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What is Operations Research (OR)?

Operations research is a scientific approach
of using mathematical models and
algorithms to aid in decision-making.

It is usually used to analyze complex real-
world systems and to improve or
optimize performance.

It is, by its nature, interdisciplinary .



We are in a New Era of Decision-
Making Characterized by:

complex interactions among decision-makers in
organizations;

alternative and at times conflicting criteria used in
decision-making;

constraints on resources: natural, human, financial,
time, etc.;

global reach of many decisions;

high impact of many decisions;

Increasing risk and uncertainty, and

the importance of dynamics and realizing a fast and
sound response to evolving events.



Network problems are their own class of
problems and they come in various forms and
formulations, i.e., as optimization (linear or
nonlinear) problems or as equilibrium
problems and even dynamic network
problems.

Network problems will be the focus of this talk.
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Components of Common Physical
Networks

Network System Nodes

Transportation

Manufacturing
and logistics

Communication

Energy

Intersections,
Homes,
Workplaces,
Airports,
Railyards

Workstations,
Distribution
Points
Computers,
Satellites,
Telephone
Exchanges

Pumping
Stations,
Plants

Links

Roads,
Airline Routes,
Railroad Track

Processing,
Shipment

Fiber Optic
Cables
Radio Links

Pipelines,
Transmission
Lines

Flows

Automobiles,
Trains, and
Planes,

Components,
Finished Goods

Voice,
Data,
Video

Water,
Gas, Oil,
Electricity



US Railroad Freight Flows

Railroad Freight Density
(million gross tons)
—Undar 10 mgt
10 b 20 gt
20 to 40 mgt
40 to 50 migt
60 to 100 mgt
 Cver 100 mgh

Source: LS, Dapariment of Traedaponation, Federsl Railrsad Adminisration, Caload Wayhill Sastialics, 1993







Electricity is Modernity




The scientific study of networks
involves:

e how to model such applications as
mathematical entities,

e how to study the models
qualitatively,

e how to design algorithms to solve
the resulting models.



The Basic Components of Networks

Nodes Links Flows
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Classic Examples of Network Problems

The Shortest Path Problem
The Maximum Flow Problem
The Minimum Cost Flow Problem.



The Shortest Path Problem

What is the shortest path from 1 to 67



Applications of the Shortest Path Problem

Arise in transportation and
telecommunications.

Other applications include:

e simple building evacuation models
e DNA sequence alignment

e assembly line balancing

e compact book storage in libraries.



The Maximum Flow Problem

8
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Each link has a maximum capacity.

How does one Maximize the flow from s to t,
subject to the link capacities?



Applications of the Maximum Flow
Problem

e machine scheduling
e network reliability testing

e building evacuation



The Minimum Cost Flow Problem

Pl s T

0{ <
$6 ,15 04,13(

Each link has a linear cost and a maximum capacity.

How does one Minimize Cost for a given flow from 1 to 47?



The Optimization Formulation
Flow out of node i - Flow into node i = b(i)

Minimize 2;; c; X;

s.t. 2; x; - 2; X;; = b(i) for each node i
O<x < u forall i,

2. b(|)IJ —_



Applications of the
Minimum Cost Flow Problem

e warehousing and distribution

e vehicle fleet planning

e cash management

e automatic chromosome classification
e satellite scheduling



The study of the efficient operation on
transportation networks dates to ancient
Rome with a classical example being the
publicly provided Roman road network and
the time of day chariot policy, whereby
chariots were banned from the ancient city of
Rome at particular times of day.




Brief History of the
Science of Networks

1736 - Euler - the earliest paper on graph theory -
Konigsberg bridges problem.

1758 - Quesnay in his Tableau Economique
iIntroduced a graph to depict the circular flow of
financial funds in an economy.




1781 - Monge, who had worked under Napoleon
Bonaparte, publishes what is probably the first paper
on transportation in minimizing cost.

1838 - Cournot states that a competitive price is
determined by the intersection of supply and demand
curves in the context of spatially separate markets in
which transportation costs are included.

1841 - Kohl considered a two node, two route
transportation network problem.

1845 - Kirchhoff wrote Laws of Closed Electric Circuits.



1920 - Pigou studied a transportation network system of two
routes and noted that the decision-making behavior of the
users on the network would result in different flow patterns.

