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We are in a New Era of Decision-Making Characterized
by:

complex interactions among decision-makers in
organizations;

alternative and at times conflicting criteria used in
decision-making;

constraints on resources: natural, human, financial,
time, etc.;

global reach of many decisions;

high impact of many decisions;

increasing risk and uncertainty, and

the importance of dynamics and realizing a fast and
sound response to evolving events.



Transportation Networks

provide us with the means to cross distance in
order to conduct our work, and to see our
colleagues, students, friends, and family
members.

They provide us with access to food and
consumer products.
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Communication Networks

allow us to communicate within our own
communities and across regions and
national boundaries,

and have transformed the way we live,
work, and conduct business.



Iridium Satellite Constellation
Network




Satellite and Undersea Cable Networks
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Energy Networks

provide the energy for our homes, schools,
and businesses, and to run our vehicles.



Duke Energy Gas Pipeline Network
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Components of Common Physical
Networks

Network System Nodes

Transportation
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US Railroad Freight Flows

Railroad Freight Density
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The scientific study of networks involves:

e how to model such applications as
mathematical entities,

e how to study the models qualitatively,

e how to design algorithms to solve the
resulting models.



The basic components of networks
are;

e Nodes
e Links or arcs

e Flows



Nodes Links Flows



Brief History of the
Science of Networks

1736 - Euler - the earliest paper on graph theory
- Konigsberg bridges problem.

1758 - Quesnay in his Tableau Economigue
introduced a graph to depict the circular flow of
financial funds in an economy.



1781 - Monge, who had worked under Napoleon
Bonaparte, publishes what is probably the first paper
on transportation in minimizing cost.

1838 - Cournot states that a competitive price is
determined by the intersection of supply and demand
curves in the context of spatially separate markets in
which transportation costs are included.

1841 - Kohl considered a two node, two route
transportation network problem.



1845 - Kirchhoff wrote Laws of Closed Electric
Circuits.

1920 - Pigou studied a transportation network system
of two routes and noted that the decision-making
behavior of the users on the network would result
in different flow patterns.

1936 - Konig published the first book on graph
theory.



1939, 1941, 1947 - Kantorovich, Hitchcock, and
Koopmans considered the network flow problem
associated with the classical minimum cost
transportation problem and provided insights into
the special network structure of these problems,
which yielded special-purpose algorithms.

1948, 1951 - Dantzig published the simplex method
for linear programming and adapted it for the
classical transportation problem.



1951 - Enke showed that spatial price equilibrium
problems can be solved using electronic circuits

1952 - Copeland in his book asked, Does money flow
like water or electricity?

1952 - Samuelson gave a rigorous mathematical
formulation of spatial price equilibrium and
emphasized the network structure.



1956 - Beckmann, McGuire, and Winsten in their book,
Studies in the Economics of Transportation, provided
a rigorous treatment of congested urban

transportation systems under different behavioral
mechanisms due to Wardrop (1952).

1962 - Ford and Fulkerson publish Flows in Networks.

1969 - Dafermos and Sparrow coined the terms user-
optimization and system-optimization and develop
algorithms for the computation of solutions that

exploit the network structure of transportation
problems.



The advantages of a scientific network formalism:

e many present-day problems are concerned
with flows over space and time and, hence,
ideally suited as an application domain for
network theory;

e provides a graphical or visual depiction of
different problems;



e helps to identify similarities and
differences in distinct problems through
their underlying network structure;

e enables the application of efficient
network algorithms;

e allows for the study of disparate problems
through a unifying methodology.
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Interdisciplinary Impact
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Characteristics of Networks Today

large-scale nature and complexity of network
topology;

congestion;
alternative behavior of users of the network, which
may lead to paradoxical phenomena;

the interactions among networks themselves such as
in transportation versus telecommunications
networks;

policies surrounding networks today may have a
major impact not only economically but also socially,
politically, and security-wise.



e alternative behaviors of the users of the
network

- system-optimized versus

— user-optimized (network equilibrium),

which may lead to



Transportation science has historically been the
discipline that has pushed the frontiers in
terms of methodological developments for
such problems (which are often large-scale)
beginning with the work of Beckmann,
McGuire, and Winsten (1956).

Definition: Transportation Network Equilibrium

A route flow pattern = € K s said to be a transporta-
tion network equilibrium (according to Wardrop's (1952)
first principle) if only the minimum cost routes are used
(that is, have positive flow) for each O/D pair. The
state can be expressed by the following equilibrium con-
ditions which must hold for every O/D pair w € W,
every path pe P,:

[ =0

| =0,

Cp(x™) — A,




The Braess Paradox

Assume a network with a single

O/D pair (1,4). There are 2 paths

available to travelers: p,=(a,c) e

and p,=(b,d). a b
For a travel demand of 6, the

equilibrium path flows are XP1* e °
= xpz* = 3 and

The equilibrium path travel cost C d

IS

Cp1= Cp2= 83. °
c.(f,)=10 f, c,(f,) = f,+50
c.(f.) = f.+50 c,(f,) = 10 f,



Adding a Link
Increases Travel Cost for All!

