotonicity, we recall here defini-

tions of pseudo-monotonicity, which are used throughout the paper.

DEFINITION 2.1. Let E be a reflexive Banach space with dual E∗, ¿ ·, · À
the duality map between E∗ and E, K a non-empty closed, convex subset of E and

F : K→ E∗. Then:

(1) A map F is called pseudo-monotone on K if, for every pair of points x, y ∈ K,

we have

〈F (x), y − x〉 ≥ 0 =⇒ 〈F (y), y − x〉 ≥ 0.
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(2) A map F is strictly pseudo-monotone on K if, for every pair of distinct points

x, y, we have

〈F (x), y − x〉 ≥ 0 =⇒ 〈F (y), y − x〉 > 0.

(3) A map F is strongly pseudo-monotone on K if, there exists η > 0 such that,

for every pair of distinct points x, y, we have

〈F (x), y − x〉 ≥ 0 =⇒ 〈F (y), y − x〉 ≥ η||y − x||2.

Daniele, Maugeri, and Oettli [16] gave an existence result for an EVI as above:

THEOREM 2.3. If F in (7) satisfies either of the following conditions:

(1) F is hemicontinuous with respect to the strong topology on K, and there exist

A ⊆ K nonempty, compact, and B ⊆ K compact such that, for every v ∈ K\A,

there exists v ∈ B with ¿ F (u), v − u À≥ 0;

(2) F is hemicontinuous with respect to the weak topology on K;

(3) F is pseudo-monotone and hemicontinuous along line segments,

then the EVI problem (7) admits a solution over the constraint set K.

The question of uniqueness of solutions to (7) is revisited in the next section and

answered in a new, surprisingly easy way given that the existing literature imposes

multiple, harder conditions on F than just pseudo-monotonicity (see, for example,

([43] and [41], Theorem 3).
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3. Double-layered dynamics: merging PDS and EVI

The theory of EVI and that of PDS can be intertwined for the purpose of deepening

the analysis of many dynamic applied problems arising in different disciplines. The

fundamental theoretical ideas, together with an example of such problems, specifically,

a dynamic traffic network problem, were given in [7]. However, the implications of

one theory over the other have to be further studied.

Here we continue to develop and consolidate the mathematical formalism of this

new emerging theory which we call double-layered dynamics, thus opening up new

questions as topics for future work.

First and foremost, we have seen that the EVI considered in the above section

involves a constraint set of a Banach space, but to be used in conjunction with PDS

theory, we need to limit ourselves to Hilbert spaces; therefore, we set p := 2 and

consider only constraint sets K ∈ L2([0, T ],Rq), as given by (6). By definition, such

sets are closed and convex. We also note that the elements in the set K vary with

time, but K is fixed in the space of functions L2([0, T ],Rq), T > 0 given.

From now on, we consider the following double-layered dynamics hypothesis

(DLDH): Let (EVI) be as in (7), where F is pseudo-monotone and Lipschitz

continuous and K ∈ L2([0, T ],Rq) is given as above.

Lipschitz continuity implies hemicontinuity, which, in turn, implies hemicontinuity

on line segments, so according to Theorem 2.3, the EVI problem has solutions. With

DLDH, we are also in the scope of Theorem 2.1, and, therefore, we can consider the

PDS defined on the closed and convex set K by the PrDE:

du(·, τ)

dτ
= ΠK(u(·, τ),−F (u(·, τ))), u(·, 0) = u(·) ∈ K, (8)

where time τ is different than time t in (7). In general, (8) has solutions in the set

of absolutely continuous functions in the τ variable, AC([0,∞],K). However, we will

limit ourselves to finite intervals for τ , i.e., with τ ∈ [0, l], l > 0, given.

The meaning of the “two times” used here needs to be well understood. Intuitively,

at each moment t ∈ [0, T ], the solution of the EVI represents a static state of the

underlying system. As t varies over the interval [0, T ], the static states describe one
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(or more) curve(s) of equilibria. In contrast, τ is the time that describes the dynamics

of the system until it reaches one of the equilibria on the curve(s). This structure

motivates the name of the new theory, which has many interesting features, some of

which we present in the rest of this paper. Our intuitive explanation is rigorously

confirmed by the following result.

