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Background and Motivation

Suppliers are critical in providing essential components and resources for
finished goods in today’s globalized supply chain networks. Even in the case of
simpler products, such as bread, ingredients may travel across the globe as
inputs into production processes.

Suppliers are also decision-makers and they compete with one another to

provide components to downstream manufacturing firms.
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Background and Motivation

When suppliers are faced with disruptions, whether due to man-made activities
or errors, natural disasters, unforeseen events, or even terrorist attacks, the
ramifications and effects may propagate through a supply chain or multiple
supply chains.
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Background and Motivation

Boeing, facing challenges with its 787 Dreamliner supply chain design and
numerous delays, ended up having to buy two suppliers for $2.4 billion because
the units were underperforming in the chain (Tang, Zimmerman, and Nelson
(2009)).
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Background and Motivation

Hence,

capturing supplier behavior and the competition among multiple
suppliers,

integrating suppliers and their behavior into general multitiered supply
chain network equilibrium frameworks, and

identifying the importance of a supplier and the components that he
provides to the firms

are essential in modeling the full scope of supply chain network competition.
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Overview

In this paper, we develop a multitiered competitive supply chain network game
theory model, which includes the supplier tier.

The firms are differentiated by brands and can produce their own
components, as reflected by their capacities, and/or obtain components
from one or more suppliers, who also are capacitated.

The firms compete in a Cournot-Nash fashion, whereas

the suppliers compete a la Bertrand.

All decision-makers seek to maximize their profits.

Consumers reflect their preferences through the demand price functions
associated with the demand markets for the firms’ products.
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Overview

We develop a general multitiered competitive supply chain network
equilibrium model with suppliers and firms that includes capacities and
constraints to capture the production activities.

We propose supply chain network performance measures, on the full
supply chain and on the individual firm levels, that assess the efficiency of
the supply chain or firm, respectively, and also allow for the identification
and ranking of the importance of suppliers as well as the components of
suppliers with respect to the full supply chain or individual firm.

Our framework adds to the growing literature on supply chain disruptions
by providing metrics that allow individual firms, industry overseers or
regulators, and/or government policy-makers to identify the importance
of suppliers and the components that they produce for various product
supply chains.
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The Multitiered Supply Chain Network Game Theory Model with Suppliers -

Network Topology
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Figure: The Multitiered Supply Chain Network Topology
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Notations

QS
jil : the nonnegative amount of firm i ’s component l produced by supplier j ;

j = 1, . . . , nS ; i = 1, . . . , I ; l = 1, . . . , nl i .

QF
il : the nonnegative amount of firm i ’s component l produced by firm i itself.

Qik : the nonnegative shipment of firm i ’s product from firm i to demand
market k; k = 1, . . . , nR .

πjil : the price charged by supplier j for producing one unit of firm i ’s
component l .

dik : the demand for firm i ’s product at demand market k.

θil : the amount of component l needed by firm i to produce one unit product i .
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The Behavior of the Firms

fi (Q): firm i ’s cost for assembling its product using the components needed.

f F
il (QF ): firm i ’s production cost for producing its component l .

tcF
ik (Q): firm i ’s transportation cost for shipping its product to demand market

k.

cijl (QS ): the transaction cost paid by firm i for transacting with supplier j for
its component l .

ρik (d): the demand price for firm i ’s product at demand market k.

All the {QS
jil} elements are grouped into the vector QS ∈ R

nS
∑I

i=1 n
l i

+ .

All the {QF
il } elements are grouped into the vector QF ∈ R

∑I
i=1 n

l i

+ .

All the {Qik} elements are grouped into the vector Q ∈ R InR
+ .