Adding a new link creates a new path

(a,e,d) e
The original flow distribution pattern is no b
S ; : a
longer an equilibrium pattern, since at this
level of flow the cost on path p;, C,;=70.
The new equilibrium flow pattern network e °
is
XP1* = X, = *=2
The equnlbrlum path travel costs: C = °

Cp, = Cp, = 92.

c.(f.) = f. + 10



The 1968 Braess article has been translated
from German to English and appears as

On a Paradox of Traffic Planning
by Braess, Nagurney, Wakolbinger

in the November 2005 issue of Transportation
Science.




VI Formulation of Transportation
Network Equilibrium

A traffic path flow pattern satisfies the above equilib-
rium conditions if and only if it satisfies the variational
inequlity problem: determine =* € K, such that

Z Cp(z™) X (xp —x,) 20, VzeK.
P

Finite-dimensional variational inequality theory has been
applied to-date to the wide range of equilibrium prob-
lems noted above.

In particular, the finite-dimensional variational inequality
problem is to determine " € K C R" such that

(F(z*),x —2") > 0, VrelkK,

where (-,-) denoted the inner product in R" and K is

closed and convex.




Some Interesting Applications

Telecommuting/Commuting Decision-Making
Teleshopping/Shopping Decision-Making

Supply Chain Networks with Electronic Commerce
Financial Networks with Electronic Transactions
Reverse Supply Chains with E-Cycling

Knowledge Networks

Energy Networks/Power Grids

Social Networks integrated with Economic Networks



A Conceptualization of Commuting versus
Telecommuting
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A Framework for Teleshopping versus Shopping
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The Structure of a Supply Chain Network

Internet
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Nagurney, Dong, and Zhang, Transportation Research E (2002)
Nagurney, Loo, Dong, and Zhang, Netnomics (2002)
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International Financial Networks with Electronic
Transactions

Country 1 Country | Country L
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Nagurney and Cruz, in Innovations in Financial and Economics Networks (2003)



The 4-Tiered E-Cycling Network

Sources of Electronic Waste

Demand Markets

Nagurney and Toyasaki, Transportation Research E (2005)



The Electric Power Supply Chain Network

Power Generators

Power Suppliers

Demand Markets

Nagurney and Matsypura, Proceedings of the CCCT (2004)




The Integrated Financial/Social Network System
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The Equivalence of Supply Chain Networks and
Transportation Networks

Wanufacturers

>

[Demnand Markets

Nagurney, Transportation Research E (2006)



Copeland (1952) wondered whether money
flows like water or electricity.

Liu and Nagurney have shown that money
and electricity flow like transportation
network flows (Computational Management

Science (2006)).



The Transportation Network Equilibrium
Reformulation of the Financial Network Equilibrium
Model with Intermediation
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The fifth chapter of Beckmann, McGuire, and Winsten’s
book, Studies in the Economics of Transportation
(1956) describes some unsolved problems including a
single commodity network equilibrium problem that
the authors imply could be generalized to capture

electric power networks.



The Transportation Network Equilibrium Reformulation
of Electric Power Supply Chain Networks

Power Generators

. Transmission
Service Providers e

Demand Markets

Electric Power Supply Transportation
Chain Network Network

Nagurney et al, to appear in Transportation Research E



We have, hence, shown that money as well as
electricity flow like transportation and have
answered questions posed fifty years ago by
Copeland and Beckmann, McGuire, and Winsten,
respectively.



New Tools




The tools that we are using in our Dynamic
Network research include:

network theory

optimization theory

game theory

variational inequality theory
evolutionary variational inequality theory
projected dynamical systems theory
double-layered dynamics theory

network visualization tools.



Dafermos (1980) showed that the traffic network
equilibrium (also referred to as user-
optimization) conditions as formulated by Smith
(1979) were a finite-dimensional variational
inequality.

In 1993, Dupuis and Nagurney proved that the set
of solutions to a variational inequality problem
coincided with the set of solutions to a projected
dynamical system (PDS) in R".

In 1996, Nagurney and Zhang published Projected
Dynamical Systems and Variational
Inequalities.

In 2002, Cojocaru proved the 1993 result for
Hilbert Spaces.
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We are working with Cojocaru and Daniele on infinite-
dimensional projected dynamical systems and

evolutionary variational inequalities and their
relationships and unification.

This allows us to model dynamic networks with:

e dynamic (time-dependent) supplies and demands
e dynamic (time-dependent) capacities

e structural changes in the networks themselves.

Such issues are important for robustness, resiliency,
and reliability of networks (including supply chains).



What happens if the demand is varied in
the Braess Network?

The answer lies in the solution of an
Evolutionary (Time-Dependent)
Variational Inequality.