1936 - Konig published the first book on graph theory.

1939, 1941, 1947 - Kantorovich, Hitchcock, and Koopmans
considered the network flow problem associated with the
classical minimum cost transportation problem and provided
insights into the special network structure of these problems,
which yielded special-purpose algorithms.

1948, 1951 - Dantzig published the simplex method for linear
programming and adapted it for the classical transportation
problem.



1951 - Enke showed that spatial price equilibrium
problems can be solved using electronic circuits

1952 - Copeland in his book asked, Does money flow
like water or electricity?

1952 - Samuelson gave a rigorous mathematical
formulation of spatial price equilibrium and
emphasized the network structure.



1956 - Beckmann, McGuire, and Winsten in their
book, Studies in the Economics of Transportation,
provided a rigorous treatment of congested urban
transportation systems under different behavioral
mechanisms due to Wardrop (1952).

1962 - Ford and Fulkerson publish Flows in
Networks.

1969 - Dafermos and Sparrow coined the terms user-
optimization and system-optimization and develop
algorithms for the computation of solutions that
exploit the network structure of transportation
problems.



Networks in Different Disciplines

public
policy

economics
and finance

Networks

Engineering/
physics

Computer
science

<—Diology



Interdisciplinary Impact of Networks

Economics Engineering
athematg,
> Co

Interregional Trade Energy

General Equilibrium Manufacturing

Industrial Organization Telecommunications

Portfolio Optimization Transportation

Flow of Funds
Accounting

Biology

Sociology DNA Sequencing

Computer Science

Social Networks Targeted Cancer

Organizational Routing Algorithms Therapy

Theory



Characteristics of Networks Today

large-scale nature and complexity of network
topology;

congestion;

alternative behavior of users of the network, which
may lead to paradoxical phenomena;

the interactions among networks themselves such as
In transportation versus telecommunications;

policies surrounding networks today may have a
major impact not only economically but also socially,
politically, and security-wise.



There are two fundamental principles of travel behavior,
due to Wardrop (1952), which we refer to as user-
optimization (or network equilibrium) or system-
optimization. These terms were coined by Dafermos
and Sparrow (1969); see also Beckmann, McGuire,
and Winsten (1956).

In a user-optimized (network equilibrium) problem,
each user of a network system seeks to determine
his/her cost-minimizing route of travel between an
origin/destination pair, until an equilibrium is reached,
in which no user can decrease his/her cost of travel
by unilateral action.

In a system-optimized network problem, users are
allocated among the routes so as to minimize the
total cost in the system. Both classes of problems,
under certain imposed assumptions, possess
optimization formulations.



s

ss The Brown Connection

Amazingly, Brown has been home to such
luminaries in transportation networks as:

e William Prager, who in 1954 published a paper,
which discussed the importance of extended type
of traffic network models in which the cost on a
link could depend not only on its own flow

e Gordon Newell
e Martin Beckmann
e Stella Dafermos
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Transportation Network Equilibrium Problem

Consider a general network G = [N, L], where N denotes
the set of nodes, and L the set of directed links. Let a
denote a link of the network connecting a pair of nodes,
and let p denote a path consisting of a sequence of
links connecting an O/D pair. P, denotes the set of
paths, assumed to be acyclic, connecting the O/D pair
of nodes w and P the set of all paths.

Let x, represent the flow on path p and f, the flow on
link a. The following conservation of flow equation must

hold:
Ja = Zarpéap,
peP
where 9,, = 1, if link a is contained in path p, and O,
otherwise. T his expression states that the load on a link
a IS equal to the sum of all the path flows on paths p
that contain (traverse) link a.



Moreover, if we let d,, denote the demand associated
with O/D pair w, then we must have that

dy = Z Lp,

pe P,

where z, > 0, Vp, that is, the sum of all the path flows
between an origin/destination pair w must be equal to
the given demand d,,.

Let ¢, denote the user cost associated with traversing
link @, which is assumed to be continuous, and C), the
user cost associated with traversing the path p. Then

acl

In other words, the cost of a path is equal to the sum

of the costs on the links comprising the path.




