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Electricity 1s Modernity




Motivation

In US: half a trillion dollars worth of net assets
Consumes almost 40% of domestic primary energy

Electric power supply chains, provide the foundations for the
functioning of our modern economies and societies.

¢ Communication, transportation, heating, lighting, cooling,
computers and electronics.

¢ August 14, 2003, blackout in the Midwest, the Northeastern United
States, and Ontario, Canada.

¢ Two significant power outages during the month of September
2003 — one in England and one in Switzerland and Italy.

Deregulation: from vertically integrated to competitive markets
¢ In US, Europe and many other countries

Inelastic, seasonal demand.
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Objectives

m The objective of this research was to develop a dynamic electric power
supply chain network equilibrium model with exogenous time-varying
demand

m The theory that has originated from the study of transportation
networks was utilized to construct this time-dependent equilibrium
modeling framework for electric power supply chain networks

m The new dynamic electric power supply chain network model that we
developed in this research is also motivated by the unification of
projected dynamical systems theory and evolutionary (infinite-
dimensional) variational inequalities




Outline

The static electric power network model with fixed demands

The supernetwork equivalence of the electric power supply chain
networks and the transportation networks

¢ Overview of the transportation network equilibrium models

¢ The supernetwork equivalence of the transportation networks and
the electric power supply chain networks with fixed demands

The electric power supply chain network model with time-varying
demands

+ Evolutionary variational inequalities and projected dynamical
systems; Applications to transportation network equilibrium

¢ The computation of the electric power supply chain network
equilibrium model with time-varying demands.
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The Electric Power Supply Chain Network
Equilibrium Model with Fixed Demands

Power Generators

Power Suppliers

Transmission Service Providers \ f#

Demand Markets
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The Behavior of Power Generator and Their
Optimality Conditions

m Conservation of flow equations must hold for each generator
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The Behavior of Power Suppliers

m  Supplier’s optimization problem

Maximize

stubject to:
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The Optimality Conditions of the Power Suppliers

m The optimality conditions of the suppliers
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The Equilibrium Conditions
at the Demand Markets

m  Conservation of flow equations must hold

m  The vector (Q°* p,*) is an equilibrium vector if for each s, &, v
combination:
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Electric Power Supply Chain Network Equilibrium
(For Fixed Demands at the Markets)

m  Definition 1: The equilibrium state of the electric power supply chain
network 1s one where the electric power flows between the tiers of the
network coincide and the electric power flows satisfy the sum of the
optimality conditions of the power generators and the suppliers, and
the equilibrium conditions at the demand markets.




Variational Inequality Formulation

Theorem 1: Variational Inequality Formulation of the Electric Power Supply

Chain Network Equilibrium
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The Supernetwork Equivalence of Supply Chain
Network Equilibrium

and Transportation Network Equilibrium

= Nagurney, A. (2006), On the Relationship Between Supply Chain and
Transportation Network Equilibria: A Supernetwork Equivalence with

Computations, Transportation Research E (2006) 42: (2006) pp 293-
316
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Overview of the Transportation Network
Equilibrium Model with Fixed Demands

Smith, M. J. (1979), Existence, uniqueness, and stability of traffic
equilibria. Transportation Research 13B, 259-304.

Dafermos, S. (1980), Traffic equilibrium and variational inequalities.
Transportation Science 14, 42-54.

In equilibrium, the following conditions must hold for each O/D pair
and each path.