-

Find " < K. =such that

ST
/_ Cla (0, (b)) — 2" () dt =1 Tre K

<L

Nagurney, Parkes, and Daniele, Computational Management Science (2006)



Recall the Braess Network
where we add the link e.




The Solution of an Evolutionary
(Time-Dependent) Variational Inequality
for the Braess Network with Added Link (Path)

—
()

Braess Network with
Time-Dependent
Demands
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Demand(t) = t —Path 3




In Demand Regime I, only the new path is used.
In Demand Regime II, the Addition of a New Link (Path) Makes Everyone Worse Off!
In Demand Regime III, only the original paths are used.
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Network 1 is the Original Braess Network - Network 2 has the added link.



The new link is NEVER used after a certain
demand is reached even if the demand
approaches infinity.

Hence, in general, except for a limited
range of demand, building the new link
Is a complete waste!



New Challenges
and Opportunities: The
Unification of EVIs and

PDSs



Double-Layered Dynamics

The unification of EVIs and PDSs allows the modeling
of dynamic networks over different time scales.

Papers:

Projected Dynamical Systems and Evolutionary Variational Inequalities
via Hilbert Spaces with Applications (Cojocaru, Daniele, and
Nagurney), Journal of Optimization Theory and Applications, vol.
127, no. 3, pp. 1-15, December 2005.

Double-Layered Dynamics: A Unified Theory of Projected Dynamical
Systems and Evolutionary Variational Inequalities (Cojocaru,
Daniele, and Nagurney), European Journal of Operational Research,
in press.



A Pictorial of the

Double-Layered Dynamics

X(t,,0)




Cojocaru, Daniele, and Nagurney (2005) built the basis
for merging the theory of projected dynamical
systems (PDS) and that of evolutionary variational
inequalities (EVI), in order to further develop the
theoretical analysis and computation of solutions to
applied problems in which dynamics plays a central
role.

The intriguing feature of the merger is that it

The existing literature has focused on understanding
human decision-making for a specific timescale rather
than viewing decision-making over multiple
timescales. The ability to capture multiple timescales
can also further support combined strategic and
operational decision-making and planning.



There are new exciting questions, both
theoretical and computational, arising from

this

In the course of answering these questions, a
new theory is taking shape from the synthesis
of PDS and EVI, and, as such, it deserves a
name of its own; we call it double-layered

dynamics.



PrDE and PDS - 1

The most general mathematical context to date in
which we can define a projected differential
equation (PrDE) and, consequently, a projected
dynamical system (PDS), is that of a Hilbert
space X of arbitrary (finite or infinite) dimension.

Suppose that we have k' € X, a nonempty, closed, con-
vex subset in a Hilbert space X. Let FF: K — X be a
Lipschitz continuous mapping. It is well-known that the
ODE:

o {f ]

it

has solutions in a suitable class of functions; here that
class will be that of absclutely continuous functions
AC([0,00), X).

= —F(2(t)), =(0) €K




Let us define a PrDE on an example, with drawings

Suppose X = R?, K = F;L and suppose that the image
below represents a trajectory of the equation
dx(t)

e
= = —F(a(®)).

starting in E';’L.




A PrDE describes the control problem:

5
E(I(t)) = —F(z(t)), «(0)€ R%

such that =(t) Ri, as shown in the figure below:

o

|
In other words, a trajectory of a projected differential

equation is always “trapped’” in the constraint set Ak =

PLEL and the velocity field along any such trajectory is
not continuous.




PrDE and PDS - II

To rigorously define the two notions, we recall the
following:

1). the projection of X onto K by P : X — K, with

| Prc(x) — z|| = -l*rj;_{ |z —z||, VzelX,

2. the tangent cone Tk (z) = Upsor(K — ).




PrDE and PDS - III

Let X, K € X, and F: K — X as before. Then a PrDE
is defined by:

%(I(f-)) = Mg (z(t), —F(x(t))), =(0) = =g,

where

. Pz —90F(z)) —=x

N (z.—F(x)) = lim = Pr(o)(—F(z)),

d—0t )

where T (x) is the tangent cone to the set K at x and
Ng(x) is the normal cone to K at the same point .

Fiit)




The right-hand side of any PrDE is nonlinear and
discontinuous.
An existence result for such equations was obtained

by Dupuis and Nagurney (1993) for X:=R", and by
Cojocaru (2002) for general Hilbert spaces.

T heorem 1

Let X be a Hilbert space of arbitrary dimension and let
K C X be a non-empty, closed, and convex subset. Let
F K — X be a Lipschitz continuous vector field on K
with @0 € K. Then the initial value problem

dx(t)

= Ng(z(t), —F(z(t))),z(0) = zp

I
Ll

has a unique solution in AC([0.~),K).