Transportation Network Equilibrium

The network equilibrium conditions are then given by:
For each path p € P, and every O/D pair w:

o [ = 0f @ >0
P\ > A, if @ =0

where A, is an indicator, whose value is not known a
priori. These equilibrium conditions state that the user
costs on all used paths connecting a given O/D pair will

be minimal and equalized.




As shown by Beckmann, McGuire, and Winsten (1956)
and Dafermos and Sparrow (1969), if the user link cost
functions satisfy the symmetry property that [d‘"b = 3—2]
for all links a,b in the network then the solution to the
above network equilibrium problem can be reformulated
as the solution to an associated optimization problem.
For example, if we have that ¢, = ¢,(f,), Va € L, then

the solution can be obtained by solving:

Minimize Z/ ca(y)dy

acl,

subject to:
dy = Z Ty, Vw e W,




The Braess (1968) Paradox

Assume a network with a single
O/D pair (1,4). There are 2
paths available to travelers:
ps=(a,c) and p,=(b,d).

For a travel demand of 6, the
equilibrium path flows are xp1*
= xpz* = 3 and

The equilibrium path travel cost
IS

C,=C, = 83. c.(f,)=10 f, c,(f,) = f,+50
c.(f.) = f.+50 c,(f,) = 10 f,




Adding a Link
Increases Travel Cost for All!

Adding a new link creates a new path

p3=(a!e!d)'

The original flow distribution pattern is
no longer an equilibrium pattern, since
at this level of flow the cost on path ps,
C,,=70.

The new equilibrium flow pattern

network is

xp1* — xpz* — xp3*=2_

The equilibrium path travel costs: C, = _
C,, =Cy, =92. Celfe) = 1o + 10

p




The 1968 Braess article has been translated from
German to English and appears as

On a Paradox of Traffic Planning

by Braess, Nagurney, Wakolbinger

in the November 2005 issue of Transportation Science.
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If no such symmetry assumption holds for
the user link costs functions, then the
equilibrium conditions can be
reformulated as an associated optimization
problem and the equilibrium conditions are
formulated and solved as a variational
inequality problem!

Smith (1979), Dafermos (1980)



VI Formulation of

Transportation Network Equilibrium
(Dafermos (1980), Smith (1979))

A traffic path flow pattern satisfies the above equilib-
rium conditions if and only if it satisfies the variational
inequlity problem: determine =" € K, such that

Z Cp(z") X (xp —x,) 20, VzekK.
i

Finite-dimensional variational inequality theory has been
applied to-date to the wide range of equilibrium prob-
lems noted above.

In particular, the finite-dimensional variational inequality
problem is to determine z* € K C R" such that

(F(z*),z —2") >0, VzelkK,

where (-,-) denoted the inner product in R"™ and K is

closed and convex.



A Geometric Interpretation
of a Variational Ineguality




The variational inequality problem, contains, as
special cases, such classical problems as:

e systems of equations
e optimization problems
e complementarity problems

and is also closely related to fixed point
problems.

Hence, it is a unifying mathematical formulation
for a variety of mathematical programming
problems.



In particular, variational inequalities have been
used to formulate such equilibrium problems
as:

e transportation network equilibrium problems
e spatial price equilibrium problems

e oligopolistic market equilibrium problems
operating under Nash equilibrium

e migration equilibrium problems
e a variety of financial equilibrium problems.

Moreover, all such problems have network
structure, which can be further exploited for
computational purposes.



In addition, with the advent of the Internet, there
are numerous new models and applications, in
which variational inequalities have become a very
powerful tool for formulation, qualitative analysis,
and computations. Some of these application, we
will be discussing in this presentation.

Indeed, the concept of network equilibrium is as
relevant to the Internet as it is to transportation!



Some Interesting Applications

Telecommuting/Commuting Decision-Making
Teleshopping/Shopping Decision-Making

Supply Chain Networks with Electronic Commerce
Financial Networks with Electronic Transactions
Reverse Supply Chains with E-Cycling

Knowledge Networks

Energy Networks/Power Grids

Social Networks integrated with Economic
Networks



The Equivalence of
Supply Chain Networks and
Transportation Networks

Wanufacturers

>

[Demnand Markets

Nagurney, Transportation Research E (2006)
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Nagurney, Ke, Cruz, Hancock, Southworth, Environment and Planning B (2002)



The fifth chapter of Beckmann, McGuire, and
Winsten’s book, Studies in the
Economics of Transportation (1956)
describes some unsolved problems
including a single commodity network
equilibrium problem that the authors imply
could be generalized to capture electric
power networks.

