Network Performance and ChoiceNet

Tilman Wolf, Anna Nagurney (U Mass) Ken Calvert, Jim Griffioen (U Kentucky) *Rudra Dutta*, George Rouskas (NCSU) Ilya Baldine (UNC-CH)

Performance Woes

- Informed exercise of choice (backed by money) can reward providers with good performance
- Select for helpful providers, beneficial ecosystem

Architectural Need

- Informed exercise of choice (backed by money) can reward providers with good performance
- Select for helpful providers, beneficial ecosystem

Entities and Interactions

Alternatives

Know Wha

Happened

Vote with

Your Wallet

 Informed exercise of choice (backed by money) can reward providers with good performance

Select for helpful providers, beneficial ecosyst

A Verification Case Study

- Third-party verification
- A possible measurement service: timestamp marker packets
 - Packets recognized by flow, and shim header inserted by companion code at source
 - Can be split off, not necessarily in-flight at wire-speed
- "A verification service architecture for the future internet", A C Babaoglu, R Dutta, ICCCN 2013
- GENI and NS-3 prototypes

Glitches denote the losses and Freezes denote video playback freezes

Basic Analysis Results

Provider	Mean Jitter %	Std. Dev. Jitter %	Max Jitter %
NSP1	44.6 %	32.8 %	25.3 %
NSP2	0.2 %	0.3 %	0.2 %
NSP3	55.2 %	66.9 %	74.5 %

Analysis for freeze 1 [t=6 and t=10]

	Mean %	Std dev %	Max J %
NSP1	96.7 %	93.8 %	94.7 %
NSP2	0.2 %	0.6 %	0.2 %
NSP3	3.1 %	5.6 %	5.1 %

Analysis for freeze 2 [t=8 and t=12]

	Mean %	Std dev %	Max J %
NSP1	98.5 %	97.2 %	97.2 %
NSP2	0.0 %	0.0 %	0.0 %
NSP3	1.5 %	2.8 %	2.8 %

Analysis for freeze 3 [t=17 and

t=21]	Mean %	Std dev %	Max J %
NSP1	27.7 %	42.2 %	50.2 %
NSP2	0.2 %	0.4 %	0.3 %
NSP3	72.1 %	57.4 %	49.5 %

Analysis for freeze 4 [t=24 and t=28]

	Mean %	Std dev %	Max J %
NSP1	14.0 %	13.8 %	13.6 %
NSP2	0.2 %	0.2 %	0.2 %
NSP3	85.8 %	86.0 %	86.2 %

Customizing Performance

- Does providing choice affect the provider's performance?
- Impact of choice on provider-side utilization? Hurt? Help?
- Traffic grooming for various network-wide objectives

Providing Choice

- Provider provides two alternatives for every (potential) connection request: FAST (least delay); GREEN (least power)
- Customer strategies
 - FAST, GREEN, DELAY-PREF, ENERGY-PREF, HALF
- Simulations on NSFNET, USNET
- A C Babaoglu, S Huang, R Dutta

The Impact of Choice

The Impact of Choice

The Impact of Choice

Summation

Role of choice in performance

- Architecture can encourage/nurture diversity and transparency in network entity ecosystems
- Healthy ecosystem can achieve networking solutions
- Lower entry barrier, encourage new (small) providers of innovative services, not just replacements of existing ones
- Money (rather "consideration") only to back up choice

• Left out:

- Marketplace advertisement semantics
- Automated planning ("composition")
- Economy plane performance
- Trust, identity, authorization, authentication
- Equilibrium and evolution of economic ecosystem

– ...

Architectural Problems

- Architectural entities provide natural "roles" for players in distributed multi-owner systems
 - Interfaces provide natural "cut-points"
 - Allows eco-system to form, evolve, respond
- Architectural problem considerations
 - Are there missing entities? Redundant entities?
 - Are the entity separations "natural" (is there good motivation for each "role")?
 - Are there under-defined / over-defined interactions?
- ChoiceNet: explicit architectural entities/ interactions for choice, economy