We group all {dik} elements into the vector d ∈ R InR
+ .
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The Behavior of the Firms

MaximizeQi ,Q
F
i ,Q

S
i

UF
i =

nR∑
k=1

ρik (d)dik − fi (Q)−
n

l i∑
l=1

f F
il (QF )−

nR∑
k=1

tcF
ik (Q)

−
nS∑

j=1

n
l i∑

l=1

π∗jil Q
S
jil −

nS∑
j=1

n
l i∑

l=1

cijl (QS ) (1a)

subject to:
Qik = dik , i = 1, . . . , I ; k = 1, . . . , nR , (2)

nR∑
k=1

Qikθil ≤
nS∑

j=1

QS
jil + QF

il , i = 1, . . . , I ; l = 1, . . . , nl i , (3)

Qik ≥ 0, i = 1, . . . , I ; k = 1, . . . , nR , (4)

CAPS
jil ≥ QS

jil ≥ 0, j = 1, . . . , nS ; i = 1, . . . , I ; l = 1, . . . , nl i , (5)

CAPF
il ≥ QF

il ≥ 0, i = 1, . . . , I ; l = 1, . . . , nl i . (6)

For firm i , we group its {QS
jil} elements into the vector QS

i ∈ R
nS n

l i

+ , its {QF
il }

elements into the vector QF
i ∈ R

n
l i

+ , and its {Qik} elements into the vector Qi ∈ R
nR
+ .
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The Behavior of the Firms

In light of (2), we can define the demand price function ρ̂ik in product
shipments of the firms, so that ρ̂ik (Q) ≡ ρik (d); i = 1, . . . , I , k = 1, . . . , nR .
Therefore, (1a) is equivalent to:

MaximizeQi ,Q
F
i ,Q

S
i

UF
i =

nR∑
k=1

ρ̂ik (Q)Qik − fi (Q)−
n

l i∑
l=1

f F
il (QF )−

nR∑
k=1

tcF
ik (Q)

−
nS∑

j=1

n
l i∑

l=1

π∗jil Q
S
jil −

nS∑
j=1

n
l i∑

l=1

cijl (QS ). (1b)
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The Behavior of the Firms

We define K
F
i ≡ {(Qi ,Q

F
i ,Q

S
i )|(3) - (6) are satisfied}. All K

F
i ; i = 1, . . . , I ,

are closed and convex. We also define the feasible set KF ≡ ΠI
i=1K

F
i .

Definition 1: A Cournot-Nash Equilibrium

A product shipment, in-house component production, and contracted

component production pattern (Q∗,QF ∗,QS∗) ∈ KF
is said to constitute a

Cournot-Nash equilibrium if for each firm i; i = 1, . . . , I ,

UF
i (Q∗i , Q̂

∗
i ,Q

F∗
i , Q̂F∗

i ,QS∗
i , Q̂S∗

i , π∗) ≥ UF
i (Qi , Q̂

∗
i ,Q

F
i , Q̂

F∗
i ,QS

i , Q̂
S∗
i , π∗),

∀(Qi ,Q
F
i ,Q

S
i ) ∈ K

F
i , (7)

where
Q̂∗i ≡ (Q∗1 , . . . ,Q

∗
i−1,Q

∗
i+1, . . . ,Q

∗
I ),

Q̂F∗
i ≡ (QF∗

1 , . . . ,QF∗
i−1,Q

F∗
i+1, . . . ,Q

F∗
I ),

Q̂S∗
i ≡ (QS∗

1 , . . . ,QS∗
i−1,Q

S∗
i+1, . . . ,Q

S∗
I ).
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The Behavior of the Firms

Theorem 1

Assume that, for each firm i; i = 1, . . . , I , the utility function
UF

i (Q,QF ,QS , π∗) is concave with respect to its variables in Qi , QF
i , and QS

i ,

and is continuous and continuously differentiable. Then (Q∗,QF ∗,QS∗) ∈ KF

is a Counot-Nash equilibrium according to Definition 1 if and only if it satisfies
the variational inequality:

−
I∑

i=1

nR∑
k=1

∂UF
i (Q∗,QF ∗,QS∗, π∗)

∂Qik
× (Qik − Q∗ik )

−
I∑

i=1

n
l i∑

l=1

∂UF
i (Q∗,QF ∗,QS∗, π∗)

∂QF
il

× (QF
il − QF∗

il )

−
nS∑

j=1

I∑
i=1

n
l i∑

l=1

∂UF
i (Q∗,QF ∗,QS∗, π∗)

∂QS
jil

×(QS
jil−QS∗

jil ) ≥ 0, ∀(Q,QF ,QS ) ∈ KF
,

(8)
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The Behavior of the Firms

Theorem 1

with notice that: for i = 1, . . . , I ; k = 1, . . . , nR :