Specifically, they ask whether electric power
generation and distribution networks can be
reformulated as transportation network
equilibrium problems.



The Electric Power Supply Chain
Network

Power Generators

Power Suppliers

Demand Markets

Nagurney and Matsypura, Proceedings of the CCCT (2004)




The Transportation Network
Equilibrium Reformulation of Electric
Power Supply Chain Networks

Power Generators

Power Suppliers

. Transmission _
Service Providers M

Demand Markets

Electric Power Supply Transportation
Chain Network Network

Nagurney et al, to appear in Transportation Research E



In 1952, Copeland wondered whether
money flows like water or electricity.



The Transportation Network
Equilibrium Reformulation of the
Financial Network Equilibrium Model
with Intermediation

o e T P T Y
[ntermediarigs | O
b Nl ) L

Demiand Markets - Uses of Funds

Liu and Nagurney, Computational Management Science (2006) 'I



We have shown that money as well as
electricity flow like transportation and have
answered questions posed fifty years ago by

Copeland and Beckmann, McGuire, and
Winsten!



We are using evolutionary variational inequalities to
model dynamic networks with:

* dynamic (time-dependent) supplies and demands
* dynamic (time-dependent) capacities
 Structural changes in the networks themselves.

Such issues are important for robustness, resiliency,
and reliability of networks (including supply chains
and the Internet).



Evolutionary Variational Inegualities

, were originally introduced by Lions and
Stampacchia (1967) and by Brezis (1967) in order to study
problems arising principally from mechanics. They provided a
theory for the existence and uniqueness of the solution of such
problems.

Steinbach (1998) studied an obstacle problem with a memory
term as a variational inequality problem and established
existence and uniqueness results under suitable assumptions
on the time-dependent conductivity.

Daniele, Maugeri, and Oettli (1998, 1999), motivated by
, introduced evolutionary (time-
dependent) variational inequalities to this application domain
and to several others. See also Ran and Boyce(1996).
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Evolutionary Variational Inequalities, Transporta-
tion, and the Internet

We model the Internet as a network G = [N, L], consist-
ing of the set of nodes N and the set of directed links
L. The set of origin/destination (O/D) pairs of nodes
is denoted by W and consists of ny elements. We de-
note the set of routes (with a route consisting of links)
joining the origin/destination (O/D) pair w by P,. We
assume that the routes are acyclic. We let P with np
elements denote the set of all routes connecting all the
O /D pairs in the Internet. Links are denoted by a,b,
etc; routes by r,q, etc., and O/D pairs by wi, ws, etc.
We assume that the Internet is traversed by "“jobs” or
“classes” of traffic and that there are K “jobs” with a
typical job denoted by k.

Let d* (t) denote the demand, that is, the traffic gener-

ated, between O/D pair w at time t by job class k. The
flow on route r at time t of class k£, which is assumed
to be nonnegative, is denoted by :cf.’(t) and the flow on

link a of class k at time t by f*(1).




Since the demands over time are assumed known, the
following conservation of flow equations must be satis-
fied at each t;:

di(ﬂ = Z :c’;‘_' (t), Ywe W.vk,
re b,

that is, the demand associated with an O/D pair and
class must be equal to the sum of the flows of that class
on the routes that connect that O/D pair. We assume
that the traffic associated with each O /D pair is divisible
and can be routed among multiple routes/paths. Also,
we must have that

0 < zM(t) < uf(t), ¥re P,VEk,

where p”(t) denotes the capacity on route r of class k
at time t.

We group the demands at time ¢t of classes for all the
O /D pairs into the Kny-dimensional vector d(t). Sim-
ilarly, we group all the class route flows at time t into
the Knp-dimensional vector z(t). The capacities on the
routes at time ¢t are grouped into the Knp-dimensional

vector p(t).