A projected dynamical system (PDS) is the dynamical
system given by the set of trajectories of a PrDE



EQUILIBRIA of PDS and VARIATIONAL
INEQUALITIES

An important feature of any PDS is that it is intimately related to a
variational inequality problem (VI).

The starting point of VI theory: 1966 (Hartman and Stampacchia);
1967 (Lions and Stampacchia); it is now part of the calculus of
variations; it has been used to show existence of equilibrium in a
plethora of equilibrium problems and free boundary problems.

The following relation between a PDS and a VI was
shown by Dupuis and Nagurney (1993) for X = R"
and by Cojocaru (2002) for any Hilbert space. Here
F: K — X.

T heorem 2

T he equilibria of a PDS:

.!i'..} P P P,
?{ xr(t)) = MNg(x(t). —F(x(t))),

that is, x*= K such that
Mg (', —F(z")) =0
are solutions to the VI(F,K): find x=* € K such that
{(F(z*),z —z*) >0, Vzelk,
and vice-versa, where {-,-) denotes the inner product on
X.




A Geometric Interpretation of a
Variational Inequality and a
Projected Dynamical System




EVOLUTIONARY VARIATIONAL
INEQUALITIES

, were originally introduced by Lions and
Stampacchia (1967) and by Brezis (1967) in order to study
problems arising principally from mechanics. They provided a

theory for the existence and uniqueness of the solution of such
problems.

Steinbach (1998) studied an obstacle problem with a memory
term as a variational inequality problem and established
existence and uniqueness results under suitable assumptions on
the time-dependent conductivity.

Daniele, Maugeri, and Oettli (1998, 1999), motivated by
, introduced evolutionary (time-
dependent) variational inequalities to this application domain
and to several others.

See also Ran and Boyce(1996).



A UNIFIED FEASIBLE SET and EVI
FORMULATON (Cojocaru, Daniele, and
Nagurney (2005))

We consider a nonempty, convex, closed, bounded sub-
set of the reflexive Banach space L([0,T]. R") given by:

K= | {zeL’(0,T],R)|A(®) < =(t) < pu(t) a.e. in [0,T];
te[0.T]

q
S giai(t) = pi(1) a.e. in [0,T],&; € {0,1},i € {1,..,q},
=1

jell,...

Let A\, € L?([0,T]. RY), pe L*([0,T], R") be convex func-
tions in the above definition. For chosen values of the
scalars &;;, of the dimensions ¢ and [, and of the bound-
aries A, u, we obtain each of the previous above-cited
model constraint set formulations as follows:

e for the traffic network problem (see Daniele, Maugeri,
and Oettli (1998, 1999)) we let &;; € {0,1}, i €
{1,...q}, j€{1,...,1}, and A(t) > O for all t € [0, T];

e for the quantity formulation of spatial price equilib-
rium (see Daniele (2004)) we let ¢ = n+ m + nm,
l=n+m, & € {0,1}, i € {1,..,q}, j € {1,....1};
w(t) large and A(t) = 0, for any ¢t € [0,T];




e for the price formulation of spatial price equilibrium
(see Daniele (2003)) we let g =n+m+mn, | = 1,
Ei=0,ie{1l....q}, j€{1,...,1}, and A(t) > O for
all t € [0,T7;

for the financial equilibrium problem (cf. Daniele
(2003)) we let g =2mn—+n, | =2m, &, = {0,1} for
ie{l,...ny, 7€ {1,....0}; p(t) large and A(t) = O,
for any t € [0,T].




STANDARD EVI FORM
(TIME-DEPENDENT) VARIATIONAL
INEQUALITIES

Recall that < ¢, u >:= / {d(t), u(t))dt is the duality map-

ping on L?([0,T], R"), where ¢ & (LP(|0,T], R?"))* and
we LP([0,T], RY). Let FF: K — (LP([0,T1], R))".

The standard form of the evolutionary variational in-
equality (EVI) that we work with is:

find " € K such that <« F(z").,x — 2" >> 0, Vo € K,
or, equivalently, find =z* € K such that

S
/ (F(x"(t)),z(t) —x"(t))dt > 0, Vre K.
40




SOME PRELIMINARIES AND DEFINITIONS

In the general theory of variational inequalities, of which EVI are a
part, as well as in Nonlinear Analysis and Optimization, the
concept of monotone mappings and its extensions have been
extensively used in existence uniqueness-type results.

From among the extensions of monotonicity, we recall here
definitions of pseudomonotonicity, which are used throughout the

analysis.

Definition

Let B be a reflexive Banach space with dual E*, < -, >
the duality map between E* and E, K a non-empty
closed, convex subset of £ and F : K — E*. Then:

(1) A map F is called pseudo-monotone on K |f, for
every pair of points x.y € K, we have

(F(z),y—x) >0—={(F(y),y—=z) = 0.
(2) A map F Iis strictly pseudo-monotone on K |if, for
every pair of distinct points x=.y, we have

(F(z),y—x) >0 —=(F(y),y —z) > 0.
(3) A map F is strongly pseudo-monotone on K If,
there exists n = 0 such that, for every pair of distinct
points x.y, we have

(F(z),y—z) > 0— (F(y),y — z) = nlly — =||*.