THEOREM 3.1. The solutions to the EVI problem (7) are the same as the critical

points of (8) and vice versa; that is, the critical points of (8) are the solutions to EVI

(7).

Proof. This is an immediate consequence of Theorem 2.2. ¤

This result is the most important feature in merging the two theories and in com-

puting and interpreting problems ranging from spatial price (quantity and price for-

mulations), traffic network equilibrium problems, and general financial equilibrium

problems.

Now we are ready to answer the question of uniqueness of solutions to EVI (7). It

is known that, in general, strict monotonicity implies uniqueness of solutions for a

variational inequality ([43]) and, hence, if F is strictly monotone, then the solution to

the EVI is unique. But, generally, pseudo-monotonicity or strict pseudo-monotonicity

alone cannot guarantee uniqueness of such solutions for (7). In [41], Theorem 3,

there is a result of uniqueness of solutions to VI on closed convex cones of a real

reflexive Banach space under hemicontinuity/strict pseudo-monotonicity conditions

of F , in addition to F satisfying more complicated conditions (z-map and positive at

infinity). Since we are concerned with generic closed convex subsets in our Hilbert

space, without asking F to satisfy additional assumptions, we cannot use this result.

Hence, we prove next that uniqueness of solutions to EVI holds under strict pseudo-

monotonicity, due to the connection of EVI with infinite-dimensional PDS.

In the PDS theory it is easy to show that if F is only strictly pseudo-monotone,

the PDS still has a unique equilibrium.
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PROPOSITION 3.1. Assume F is strictly pseudo-monotone and Lipschitz on K,

in problem (3). Then the PDS has at most one equilibrium point.

Moreover, the VI: find x ∈ K such that 〈F (x), y−x〉 ≥ 0, for any y ∈ K has a unique

solution.

Proof. We prove this by contradiction. Suppose (3) has at least two solutions and let

us denote them by u1 6= u2 ∈ K. Then, from Theorem 2.2, they are solutions to the

VI and so we have ¿ F (u1), y − u1 À≥ 0 and ¿ F (u2), y − u2 À≥ 0, for all y ∈ K.

Since F is strictly pseudo-monotone, then ¿ F (y), y − u1 À> 0 and, respectively,

¿ F (y), y − u2 À> 0, for all y ∈ K.

Now choosing y := u2 in the first inequality and y := u1 in the second; we obtain

¿ F (u2), u2 − u1 À> 0 and ¿ F (u1), u1 − u2 À> 0.

The last two relations imply that

¿ F (u2)− F (u1), u2 − u1 À> 0. (a)

Since u1, u2 are equilibria of the PDS (3), we have

ΠK(u1,−F (u1)) = 0 and ΠK(u2,−F (u2)) = 0.

Equivalently, this means that −F (u1) ∈ NK(u1) and −F (u2) ∈ NK(u2) (according to

(4)).

Since the set-valued mapping x 7→ NK(x) is a monotone mapping, i.e., for any

nx ∈ NK(x) and any ny ∈ NK(y), we have that 〈nx − ny, x − y〉 ≥ 0 (for a proof see

[9], Lemma 2.1), then in our case we obtain

¿ −F (u1) + F (u2), u1 − u2 À≥ 0, or equivalently,

¿ F (u2)− F (u1), u2 − u1 À≤ 0. (b)

Evidently (a) and (b) lead to a contradiction. Hence, the PDS (3) has at most one

equilibrium point whenever F is strictly pseudo-monotone. ¤
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Proposition 3.1 is simpler and easier to use then [41], Theorem 3, even though it

is established (so far) only in Hilbert spaces. Here is a direct, important consequence

of the new theory of double-layered dynamics:

PROPOSITION 3.2. Assume either one of the hypotheses (2) or (3) of Theorem

2.3, where F is strictly pseudo-monotone on K and assume DLDH. Then the EVI

(7) has at most one solution.