−∂UF
i

∂Qik
=

[
∂fi (Q)

∂Qik
+

nR∑
h=1

∂tcF
ih(Q)

∂Qik
−

nR∑
h=1

∂ρ̂ih(Q)

∂Qik
Qih − ρ̂ik (Q)

]
,

for i = 1, . . . , I ; l = 1, . . . , nl i :

−∂UF
i

∂QF
il

=

[ n
l i∑

m=1

∂f F
im(QF )

∂QF
il

]
,

for j = 1, . . . , nS ; i = 1, . . . , I ; l = 1, . . . , nl i :

− ∂UF
i

∂QS
jil

=

[
π∗jil +

nS∑
g=1

n
l i∑

m=1

∂cigm(QS )

∂QS
jil

]
.
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The Behavior of the Firms

Theorem 1

Equivalently, (Q∗,QF∗
,QS∗

, λ∗) ∈ KF is a vector of the equilibrium product
shipment, in-house component production, contracted component production pattern,
and Lagrange multipliers if and only if it satisfies the variational inequality

I∑
i=1

nR∑
k=1

∂fi (Q∗)

∂Qik
+

nR∑
h=1

∂tcF
ih(Q∗)

∂Qik
−

nR∑
h=1

∂ρ̂ih(Q∗)

∂Qik
Q∗ih − ρ̂ik (Q∗) +

n
l i∑

l=1

λ∗il θil



×(Qik − Q∗ik ) +
I∑

i=1

n
l i∑

l=1

 n
l i∑

m=1

∂f F
im(QF∗

)

∂QF
il

− λ∗il

× (QF
il − QF∗

il )

+

nS∑
j=1

I∑
i=1

n
l i∑

l=1

π∗jil +

nS∑
g=1

n
l i∑

m=1

∂cigm(QS∗
)

∂QS
jil

− λ∗il

× (QS
jil − QS∗

jil )

+
I∑

i=1

n
l i∑

l=1

 nS∑
j=1

QS∗
jil + QF∗

il −
nR∑

k=1

Q∗ikθil

× (λil − λ∗il ) ≥ 0, ∀(Q,QF ,QS , λ) ∈ KF ,

(9)
where KF ≡ ΠI

i=1K F
i and K F

i ≡ {(Qi ,Q
F
i ,Q

S
i , λi )|λi ≥ 0 with (4) - (6) satisfied}.
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The Behavior of the Suppliers

f S
jl (QS ): supplier j ’s production cost for producing component l ; l = 1, . . . , nl .

tcS
jil (QS ): supplier j ’s transportation cost for shipping firm i ’s component l .

ocj (π): supplier j ’s opportunity cost.

We group all the {πjil} elements into the vector π ∈ R
nS

∑I
i=1 n

l i

+ .
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The Behavior of the Suppliers

Maximizeπj US
j =

I∑
i=1

n
l i∑

l=1

πjil Q
S∗
jil −

nl∑
l=1

f S
jl (QS∗

)−
I∑

i=1

n
l i∑

l=1

tcS
jil (QS∗

)− ocj (π)

(11)
subject to:

πjil ≥ 0, j = 1, . . . , nS ; i = 1, . . . , I ; l = 1, . . . , nl i . (12)

For supplier j , we group its {πjil} elements into the vector πj ∈ R
∑I

i=1 n
l i

+ .
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The Behavior of the Suppliers

We define the feasible sets K S
j ≡ {πj |πj ∈ R

∑I
i=1 n

l i

+ }, KS ≡ ΠnS
j=1K S

j , and

K ≡ KF ×KS .