The link flows are related to the route flows, in turn,
through the following conservation of flow equations:

fE@) =) @ (D)8, Vae L,Vk,
relP?
where ¢, = 1 if link a is contained in route r, and
0. = 0, otherwise. Hence, the flow of a class on a link
is equal to the sum of the flows of the class on routes
that contain that link. All the link flows at time ¢ are
grouped into the vector f(t), which is of dimension Kn;.

The cost on route r at time ¢t of class k is denoted by
C*(t) and the cost on a link a of class k at time ¢ by

ch(t).

We allow the cost on a link to depend upon the entire
vector of link flows at time ¢, so that

chi(t) = i(f(¥)), Vae LVk.

We may write the link costs as a function of route flows,
that is,

Az()) = F(f(t)), Ya€ L,VE.

T he costs on routes are related to costs on links through
the following equations:

C"::-(I(t)) — zci("r(t))&am Vr e P, Vk.

acl

We group the route costs at time ¢ into the vector C'(1),

which is of dimension Knp.



We now define the feasible set K. We consider the
Hilbert space £ = L?([0,7], R""*) (where [0.7] denotes
the time interval under consideration) given by

K = {:f c L2([0,T], RX™) : 0 < x(t) < u(t)a.e. in[0,T];

S ak(t) = di(t),vw, Vka.e. in[0,T] }

f)':—: 1'”|r

We assume that the capacities pf(t), for all » and k, are
in £, and that the demands, d¥ > 0, for all w and k, are
also in £. Further, we assume that

0 <d(t) < du(t),a.e. on|0,T].

where & is the Kny x Knp-dimensional O/D pair-route
incidence matrix, with element (kw.kr) equal to 1 if
route r is contained in F,, and O, otherwise. The feasible

set K is nonempty. It is easily seen that K is also convex,
closed, and bounded.

The dual space of £ will be denoted by £*. On £ x L~
we define the canonical bilinear form by

-
({G,z)) = / (G(t),z(t))dt, GeLl" zelLl.
Jo




Furthermore, the cost mapping €' . K — L£*, assigns
to each flow trajectory z(-) € K the cost trajectory
C(x(-)) e L.

T he conditions below are a generalization of the Wardrop's
(1952) first principle of traffic behavior.

Definition: Dynamic Multiclass Network Equilib-
rium

A multiclass route flow pattern x* € K is said to be a
dynamic network equilibrium (according to the general-
ization of Wardrop's first principle) if, for every O/D pair

w e W, every router € P, every class k; k= 1,..., K,
and a.e. on [0,T]:

=0, if O <k (1) < puh(),
>0, if z¥(t) =0.

;1 #1 { <0, If zF(@) = k@),
Cr(z™(1)) — AL (1)
\



The standard form of the EVI that we work with is:

determine =" € K such that ((F'(z").z—x")) > 0, VYo € K.

Theorem (Nagurney, Parkes, and Daniele (2006))

" e K is an equilibrium flow according to the Defini-
tion if and only If it satisfies the evolutionary variational
inequality:

-
/ (C(x"(t)),z(t) —z°(t))dt > 0, Vxelk.
J 0




Recall the Braess Network
where we add the link e.




The Solution of an Evolutionary
(Time-Dependent) Variational Inequality
for the Braess Network with Added Link (Path)

Braess Network with
Time-Dependent
Demands
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In Demand Regime [, only the new path is used.
In Demand Regime |l, the Addition of a New Link (Path) Makes Everyone

Worse Off!
In Demand Regime lll, only the original paths are used.
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Network 1 is the Original Braess Network - Network 2 has the added link.



The new link is NEVER used after a
certain demand is reached even if the
demand approaches infinity.

Hence, in general, except for a limited
range of demand, building the new link
IS a complete waste!



Recent disasters have demonstrated the
Importance as well as the vulnerability of
network systems.

For example:
— Hurricane Katrina, August 23, 2005

— The biggest blackout in North America,
August 14, 2003

— 9/11 Terrorist Attacks, September 11, 2001



The Nagurney and Qiang
Network Efficiency Measure

Nagurney and Qiang (2006) proposed a network
efficiency measure which captures demand, flow,

and cost information under network equilibrium. It
is defined as follows:

Definition

The network performance/efficiency measure, E(G.,d), according to Nagurney and

Qiang (20006), for a given network topology G and fived demand vector d, is defined
(s
5 dy

P, 2weW Yo

&N G.d | = A

' Iy

where recall that ny- is the number of O/D pairs in the network and A, is the equi-

librium disutility for O/D pair w,




Importance of a Network Component

Definition  Importance of a Network Component

The importance, I(g) of a network component g € G, is measured by the relative network

efficiency drop after g is removed from the network:

_ A8 &(G.d) - E(G —g.d)

I 1) — —
9)=— £(G,d)

where G — g is the resulting network after component g is removed from network G.