Proof. The proof is a direct consequence of Theorem 3.1 and Proposition 3.1. ¤

4. Stability properties of the curve of equilibria; the relation

between the two timeframes

In this section we study the stability properties of solution(s) to (7), viewed as

curves of equilibria for PDS. We also make precise the relation between PDS time

and EVI time, together with its meaning in applications.

In [7] we remarked that, intuitively, time t describes the curve of equilibria, while

time τ describes the evolution of the projected dynamics in the presence of this curve.

In our first paper, we assumed that the projected dynamics should describe how the

underlying problem “approaches” this curve, but we did not give a proof of why and

how this happens.

In previous sections we remarked that the assumption of pseudo-monotonicity is

vital to the existence of EVI solutions, but not so for solutions to PDS. However,

it plays a very important role in the stability study of perturbed equilibria of PDS,

more precisely, in the study of the local/global properties of the projected systems

around these equilibria. This stability question remains meaningful in the double-

layered dynamics theory, where we seek to unravel the behavior of perturbations of

the curve(s) of equilibria.

We see next that pseudo-monotonicity-type conditions fully answer three important

questions along the lines of our remarks above:
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(1) is it accurate to expect that for almost all t ∈ [0, T ] given, the trajectories

of the PDS at t (which we denote by PDSt) evolve towards the curve of

equilibria?

(2) what is the relation between an arbitrarily chosen t ∈ [0, T ] and the time it

takes for solutions to PDSt to actually reach the curve of equilibria?

(3) what is the interpretation of the double-layered dynamics for applications?

Answer to question (1). The first question is answered positively, and is a conse-

quence of the stability study of perturbed equilibria for PDS on Hilbert spaces (see

[23], [5]). Before stating the main results, we need to recall the notion of monotone

attractor. While the classical notion of an attractor for a dynamical system is well-

known, that of a monotone attractor is different and was initially introduced to

study the properties of equilibrium points of projected dynamical systems ([37], [24],

[4]).

DEFINITION 4.1. Let X be a Hilbert space, K ⊂ X closed, convex subset.

(1) A point x∗ ∈ K is called a local monotone attractor for the PDS (3) if

there exists a neighborhood V of x∗ such that the function d(t) := ||x(t) − x∗|| is a

non-increasing function of t, for any solution x(t) of (3), starting in the neighborhood

V .

(2) A point x∗ ∈ K is a local strict monotone attractor if the function d(t) is

decreasing.

A point x∗ ∈ K is a global monotone attractor (respectively a global strict monotone

attractor) if conditions (1) and (2) are satisfied for solutions starting at any point of

K.

It is not difficult to see that the notion of monotone attractor and that of an

attractor are different. For example, a monotone attractor is not necessarily an

attractor, if say d(x, t) decreases for t ∈ [0, t1] and remains constant in time for

t ≥ t1, for some t1 ∈ R+. In the same way, an attractor is not necessarily a monotone

attractor, unless d(x, t) is monotonically decreasing to zero.
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We now give stability results for the perturbed curve of equilibria, based on pseudo-

monotonicity-type conditions (as introduced in Definition 2.1 above).

THEOREM 4.1. Assume F : K→ L2([0, T ],Rq) is Lipschitz continuous on K and

consider the EVI (7) and the PDS (8). Then the following hold:

(1) if F is (locally) pseudo-monotone on K, then the curve(s) of equilibria (solu-

tion(s) of EVI) is(are) a (local) monotone attractor;

(2) if F is (locally) strictly pseudo-monotone on K, then the unique curve of

equilibria is a (local) strict monotone attractor;

(3) if F is (locally) strongly pseudo-monotone on K, then the unique curve of

equilibria is exponentially stable and a (local) attractor.