Daniele, Maugeri, and Oettli (1998) gave an existence
result for an EVI as above:

T heorem 3

If F' satisfies either of the following conditions:

1. F is hemicontinuous with respect to the strong
topology on K, and there exist A C K nonempty,
compact, and B C K compact such that, for every
ve K\A, there existsv € B with < F(u),v—u >> 0,

F is hemicontinuous with respect to the weak topol-
ogy on K

F is pseudomonotone and hemicontinuous along
line segments,

then the EVI problem above admits a solution over the

constraint set K .




DOUBLE-LAYERED DYNAMICS:
MERGING PDSs and EVIs

The theory of EVI and that of PDS can be intertwined for
the purpose of deepening the analysis of many dynamic
applied problems arising in different disciplines. The
fundamental theoretical ideas, together with an
example of such problems, specifically, a dynamic traffic
network problem, were given in Cojocaru, Daniele, and
Nagurney (2005). However, the implications of one
theory over the other have to be further studied.

Here we continue to develop and consolidate the
mathematical formalism of this new emerging theory
which we call double-layered dynamics, thus opening up
new questions as topics for future work.



First and foremost, we have seen that the EVI consid-
ered involves a constraint set of a Banach space, but
to be used in conjunction with PDS theory, we need to
limit ourselves to Hilbert spaces; therefore, weset p:= 2
and consider only constraint sets K € L?([0,T]. R?), as
given.

By definition, such sets are closed and convex.

Also note that the elements in the set K vary with time,

but K is fixed in the space of functions L?([0,7].R%),

T > 0 given.




Double-Layered Dynamics

Consider the above (EVI), where F' is pseudomonotone
and Lipschitz continuous and K € L2([0,T], RY) is given
as above.

Lipschitz continuity implies hemicontinuity, which, in
turn, implies hemicontinuity on line segments, so ac-
cording to Theorem 3, the EVI problem has solutions.

We are also in the scope of Theorem 1, and, therefore,
we can consider the PDS defined on the closed and
convex set K by the PrDE:

doe(-, 1)

=N, 7, —F (7)),
r(-,0) =x() € K,

where time 7 is different than time ¢t in the EVI. In

general, the PDS has solutions in the set of absolutely

continuous functions in the 7 variable, AC([0,), K).

However, we will limit ourselves to finite intervals for T,

i.e., with 7 € [0,1], | > O, given.



Theorem 4 (Cojocaru, Daniele, and
Nagurney (2005))

The solutions to the EVI problem are the same as the
critical points of the PDS and vice versa, that is,
the critical points of the PDS are the solutions to
the EVI.

Hence, by choosing the Hilbert space to be L?([0,T], R9),
we find that the solutions to the evolutionary variational
inequality: find = € K such that

.
/ (F(27(t)),z(t) —z"(¢))dt 20, Ve K
40

are the same as the critical points of the equation:

WD) — Nt ), —F (7)),

that is, the points such that

N (x(t,7),—F(z(t,7))) =0 a.e.in [0,T],

which are obviously stationary with respect to .



This result is the most important feature in merging
the two theories and in computing and interpreting
problems ranging from spatial price (quantity and
price formulations), traffic network equilibrium
problems, and general financial equilibrium
problems.

Now we are ready to answer the question of
uniqueness of solutions to the EVI. It is known that,
in general, strict monotonicity implies uniqueness of
solutions for a variational inequality (Stampacchia
(1968)) and, hence, if F is strictly monotone, then it
is pseudomonotone and the solution to the EVI is
unique.



This is not so in the PDS theory, where it is easy to
show that if F is only strictly pseudomonotone, but not
strictly monotone, the PDS still has a unique equilib-
Fiume.

Proposition 1 (Cojocaru, Daniele, and Nagurney

(2005b))

Assume that F is strictly pseudomonotone and Lipschitz
on K. Then the FDS5 has at most one equilibritm
point.




Here is a direct, important consequence of the
new theory of double-layered dynamics:

Proposition 2

Assume either one of the hypotheses (2) or (3) of The-

orem 3, where F s strictly pseudomonotone on K and
assume DLDH. Then the EVI has at most one solu-

tion.




STABILITY PROPERTIES of the CURVE of
EQUILIBRIA, the RELATION BETWEEN the
TWO TIME-FRAMES

We now address the stability properties of
solution(s) to the EVI, viewed as curves of
equilibria for PDS. We also make precise the
relation between PDS time and EVI time, together
with its meaning in applications.



The assumption of pseudomonotonicity is vital to
the existence of EVI solutions, but not so for
solutions to PDS.

However, it plays a very important role in the
stability study of perturbed equilibria of PDS,
more precisely, in the study of the local/global
properties of the projected systems around
these equilibria.