Definition 2: A Bertrand-Nash Equilibrium

A price pattern π∗ ∈ KS is said to constitute a Bertrand-Nash equilibrium if for
each supplier j ; j = 1, . . . , nS ,

US
j (QS∗

, π∗j , π̂
∗
j ) ≥ US

j (QS∗
, πj , π̂

∗
j ), ∀πj ∈ K S

j , (13)

where
π̂∗j ≡ (π∗1 , . . . , π

∗
j−1, π

∗
j+1, . . . , π

∗
nS

).
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The Behavior of the Suppliers

Theorem 2

Assume that, for each supplier j ; j = 1, . . . , nS , the profit function US
j (QS∗

, π)
is concave with respect to the variables in πj , and is continuous and
continuously differentiable. Then π∗ ∈ KS is a Bertrand-Nash equilibrium
according to Definition 2 if and only if it satisfies the variational inequality:

−
nS∑

j=1

I∑
i=1

n
l i∑

l=1

∂US
j (QS∗

, π∗)

∂πjil
× (πjil − π∗jil ) ≥ 0,

∀π ∈ KS , (14)

with notice that: for j = 1, . . . , nS ; i = 1, . . . , I ; l = 1, . . . , nl i :

−
∂US

j

∂πjil
=
∂ocj (π)

∂πjil
− QS∗

jil .
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The Equilibrium Conditions for the Multitiered Supply Chain Network with Suppliers

Definition 3: Multitiered Supply Chain Network Equilibrium with Suppliers

The equilibrium state of the multitiered supply chain network with suppliers is one
where both variational inequalities (8) (or (9)) and (14) hold simultaneously.

Theorem 3

The equilibrium conditions governing the multitiered supply chain network model with
suppliers are equivalent to the solution of the variational inequality problem:
determine (Q∗,QF∗

,QS∗
, π∗) ∈ K, such that:

−
I∑

i=1

nR∑
k=1

∂UF
i (Q∗,QF∗

,QS∗
, π∗)

∂Qik
× (Qik − Q∗ik )−

I∑
i=1

n
l i∑

l=1

∂UF
i (Q∗,QF∗

,QS∗
, π∗)

∂QF
il

×(QF
il − QF∗

il )−
nS∑

j=1

I∑
i=1

n
l i∑

l=1

∂UF
i (Q∗,QF∗

,QS∗
, π∗)

∂QS
jil

× (QS
jil − QS∗

jil )

−
nS∑

j=1

I∑
i=1

n
l i∑

l=1

∂US
j (QS∗

, π∗)

∂πjil
× (πjil − π∗jil ) ≥ 0, ∀(Q,QF ,QS , π) ∈ K. (15)
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The Equilibrium Conditions for the Multitiered Supply Chain Network with Suppliers

Theorem 3

Equivalently: determine (Q∗,QF∗
,QS∗

, λ∗, π∗) ∈ K, such that:

I∑
i=1

nR∑
k=1

[
∂fi (Q∗)

∂Qik
+

nR∑
h=1

∂tcF
ih(Q∗)

∂Qik
−

nR∑
h=1

∂ρ̂ih(Q∗)

∂Qik
Q∗ih − ρ̂ik (Q∗) +

n
l i∑

l=1

λ∗ilθil

]

×(Qik − Q∗ik ) +
I∑

i=1

n
l i∑

l=1

[ n
l i∑

m=1

∂f F
im(QF∗

)

∂QF
il

− λ∗il

]
× (QF

il − QF∗
il )

+

nS∑
j=1

I∑
i=1

n
l i∑

l=1

[
π∗jil +

nS∑
g=1

n
l i∑

m=1

∂cigm(QS∗
)

∂QS
jil

− λ∗il

]
× (QS

jil − QS∗
jil )

+
I∑

i=1

n
l i∑

l=1

[
nS∑

j=1

QS∗
jil + QF∗

il −
nR∑

k=1

Q∗ikθil

]
× (λil − λ∗il )

+

nS∑
j=1

I∑
i=1

n
l i∑

l=1

[
∂ocj (π

∗)

∂πjil
− QS∗

jil

]
× (πjil − π∗jil ) ≥ 0, ∀(Q,QF ,QS , λ, π) ∈ K,

(16)
where K ≡ KF ×KS .
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The Equilibrium Conditions for the Multitiered Supply Chain Network with Suppliers

Standard Form

Determine X ∗ ∈ K where X is a vector in RN , F (X ) is a continuous function
such that F (X ) : X 7→ K ⊂ RN , and

〈F (X ∗),X − X ∗〉 ≥ 0, ∀X ∈ K, (17)

where 〈·, ·〉 is the inner product in the N-dimensional Euclidean space,
N = InR + 2nS