A path flow pattern is a transportation network equilibrium if and only
if 1t satisfies the variational inequality:
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Transportation Network Equilibrium Reformulation

of the Electric Power Network Model with Fixed
Demands

Power Generators

Power Suppliers . 1‘} cee (&)

Transmission Service Providers \f#

Demand Markets
Figure 2
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Transportation Network Equilibrium Reformulation
of the Electric Power Network Model with Fixed
Demands

m The following conservation of flow equations must hold on the
equivalent transportation network:
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Transportation Network Equilibrium Reformulation
of the Electric Power Network Model with Fixed
Demands

m  We can construct a feasible link flow pattern for the equivalent
transportation network based on the corresponding feasible electric
power flow pattern in the electric power supply chain network model
in the following way:
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Transportation Network Equilibrium Reformulation
of the Electric Power Network Model with Fixed
Demands

m  We assign user (travel) costs on the links of the transportation network
as follows:




Transportation Network Equilibrium Reformulation
of the Electric Power Network Model with Fixed
Demands

m Path cost

m  We assign the (travel) demands associated with the O/D pairs as
follows:
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Transportation Network Equilibrium Reformulation
of the Electric Power Network Model with Fixed
Demands

m The variational inequality in link flow form

5 [d e, bl, '.-*-..-l --’I“r a-'. : s | "
[IF B .F ] n T T 3 LL n { L;I.. flrgu [’-lrgs — ':I.;s]

=te=t L Mgs Hgs

v (0)? ] gl — ] =0, (g, hQ Q) e K

The Vt al Ce t r for

)[scnberg
) om.umass.edu

http:/ /st p



Transportation Network Equilibrium Reformulation
of the Electric Power Network Model with Fixed
Demands

Theorem
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Finite-Dimentional Variational Inequalities and
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More Finite-Dimentional Variational Inequalities
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Finite-Dimensional Projected Dynamical Systems
m Finite-Dimensional Projected Dynamical Systems (PDSs) (Dupuis and
Nagurney (1993))

¢ PDS, describes how the state of the network system approaches an
equilibrium point on the curve of equilibria at time t.

¢ For almost every moment ‘t’ on the equilibria curve, there is a
PDS, associated with it.

¢ A PDS, is usually applied to study small scale time dynamics, 1.€ [t,
t+1]




Finite-Dimensional Projected Dynamical Systems

da(t) _ o
Definition: s c(x(t), —F(xz(t))).

In this formulation, X 1s a convex polvhedral set in ™, F': Kl — R" is a Lipschitz con-
tinunous function with linear growth and i : B x X — R" is the Gateaux directional

derivative
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Projected Dynamical Systems
and Finite-Dimensional Variational Inequalities

Theorem

The equilibria of a PDS:

=L (w(t). —F(x(t)))

It

N 1 . 7 .
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Infinite-Dimensional Projected Dynamical Systems

. le(t. ) .
Definition: r— =gt 7). =F(e(t, 7)), w(t.0) e K,

T

o o o Py —=d0F(y) =)
where (g, —Fi{y)) = lim — At 2Ame 1y Ty = K
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with the projection operator P : H— K given by

JI=3.

The feasible set & defined as follows

K= U {ueLn(0.7). R

M) < wlt) < plt) ae in [0.7];

t=[0,7]
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Evolutionary Variational Inequalities

m Evolutionary Variational Inequalities (EVIs)

¢+ EVI provides a curve of equilibria of the network system over a
finite time interval [0,T]

¢ An EVI is usually used to model large scale time, i.¢e, [0, T]

¢+ EVIs have been applied to time-dependent equilibrium problems in
transportation, and in economics and finance.




Evolutionary Variational Inequalities

determine o € K {{

where
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Projected Dynamical Systems
and Evolutionary Variational Inequalities

m Cojocaru, Daniele, and Nagurney (2005b) showed the following:
Theorem

2 * p—
Assume that & Z H 15 non- e pty, closed and conver and F - X — H 15 a ;Jwr"m'u—.r'm;rnurw

Lipschitz continuous vector field, wherve H ws a Hilbert space. Then the solutions of EVI

1
4

1 1 7 7 7 . 1
are the same as the critical points Hf the ;JfrJ.'rr ted di H: rential Iljuh' ron, that s, they are the

functions r € K such that
[M-(x(t), —Fi{rit))) =0,
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Projected Dynamical Systems
and Evolutionary Variational Inequalities