This stability question remains meaningful in the
double-layered dynamics theory, where we
seek to unravel the behavior of perturbations
of the curve(s) of equilibria.



Feasible Set K

A Stable Equilibrium Point




Fea,siblel Set K

An Unstable Equilibrium Point




Feasible Set K

B(z',¢)

A Finite Time Attractor




Three Important Questions

We see next that pseudomonotonicity-type conditions
fully answer along the
lines of our remarks above:

1. Is it accurate to expect that for almost all t € [0.717]
given, the trajectories of the PDS at ¢t (which we
denote by PDS;) evolve towards the curve of equi-
libria?

. VWhat is the relation between an arbitrarily chosen
t = [0.77] and the time it takes for solutions to PDS;
to actually reach the curve of equilibria?

. What is the interpretation of the double-layered dy-
namics for applications?




Definition

Let X be a Hilbert space, Kk C X closed, convex subset.
(1) A point z* € K is called a local monotone at-
tractor for the PDS |r there exists a neighborhocod V
of =" such that the function d(t) = |lz(t) — z"|| is a
non-increasing function of t, for any solution x=(t) of the
PDS, starting in the neighborhocod V.

(2) A point z* € K is a local strict monotone attrac-
tor if the function d(t) is decreasing.

A point z* € K is a global monotone attractor (respec-
tively a global strict monotone attractor) if conditions
(1) and (2) are satisfied for solutions starting at any
point of K.

It is not difficult to see that the notion of monotone
attractor and that of an attractor are different. For

example, a monotone attractor is not neceassarily an at-

tractor, if say d(x.t) decreases for t € [0, t1] and remains

constant in time for ¢t = t1, for some t;1 € Ry. In the
same way, an attractor is not necessarily a monotone
attractor, unless d(x,t) is monotonically decreasing to

Zero,




Answer to Question 1

Theorem 5 (Cojucaru, Daniele, and Nagurney (2005b))

Assume F . K — L?([0.T],R?) is Lipschitz continuous
on K and consider the EVI and the PDS. Then the
following hold:

1. ifr F is (locally) pseudomonotone on K, then the
curve(s) of equilibria (solution(s) of EVI) is(are) a
(local) monotone attractor,

2. ITF is (locally) strictly pseudomonotone on K, then
the unique curve of equilibria is a (local) strict monotone
attractor;

3. if F is (locally) strongly pseudomonotone on K,
then the unique curve of equilibria is exponentially
stable and a (local) attractor.



Answer to Question 2

Answer to question (2). The stability properties of
the curve of equilibria as a whole, given by Theorem 5,
show that the curve is attracting solutions of almost all
PDS;, and that it is possible for the curve to be reached
for some of the moments t € [0, 77].

To answer question (2), we start first by noticing that
for almost all ¢t € [0,77], arbitrarily fixed, we can identify
a closed and convex subset K; € R, given by

K= {2(t) € RTA(D) < 2(t) < p(t); A1), ut) given:
Zgﬁ ri(t) = pi(t), &i€{0,1},i€{1,..

Evidently, to each such fixed ¢, we have a PDS;, given
by

JE;? t. 7
ST) i, ), —F(a(t, 7)), 2(,0) = ob € F




We recall the following definition
(Zhang and Nagurney (1995)).

Definition

A map I is called strongly pseudo-monotone with
degree o on K if, there exists n = 0 such that, for
every pair of distinct points x.y, we have

(F(x),y—z) 20— (F(y),y —x) = nl|ly — =||*

Evidently, if F is strongly pseudo-monotone with
degree o, it is strictly pseudo-monotone. Hence
the EVI gives a unique curve of equilibria.



The Answer to Question 2

Theorem 6 (Cojocaru, Daniele, and Nagurney (2005b))

Consider the above EVI with F Lipschitz continuous
and strongly pseudo-monotone with degree a < 2 on KK,
for almost all fixed t € [0,T], there exists l; > 0, finite,
such that the unique equilibrium x* := z*(t) of the PDS;,
is reached by the (unique) solution x(t,7) of the PDS;,
starting at the initial point zf € K,. The time l; depends
upon n,a and ||z — z*||.

We have proved that for each x5 € K, there exists [; <
oo, depending on n, a, ||z — z*||, given by

2—a

_ ||;1?f:J — "
(2 —a)n
such that whenever a < 2,

E,r_:

D(7) >0 when 7 <[, and D(7) = 0 when 7 > [,.

In other words, =" is a globally finite-time attractor for
the unique solution of P DS, starting at x; and it will be

reached in [; units of time.