The Approach to Study the
Importance of Network Components

The elimination of a link is treated in the Nagurney and
Qiang network efficiency measure by removing that
link while the removal of a node is managed by
removing the links entering and exiting that node.

In the case that the removal results in no path
connecting an O/D pair, we simply assign the
demand for that O/D pair to an abstract path with a
cost of infinity. Hence, our measure is well-defined
even in the case of disconnected networks.



Example 1

Assume a network with two O/D pairs:
w,=(1,2) and w,=(1,3) with demands:

d,, =100 and d,,,=20. o

The paths are: . b

for w,, p,=a; for w,, p,=b.

The equilibrium path flows are:

xp1*= 100, x,,,=20. c,(f,)=0.01f,+19
c;(f,)=0.05f,+19

The equilibrium path travel costs are:
C,.=C,,=20.



Importance and Ranking

of Links and Nodes

Link Importance Value Importance Ranking
from Our Measure from Our Measure
a 0.8333 1
b 0.1667 2
Node Importance Value Importance Ranking
from Our Measure from Our Measure
1 1 1
2 0.8333 2
3 0.1667 3




Example 2

he network is given by:




Link Cost Functions

Link a | Link Cost Function c,(fa.) Link a | Link Cost Function ¢,(f, )
1 00005f} +5f1 4+ 500 15 00003 f% + 9f15 + 200
00003 f5 + 4f5 + 200 16 8f16 + 300
00005 f4 + 3 f3 + 350 17 00003 f1> 4+ T fir + 450
00003 f{ + 6f4 + 400 13 5f1s + 300
00006 f2 + 6 f5 + 600 19 8f1g + 600
7fe + 500 00003 £, 4 6f20 + 300
0000812 4+ 8 fr + 400 00004f3, + 42 + 400
0000415 + 5fs + 650 0000213, 4+ 62 + 500
00001 f3 + 6fg + 700 00003f; + 9f23 + 350
4 f10 + 800 0000215, + 8 foy + 400
00007 f}; + 7f11 + 650 00003 f5 4+ 9 for + 450
8f12 + 700
00001f 5 + 7 f13 + 600
8f14 + 500
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Importance and Ranking of Links

[mportance Value

[mportance Ranking

[mportance Value

[mportance Ranking

0.9086

3

0.0000

22

I B

0.8984

0.0001

21

0.8791

0.0000

22

0.8672

=I| S| ¥=

0.0175

18

0.8430

]

0.0362

17

0.8226

0.6641

14

3
A
D
G
7

0.7750

0.7537

13

0.5483

oo =

0.8333

10

0.0362

0.8598

0.6641

0.8939

0.0000

0.4162

T
—

0.9203

0.9213

o | e e | vo| =] =] =] —| —
| | =1 Ot

[ S I S

0.0135




)
o
=
K
=
®
(14
@
3]
c
@
b
1
o
Q
E
X
=
—
N
Q0
Qo
S
®
X
Ll

224 3 4235226 7211020 8 25 9 191828 1216 1113 14 1517

27 26 1

sanjeA @oueuoduwi




The Advantages of the Nagurney and
Qiang Network Efficiency Measure

e The measure captures demands, flows, costs, and
behavior of users, in addition to network topology;

e The resulting importance definition of network
components is applicable and well-defined even in
the case of disconnected networks;

e It can be used to identify the importance (and
ranking) of either nodes, or links, or both; and

e It can be applied to assess the

efficiency/performance of a wide range of network
systems.



Ahout

Activities

Background

Yisualization.

decision-making.