The solutions to the evolutionary variational inequality:

determine r € K- / _ '::.F':. xit)), z(t) —x(t)) dt =0, Yzel,

are the same as the eritical points of the equation:

du(t,7) o PP
7 = Hg(wlt, 7), —Flx(t, 7)),

that is, the points such that

Me(x(t,7),—F(«(t,7))) =0 a.e. in [0,T],




A Pictorial of EVIs and PDSs




The EVI Formulation of the Transportation Network
Model with Time-Varying Demands

3 i “‘T " "
Define [RECEEANES / (D(t), z(t))dt
1

EVI Formulation:
determine &€ K - {C(x),z—ua)) 20,

where €' 1s the vector of 1.:%"1[11 COsLS.

Feasible set

K= {‘, S LA[0.T).RY) 0 < x(t) < pae. in[0,T]; Y wplt) =dy(t). Yw, ae in D, T]} .

pe Py
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The Numerical Solution of Evolutionary Variational

Inequalities
(Cojocaru, Daniele, and Nagurney (2005 a, b, c))

m The vector field F satisfies the requirement in the preceding Theorem.
m  We first discretize time horizon T. (Barbagallo, A., (2005) )

m At each fixed time point, we solve the associated finite dimensional
projected dynamical system PDS,

m  We use the Euler method to solve the finite dimensional projected
dynamical system PDS..




The Euler Method

Step O Initialization

Set X" = K and set T = 0. T is an iteration counter which mayv also be interpreted as a
time period.

Step 1: Computation
Compute X7+ by solving the variational inequality problem:
X = p ( X' _apF (X ."‘.:} I,

where {ayp | 1s a sequence of positive scalers satistving: 7 ap = oc, ap — D as T — ~.
and Fy- 15 the projection of X on the set & defined as:

= Py X =arg 1_1_1_i’1_j1 | X —=z].

Step 2: Convergence Verification

p—
i

If || X3+ — X7 ||< e, for some € = 0, a prespecified tolerance, then stop; else, set T = T+ 1.
and go to Step 1.
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The EVI Formulation of the Electric Power Network
Model with Time-Varying Demands

m  We know that the electric power supply chain network equilibrium
problem with fixed demands can be reformulated as a fixed demand
transportation network equilibrium problem in path flows over the
equivalent transportation network.

m  Evolutionary variational inequality provides us with a dynamic version
of the electric power supply chain network problem in which the
demands and path costs vary over time.

m Evolutionary variational inequality is a dynamic (and infinite-

dimensional) version of variational inequality with the path costs
defined in (44).




Solving Electric Power Supply Chain Network
Model with Time-Varying Demands

First, construct the equivalent transportation network equilibrium
model

Solve the transportation network equilibrium model with time-varying
demands

Convert the solution of the transportation network into the time-
dependent electric power supply chain network equilibrium model




Dynamic Electric Power Supply Chain Network
Examples with Computations

m Example 1

Power Generators

Power Suppliers

Transmission
Service Provider

Demand Market
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Numerical Example 1

Power Generators

Power Suppliers

Transmission
Service Provider

Demand Market
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Numerical Example 1
m  Generating cost functions

Ffilgi(t)) = 2.5(qi (1) :]:" + 2 (1.

m Transaction cost functions of the products

‘-”11*::"['11 (t)) = D .-}‘11{:."] l" + 'rrlrﬂll fl o ’12‘::’-'[11’.[ f = ,.'Tnj.-!rlf_(:.":l l" + _"-n,ll_,lh