Proof. Let u∗ be a solution of the EVI (7). Then u∗ is an equilibrium of PDS (8) and

all the statements above follow from [4], Theorems 7.1,7.6 (or Theorems 4.1, 4.4 from

the online abstract of [4].) ¤

This result shows clearly that when applying the double-layered dynamics theory to

problems, one is entitled to expect that, for almost all t ∈ [0, T ], the problem evolves

towards its equilibrium on the curve. The uniformity of convergence is a consequence

of the L2-norm.

Answer to question (2). The stability properties of the curve of equilibria as a

whole, given by Theorem 4.1, show that the curve is attracting solutions of almost

all PDSt and that it is possible for the curve to be reached for some of the moments

t ∈ [0, T ].

To answer question (2), we start first by noticing that for almost all t ∈ [0, T ],

arbitrarily fixed, we can identify a closed and convex subset Kt ∈ Rq, given by

Kt :=
{

u(t) ∈ Rq |λ(t) ≤ u(t) ≤ µ(t); λ(t), µ(t) given;

q∑
i=1

ξjiui(t) = ρj(t), ξji ∈ {0, 1}, i ∈ {1, .., q}, j ∈ {1, . . . , l}
}

. (9)
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Evidently, to each such fixed t, we have a PDSt given by

du(t, τ)

dτ
= ΠKt(u(t, τ),−F (u(t, τ))), u(t, 0) = ut

0 ∈ Kt. (10)

We recall the following definition ([37]).

DEFINITION 4.2. A map F is called strongly pseudo-monotone with degree

α on K if, there exists η > 0 such that, for every pair of distinct points x, y, we have

〈F (x), y − x〉 ≥ 0 =⇒ 〈F (y), y − x〉 ≥ η||y − x||α. (11)

Evidently, if F is strongly pseudo-monotone with degree α, then it is strictly pseudo-

monotone. Hence, the EVI gives a unique curve of equilibria.

We answer question (2) by the following:

THEOREM 4.2. Under DLDH with F strongly pseudo-monotone with degree α < 2

on K, for almost all fixed t ∈ [0, T ], there exists lt > 0, finite, such that the unique

equilibrium u∗ := u∗(t) of the PDSt is reached by the (unique) solution u(t, τ) of

the PDSt, starting at the initial point ut
0 ∈ Kt. The time lt depends upon η, α and

||ut
0 − u∗||.

Proof. It is not difficult to show that (see [37], Theorem 3.8 in Euclidean space, and

[4], Theorem 7.7 (or 4.5 in the online source) in arbitrary Hilbert spaces) if F is

strongly pseudo-monotone with degree α < 2 on K, then u∗ is a finite-time attractor

for trajectories of PDSt, starting in a neighborhood B(u∗, r) of u∗. To see this, let

u(t, τ) be a solution of (10), which starts at some point ut
0 ∈ Kt. Since F is strongly

pseudo-monotone with degree α, there exists η > 0 such that

〈F (u∗), u(t, τ)− u∗〉 ≥ 0 =⇒ 〈F (u(t, τ)), u(t, τ)− u∗〉 ≥ η||u(t, τ)− u∗||α. (12)

If we let D(τ) :=
1

2
||u(t, τ)− u∗||2, then

Ḋ(τ) =
d

dτ

(
1

2
||u(t, τ)− u∗||2

)
≤ −η||u(t, τ)− u∗||α ≤ 0. (13)

Therefore, D(τ) is strictly decreasing for all τ such that u(t, τ) 6= u∗ and will become

zero whenever there exists lt > 0 such that u(t, lt) = u∗. Evidently, as soon as there

exists such lt > 0 with u(t, lt) = u∗, then for all τ > lt we have that D(τ) stays zero.
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We need to show that such an lt exists. We show this by contradiction. Suppose

that D(τ) > 0 for any τ . Then this implies that ||u(t, τ) − u∗||2−α > 0 for any τ .

Letting φ(τ) := ||u(t, τ)− u∗||, the following is true:

dφ(τ)

dτ
φ(τ) = ˙D(τ) ≤ −η||u(t, τ)−u∗||α = −ηφ(τ)α =⇒ dφ(τ)

dτ
≤ −η||u(t, τ)−u∗||α−1.