Answer to Question 3

Answer to question (3). In real life, there is only one
concept of time in terms of a timeline. Therefore, in
applications it is important to have a clear, easy way to
estimate if, under what conditions, and, when, the curve
of equilibria is reached. Theorem 6 provides exactly
the desired answer: for almost any t € [0,7], we can
estimate that the equilibrium on the curve corresponding
to t will be reached in the time [; if and only if

.1 k|| 2—0

>0, = |xg — @
(2—a)n

Otherwise, although the equilibrium can be computed,

the solution to PDS; does not have enough time to

reach the curve.




But [; depends intrinsically upon three parameters,

||-.1?fj — ||,

two of which are given by F. Hence, we have, in fact,
only one that we can manipulate, and that is ||z} —
¥, i.e., the distance between the initial point of the
trajectory and the equilibrium z* at t.

Naturally, if we want to find/compute those solutions
that will be arriving on the curve of equilibria at a fixed
moment ¢, all we have to do is to make sure that we
choose a trajectory of the PDS; starting at a distance

||xf, —x*|| from the curve, so that the above is satisfied.




To solve the associated evolutionary variational
inequality, we discretize the time horizon T and
the corresponding variational inequality (or,
equivalently, projected dynamical system) at
each discrete point in time is then solved.

Obviously, this procedure is correct if the continuity
of the solution is guaranteed.

Continuity results for solutions to evolutionary
variational inequalities, in the case where F(x(t))
= A(t)x(t) + B(t) is a linear operator, A(t) is a
continuous and positive definite matrix in [0, T],
and B(t) is a continuous vector can be found in
Barbagallo (2005).



A Dynamic Network Example with
Time-Varying Demand and
Capacities

We consider a network consisting of a single
origin/destination pair of nodes and two
paths connecting these nodes.




Let cost on path 1 be: 2x,(t)-1.5 and cost on path

The demand is t in the interval [0,2].

Suppose that we also have capacities:
(0,0) < (x;(t), x5(t)) < (Y, 3/2 t).

With the help of PDS theory, we can compute an
approximate curve of equilibrium by choosing




Using a simple MAPLE computation, we obtain
that the equilibria are the points:

(2969 &)

Interpolating these points, we obtain the
approximate curve of network equilibria:
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If the demand is a step function, the solution to the EVI
has the structure:
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The Internet -- A Dynamic Network

The Internet has revolutionized the way in

whi
dai
and

ch we work, interact, and conduct our
y activities. It has affected the young
the old as they gather information

dnd

communicate and has transformed

business processes, financial investing and
decision-making, and global supply

cha

ins. The Internet has evolved into a

network that underpins our developed
societies and economies.



The motivation for this research comes from
several directions:

1. The need to develop a dynamic, that is, time-
dependent, model of the Internet, as argued by
computer scientists.

Indeed, as noted on page 11 of Roughgarden (2005),
A network like the Internet is volatile. Its traffic
patterns can change quicky and dramatically ... The
assumption of a static model is therefore particularly
suspect in such networks.



2. Analogues have been identified between transportation
networks and telecommunication networks and, in particular,
the Internet, in terms of decentralized decision-making, flows
and costs, and even the Braess paradox, which allows us to
take advantage of such a connection:

Beckmann, McGuire, and Winsten (1956), Beckmann (1967),
Braess (1968) Dafermos and Sparrow (1969), Dafermos
(1972), Cantor and Gerla (1974), Gallager (1977), Bertsekas
and Tsitsiklis (1989), Bertsekas and Gallager (1992), Korilis,
Lazar, and Orda (1999), and Boyce, Mahmassani, and
Nagurney (2005).

3. The development of a fundamental dynamic model of the
Internet will allow for the exploration and development of
different incentive mechanisms, including dynamic tolls and
pricing mechanisms in order to reduce congestion and also aid
in the design of a better Internet, a dynamic network, par
excellence.



It has been shown that distributed routing, which is
common in computer networks and, in particular, the
Internet, and selfish (or source routing in computer
networks) routing, as occurs in the case of

, in which travelers
select the minimum cost route between an origin and
destination, are one and the same if the cost
functions associated with the links that make up the
paths/routes coincide with the lengths used to define
the shortest paths.

We assume that the costs on the links are congestion-
dependent, that is, they depend on the volume of
the flow on the link.



Note that the cost on a link may represent travel
delay but we utilize cost functions since these
are more general conceptually than delay
functions and they can include, for example,
tolls associated with pricing, etc.

It is important to also emphasize that, in the
case of transportation networks, it is travelers
that make the decisions as to the route
selection between origin/destination (O/D)
pairs of nodes, whereas in the case of the
Internet, it is algorithms, implemented in
software, that determine the shortest paths.



We can expect that a variety of time-dependent
demand structures will occur on the Internet as
individuals seek information and news online in
response to major events or simply go about their

daily activities whether at work or at home. Hence,

the development of this dynamic network model of
the Internet is timely.




The costs on routes are related to costs on links through
the following equations:

CF(z(t)) = Z (x(t))dar, Vr € P,Vk,
aclL
that is, the cost on a route of class k£ at a time t is equal
to the sum of costs of the class on links that make up

the route at time t. We group the path costs at time ¢

into the vector C'(t), which is of dimension Knp.