Publications

Super

Lo

Media Links

networks
, g

What's New

] Knﬂw
3, o Ne 5

Search

The Virtual Center for Supernetworks at the 1senberg School of Management,
under the directorship of Anna Magurney, the John F. Smith Memorial Professor, is an
interdisciplinary center, and includes the Supernetworks Laboratory for Computation and

Mission: The mission of the Virtual Center for Supernetworks is to foster the study and
application of supernetworks and to serve as a resource to academia, industry, and government
on networks ranging from transportation, logistical, telecommunication, and power networks to
economic, environmental, financial, knowledge and social networks.

The applications of Supernetworks include: transportation, logistics, critical
infrastructure, telecommunications, power and energy, electronic commerce, supply chain
management, environment, economics, finance, knowledge and social networks, and

Getting There from Here

The route to

Professor Dietrich

Handbook of

MNEW ! Braess Optimization in
' sustainable visits the Telecommunications
Books | trar}spurtatiun is paved Virtual Center for edited by Mauricio G.
—_— © with knuwl_en_:lqe and Supernetworks C.Resende and
creativity April 7, 2006 Panos M. Pardalos
NEW!
DR TE FOR ADVANCED STUDY Modeling Generator Power
MErs Peiners @ Recent HTY Plant Portfolios and Pollution
The Internet, Supply Chains, and Conference A Year as a Science Fellow at the | Taxes in Electric Power Supply
Electric Power Networks Photos Radcliffe Institute for Advanced Chain Ne?wurks: A
B Study at Harvard Transportation Network
~ery by Anna Nagurney Transformation
NEW! is the Lead Article in May 2006
Transportation Research D
Center Associate
Yiou are visitor nurber Static and Dynamic Dr. Stavros Siokos of Citigroup is | ( ;Oi )8[(‘:"
Visuals Networks interviewed for

32 224

to the Virual Center for Supernetworks.

Financial Times Mandate
May 2006
and featured in
FTSE Global Markets
May/June 2005

| |
Google Search




UMASS AMHERST STUDENT CHAPTER OF INFORMS

T
(=]
=
m

PPPPPPP
SSSSSSSS

MMMMM

MMMMMMM
FFFFFFFF

SSSSSSSS

LLLLL

7£dﬁ£y0(l /

For more information, see
http://supernet.som.umass.edu

Igéﬁb er g The Virtual Center

for Supernetworks

:chool of Management



	Operations Research and the Captivating Study of Networks  and Complex Decision-Making
	Funding for this research has been provided by:
	Outline of Presentation:
	What is Operations Research (OR)?
	We are in a New Era of Decision-Making Characterized by:
	
	Subway Network
	Components of Common Physical Networks
	US Railroad Freight Flows
	Internet Traffic Flows Over One 2 Hour Period
	Electricity is Modernity
	The scientific study of networks involves:
	Classic Examples of Network Problems
	The Shortest Path Problem
	Applications of the Shortest Path Problem
	Applications of the Maximum Flow Problem
	The Minimum Cost Flow Problem
	The Optimization Formulation
	Applications of theMinimum Cost Flow Problem
	Brief History of the Science of Networks
	Interdisciplinary Impact of Networks
	Characteristics of Networks Today
	
	The Brown Connection
	Professors Beckmann and Dafermos at Anna Nagurney’s Post-Ph.D. Defense Party in Barus Holley
	Transportation Network Equilibrium
	The Braess (1968) Paradox
	Adding a Link Increases Travel Cost for All!
	
	VI Formulation of Transportation Network Equilibrium (Dafermos (1980), Smith (1979))
	
	
	
	Some Interesting Applications
	
	
	The Electric Power Supply Chain Network
	The Transportation Network Equilibrium Reformulation of Electric Power Supply Chain Networks
	
	Evolutionary Variational Inequalities
	Bellagio ResearchTeam ResidencyMarch 2004
	The Solution of an Evolutionary (Time-Dependent) Variational Inequalityfor the Braess Network with Added Link (Path)
	In Demand Regime I, only the new path is used.In Demand Regime II, the Addition of a New Link (Path) Makes Everyone Worse Off
	
	The Nagurney and Qiang Network Efficiency Measure
	Importance of a Network Component
	The Approach to Study the Importance of Network Components
	Example 1
	Importance and Ranking of Links and Nodes
	Example 2
	Link Cost Functions
	Importance and Ranking of Links
	The Advantages of the Nagurney and Qiang Network Efficiency Measure
	Thank you!