(14)

If we evaluate

d

dτ

1

2− α
||u(t, τ)− u∗||2−α = ||u(t, τ)− u∗||1−α d

dτ
[||u(t, τ)− u∗||]

= ||u(t, τ)− u∗||1−α dφ(τ)

dτ
. (15)

The last two relations together give:

d

dτ

[
1

2− α
||u(t, τ)− u∗||2−α

]
≤ −η. (16)

If we integrate (16) from 0 to τ we obtain

||u(t, τ)− u∗||2−α ≤ ||ut
0 − u∗||2−α − (2− α)ητ. (17)

However, this contradicts our assumption that D(τ) is always positive, since if we

choose τ :=
||uτ

0−u∗||2−α

(2−α)η
, then D(τ) = 0.

Hence, we have proved that for each u∗0 ∈ Kt, there exists lt < ∞, depending on

η, α, ||ut
0 − u∗||, given by

lt :=
||ut

0 − u∗||2−α

(2− α)η
, (18)

such that whenever α < 2,

D(τ) > 0 when τ < lt and D(τ) = 0 when τ ≥ lt.

In other words, u∗ is a globally finite-time attractor for the unique solution of PDSt

starting at ut
0 and it will be reached in lt units of time. ¤

Answer to question (3). In real life, there is only one concept of time in terms of a

timeline. In our proposed new framework, we interpret the evolution time of the EVI,

namely t, as “large scale dynamics,” and the evolution time of the PDS, namely τ , as

the “small scale dynamics.” Theorem 4.2 provides a link between the two timescales
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Figure 1. Network Structure of the Numerical Example

as follows: for almost any t ∈ [0, T ], we can estimate that the equilibrium on the

curve corresponding to t will be reached in the time lt if and only if

t ≥ lt :=
||ut

0 − u∗||2−α

(2− α)η
. (19)

Otherwise, although the equilibrium can be computed, the solution to PDSt does not

have enough time to reach the curve.

5. A Numerical Dynamic Traffic Network Example

In this section, we present a numerical example that is taken from transportation

science. For additional background, we refer the reader to [7], [8], [15], [16], and to

the book on dynamic transportation networks by Ran and Boyce [40].

We consider a transportation network consisting of a single origin/destination pair

of nodes and two paths connecting these nodes of a single link each, as depicted in

Figure 1.

The feasible set K is as in (6), where we take p := 2. We also have that q := 2,

j := 1, T := 120 (minutes), and ξji := 1 for i ∈ {1, 2}. We set (λ1(t), λ2(t)) = (0, 0)

and (µ1(t), µ2(t)) = (100, 100) for t in [0, T ]. Hence,

K =
⋃

t∈[0,T ]

{
u ∈ L2([0, T ],R2)|(0, 0) ≤ (u1(t), u2(t)) ≤ (100, 100) a.e. in [0, T ].

2∑
i=1

ui(t) = ρ1(t) a.e. in [0, T ]

}

In this application, u(t) denotes the vector of path flows at t. The cost functions

on the paths are defined as: 2u1(t) + u2(t) + 1 for the first path and u2(t) + u1(t) + 2
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for the second path. We consider a vector field F defined by

F : K→ L2([0, T ],R2);

(F1(u(t)), F2(u(t))) = (2u1(t) + u2(t) + 1, u2(t) + u1(t) + 2).

The theory of EVI (as described above) states that the system has a unique equi-

librium, since F is strictly monotone, for any arbitrarily fixed point t ∈ [0, T ]. Indeed,

one can easily see that 〈F (u1, u2) − F (v1, v2), (u1 − v1, u2 − v2)〉 = 3−√5
2
||(u1, u2) −

(v1, v2)|| > 0, for any u 6= v ∈ K.