We define the feasible set K. We consider the Hilbert
space £ = L>([0,71],RE"") (where T denotes the time
interval under consideration) given by

] TE L?([0,T],RE™) 0 < a(t) < u(t)a.e. in[0,T];
o D e xp(t) = di, (), Vw, Yk, a.e. in[0, 1]

We assume that the capacities p*(t), for all » and k, are
in £ and that the demands, di; > 0, for all w and k, are
also in £. Further, we assume that

0 <d(t) < du(t),a.e. on[0,17,

where & is the Kny x Knp-dimensional O/D pair-route
incidence matrix, with element (kw,kr) equal to 1 if
route r is contained in P,, and 0O, otherwise. Hence, the
feasible set £ is nonempty. It is easily seen that K is
also convex, closed, and bounded. Note that we are not
restricted as to the form that the time-varying demand
for the O/D pair takes since convexity is guaranteed
even if the demands have a step-wise structure, or are

piecewise continuous.




T he dual space of £ will be denoted by £*. On L x L*
we define the canonical bilinear form by

T
(G, ) ::/0 (G(t),z(t))dt, GeL, z€ccL

Furthermore, the cost mapping C | K — L* assigns

to each flow trajectory xz(-) € K the cost trajectory
C(x(-)) € L~




Definition: Dynamic Multiclass
Network Equilibrium

A multiclass route flow pattern xz* € K is said to be a
dynamic network equilibrium (according to the general-
ization of Wardrop's first principle (cf. Wardrop (1952)
and Beckmann, McGuire, and Winsten (1956))), if, at
each timet, only the minimum cost routes for each class
not at their capacities are used (that is, have positive
flow) for each O/D pair unless the flow of that class
on a route is at its upper bound (in which case those
class routes’ costs can be lower than those on the routes
not at their capacities). The state can be expressed by
the following equilibrium conditions which must hold for
every O/D pair w € W, every path r € P,, every class
, K, andae on [0,T]:

<0, if aP(t) = wi(t),
CHz*(t)) = N() { =0, if 0<zM(t) < pk(),
>0, if z(t)=o0.




Theorem (Nagurney, Parkes, and Daniele (2006))

x* € K Is an equilibrium flow according to the Defini-
tion if and only if it satisfies the evolutionary variational
inequality:

v
/ (C(x"(t)),x(t) —a2"(t))dt > 0, Vxe K.
Jo




A Multiclass Numerical Example

Consider a network (small subnetwork of the Internet) consisting of
two nodes and two links. There is a single O/D pair w = (1, 2).
Since the routes connecting the O/D pair consist of single links
we work with the routes r; and r, directly:

Network Structure of the Multiclass
Numerical Example

There are assumed to be two classes/jobs and the route
costs are:

for Class 1:

Cr (z(t)) = 2x; ()27 (1)+5, Cp(x(t)) = 227 (t)+2z; (t)+10,

for Class 2:

C2(x(1) = 27 () +a;, (D45,  CF(x(t)) = a7 () +227 () +5.

The time horizon is [0,10]. The demands for the O/D
pair are:

di(t) =10—t, d°(t)=t.

The upper bounds are: pl =pu! = pf = p2 = oc.

o



Equilibrium Route Flows for the Multiclass

Numerical Example

Equilibrium Multiclass Route Flows at time ¢
Flow t=0|t=25|t=5|t=7.5 t =10
a (r) 6.25 6.25 5.00 2.50 0.00
a (r) 3.75 1.25 0.00 0.00 0.00
T2 (1‘) 0.00 0.00 1.66 4.166 6.66
:12’*(1‘) 0.00 2.50 3.33 3.33 3.33

For completeness, we also provide the following class
O/D pair minimum costs at times t = 0,2.5,5,7.5 and

10:
A(0) =17.50, AlF(2.5) =17.50,
AL¥(5) = 16.66, Al*(7.5) = 14.166, \l*(10)=11.66
and
A2*(0) = 8.75, A2"(2.5) = 11.25,

A2H(5) = 11.66, A\2*(7.5) =11.66, \2°(10) = 11.66.



We provide a graph of the equilibrium route trajectories, where
we display also the interpolations between the discrete
solutions. Since the route cost functions are strictly monotone
over the time horizon [0, 10] we know that the equilibrium
trajectories are unique.

As the theory predicts, the trajectories are also continuous for
this example. It is interesting to see that after timet =5
route r, is never used by class 1, whereas route r, is not
utilized for class 2 traffic until after t = 2.

Equilibrium Trajectories for the Multiclass Numerical
Example



Evolutionary variational inequalities have
now been used to model dynamic:

e transportation networks,
e supply chains,
e financial networks,

e electric power supply chains, and the
Internet.



For additional background and new applications see:

Supply Chain Network Economics
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