/ F ey oy LY. - £
131413 [ f V= .3 f}'lgi__."__l _‘1" -l— 1"--”-}'1.?- | ! ).
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Numerical Example 1

m Operating cost functions of the suppliers

11 ['_'L)l (1)) = .5(gyq(f] <. 9 {'L_'Jl (1)) = .Dlgait)) SR 21 ('_'\_;)1 (1)) = Dlgalt) )<

m  Unit transaction cost between the suppliers and the demand markets

A(QM ) =g () + 1, Q%) =g (1) +5, Q%)) = ¢, (t) + 10.
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Numerical Example 1

m Three paths

P23 = Ladr, a13, d3s, ain )

pi = {ar,an.ane i), p2 = (01,612,020, a1 ),

1

m The time-varying demand function

oy (1) = dy(t) = 41 4+ 101,




The Solution of Numerical Example 1

m  Explicit Solution
+ Path flows
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Time-Dependent Equilibrium Path Flows for
Numerical Example 1

1 Equilibrium
Path Flows

= Tlme

The Virtual Center for
Supernetworks
http://supernet.som.umass.edu



The Solution of Numerical Example 1

Power Generators

Power Suppliers

Transmission
Service Provider

Demand Market

Corresponding Supernetwork
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The Solution of Numerical Example 1

t=1/2

Power Generators

Power Suppliers

Transmission
Service Provider

Demand Market
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The Solution of Numerical Example 1

Power Generators

13

i

Power Suppliers ] 2 l}'ggx

Transmission
Service Provider

Demand Market
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Numerical Example 2

m The network structure and the cost functions are the same as the first
example.

m The demand function is the step function:

(100, if

\l. 110, it # =

m  The explicit solution:

sy =t ity et (a8 =4 .
Tl |, I_Jl T .IJE Tl g WS {
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Time-Dependent Equilibrium Path Flows for
Numerical Example 2

 Equilibrinm
Path Flows
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Numerical Example 3

Power Generators

Transmission
Service Provider

Demand Markets
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Numerical Example 3

m  Generating cost functions

Filgtt ) = 250108 )" 4+ quitgalt) + 290t ), falglt)) = 2.50qga(t))7 4+ qalt g () + 2galt).

m Transaction cost functions of the products

11111 I'.‘l,l | =.5 I "fl‘l'.fl ,I‘_'I + E:n'_:h'ﬂ-lll'."ll C21l ga1 I'.",I | =.5 I 'f.'."l'-"” ,I'_'I -+ 1EI|‘|r_'_|1I,'.f‘,I
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Numerical Example 3

m  Operating cost function of the suppliers

e (QYE)) = Blqa (1)

m  Unit transaction costs between the suppliers and the demand markets

AU ) =gl () + 1, EL(Q%(1) = qis(t) + 1,
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Numerical Example 3

m  Four paths

= (iy.aqp.aqe.ar ) pg = (doodoy. . de ),

i: .1y e . fyeo . gy = |:|f'|'-_'._.j. a1, 1. 19 |
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The Solution of Numerical Example 3

m Numerical Solution
¢ t=0

ot =49.90, &) =50.10, & = 39.90,

F

A, (to) = 915.50 Ay, (tp) = 895.50.

s t=1/2

of =51.15, &' =051.35. &l = 40.90,
eS| [l 1o

Ay, (t1) =938.25, A} () = 917.75

# I..i1|1

= 5240, &) =52.60, u =41.90,

| P2

Ay, (T') = 961.00, A} (T) = 940.00.
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The Solution of Numerical Example 3

Power Generators

—

Transmission
Service Provider

Demand Markets 1) (=2}

R

Corresponding Supernetwork
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The Solution of Numerical Example 3

t=1/2

Power Generators

Transmission
Service Provider

Demand Markets 1) (=2}

R

Corresponding Supernetwork
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The Solution of Numerical Example 3

Power Generators

Transmission
Service Provider

Demand Markets 1) (=2}

R

Corresponding Supernetwork
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Conclusions

m  We established the supernetwork equivalence of the electric power
supply chain networks with transportation networks with fixed
demands.

m This identification provided a new interpretation of equilibrium in
electric power supply chain networks in terms of path flows.

m  We utilized this isomorphism in the computation of the electric
power supply chain network equilibrium with time-varying
demands.




Thank You!

For more information, please see:
The Virtual Center for Supernetworks
http://supernet.som.umass.edu
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