We note that, due to the simplicity of the network topology in Figure 1 and the

linearity of the cost functions, we can obtain explicit formulae for the solution path

flows over time as given below, assuming also that the “travel demand” 1 ≤ ρ1(t) ≤
100 for all t ∈ [0, T ]:

u∗1(t) = 1, u∗2(t) = ρ1(t)− 1.

This equilibrium solution, at any point t, reflects the well-known traffic network

equilibrium conditions that the travel costs on used paths (that is, those with postive

flow) are equal and minimal. For the travel costs at the equilibrium solutions, we also

obtain explicit closed formuale: F1(u
∗(t)) = F2(u

∗(t)) = 2ρ1(t) + 2.

Consider now a specific point in time, say, t = 30 minutes. Assume that the travel

demand ρ(30) = 5 cars/minute, then the solution at t = 30 minutes is:

u∗1(30) = 1 car/minute, u∗2(30) = 4 cars/minute,

and the travel costs given by F1 and F2, respectively, are: F1 = F2 = 7.

We shall further illuminate the interpretation and meaning of the two timeframes

through a discussion of the above example. Note that, predicting and locating equi-

librium points over the time period T is not enough; we would like to also describe

if/when these points may be reached. To fully understand the time evolution of

the traffic not only at equilibria, but also before or around them, we need another

mathematical tool, independent but closely related to EVI. This tool is the infinite-

dimensional PDS.
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We interpret each PDSt as a snapshot at the moment t of the real traffic dynamics,

that may or may not evolve towards the predicted equilibrium u∗ at t.

Theorem 4.2 has the merit of showing that under certain conditions on the model,

we can predict that the traffic evolves, and even reaches, a steady state at a moment

t in the T interval, provided:

t ≥ lt :=
||ut

0 − u∗||2−α

(2− α)η
. (19)

However, as we see in (19), reaching the curve is highly dependent on the initial

conditions of the respective PDSt, namely ut
0. This means that, even if at moment t,

the equilibrium for the traffic is predicted at u∗, it may not be reached if ut
0 modifies

in such a way that (19) is not satisfied.

Therefore, in applications, it is important to have a clear, easy way to estimate

if, under what conditions, and when the curve of equilibria is reached. Theorem 4.2

provides exactly the desired answer.

Returning to our numerical example, F is also strongly monotone with degree

α = 1 and η = 3−√5
2

. Since F is strongly monotone with degree 1, it is also strongly

pseudo-monotone with degree 1. We can now evaluate lt according to formula (19),

where we know that due to the α and η for this example, lt := 2||u0 − u∗||/(3−√5).

Let us suppose that at t = 30 minutes, ut=30
0 = (5, 0). Hence, all travellers are using

the first path initially and there are zero travellers on the second path. Applying

formula (19) we obtain:

lt=30 = 2||(5, 0)− (1, 4)||/(3−
√

5) = 2(32)
1
2 /(3−

√
5).

On the other hand, suppose that at t = 30 minutes, ut=30
0 = (0, 5), that is, instead,

initially, all travellers used the second, rather than the first path. Then, an application

of formula (19) would yield:

lt=30 = 2||(0, 5)− (1, 4)||/(3−
√

5) = 2(2)
1
2 /(3−

√
5).

Consequently, we may expect that, in the case of the first initial path flow pattern

given above, it would take the travellers four times longer to reach the equilibrium

flow pattern u∗ = (1, 4) in comparison to the second initial path flow pattern.
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6. Conclusions

We have seen here that the newly emerged double-layered dynamics theory (which

is the unified theory of PDS and EVI) has solid theoretical foundations; it is easy to

intuitively grasp and, certainly, has tremendous potential for applications. The paper

is written so that the reader can appreciate the multitude of mathematical concepts

that need to be employed in the new study. Additional numerical examples can be

found in [7] and in [8] which also presents an algorithm, with convergence results,

for the computation of solutions to evolutionary variational inequalities based on a

discretization method and with the aid of projected dynamical systems theory. It is

definitely only the beginning of this field and it is our firm belief that new questions

will arise from both theoretical and applicative research on this topic.
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