∑I
i=1 nl i + 2

∑I
i=1 nl i , and K is closed and convex. We define

the vector X ≡ (Q,QF ,QS , λ, π) and the vector
F (X ) ≡ (F 1(X ),F 2(X ),F 3(X ),F 4(X ),F 5(X )),
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The Equilibrium Conditions for the Multitiered Supply Chain Network with Suppliers

Standard Form

such that:

F 1(X ) =

[
∂fi (Q)

∂Qik
+

nR∑
h=1

∂tcF
ih(Q)

∂Qik
−

nR∑
h=1

∂ρ̂ih(Q)

∂Qik
Qih − ρ̂ik (Q) +

n
l i∑

l=1

λilθil ;

i = 1, . . . , I ; k = 1, . . . , nR ] , (18a)

F 2(X ) =

[ n
l i∑

m=1

∂f F
im(QF )

∂QF
il

− λil ; i = 1, . . . , I ; l = 1, . . . , nl i

]
, (18b)

F 3(X ) =

[
πjil +

nS∑
g=1

n
l i∑

m=1

∂cigm(QS )

∂QS
jil

− λil ;

j = 1, . . . , nS ; i = 1, . . . , I ; l = 1, . . . , nl i ] , (18c)

F 4(X ) =

[
nS∑

j=1

QS
jil + QF

il −
nR∑

k=1

Qikθil ; i = 1, . . . , I ; l = 1, . . . , nl i

]
, (18d)

F 5(X ) =

[
∂ocj (π)

∂πjil
− QS

jil ; j = 1, . . . , nS ; i = 1, . . . , I ; l = 1, . . . , nl i

]
. (18e)
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The Equilibrium Conditions for the Multitiered Supply Chain Network with Suppliers -

Qaulitative Properties

It is reasonable to expect that the price charged by each supplier j for producing
one unit of firm i ’s component l , πjil , is bounded by a sufficiently large value,
since, in practice, each supplier cannot charge unbounded prices to the firms.

Assumption 1

Suppose that in our supply chain network model with suppliers there exists a
sufficiently large Π, such that,

πjil ≤ Π, j = 1, . . . , nS ; i = 1, . . . , I ; l = 1, . . . , nl i . (19)

Theorem 4: Existence

With Assumption 1 satisfied, there exists at least one solution to variational
inequalities (17); equivalently, (16) and (15).
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The Equilibrium Conditions for the Multitiered Supply Chain Network with Suppliers -

Qaulitative Properties

Theorem 5: Uniqueness

If Assumption 1 is satisfied, the equilibrium product shipment, in-house
component production, contracted component production, and suppliers’ price
pattern (Q∗,QF∗

,QS∗
, π∗) in variational inequality (17), is unique under the

following conditions:

(i) one of the two families of convex functions fi (Q); i = 1, . . . , I , and tcF
ik (Q);

k = 1 . . . .nR , is strictly convex in Qik ;
(ii) the f F

il (QF ); i = 1, . . . , I , l = 1, . . . .nl i , are strictly convex in QF
il ;

(iii) the cijl (QS ); j = 1, . . . , nS , i = 1, . . . , I , l = 1, . . . .nl i , are strictly convex in
QS

jil ;
(iv) the ocj (π); j = 1, . . . , nS , are strictly convex in πjil ;
(v) the ρik (d); i = 1, . . . , I , k = 1, . . . .nR , are strictly monotone decreasing of
dik .
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Supply Chain Network Performance Measures

We now present the supply chain network performance measure for the whole
competitive supply chain network G and that for the supply chain network of
each individual firm i ; i = 1, . . . , I , under competition.

Such measures capture the efficiency of the supply chains in that the
higher the demand to price ratios normalized over associated firm and
demand market pairs, the higher the efficiency.

Hence, a supply chain network is deemed to perform better if it can
satisfy higher demands, on the average, relative to the product prices.
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Supply Chain Network Performance Measures

Definition 4.1: The Supply Chain Network Performance Measure for the Whole
Competitive Supply Chain Network G

The supply chain network performance/efficiency measure, E(G), for a given
competitive supply chain network topology G and the equilibrium demand
vector d∗, is defined as follows:

E = E(G) =

∑I
i=1

∑nR
k=1

d∗
ik

ρik (d∗)

I × nR
. (20)

Definition 4.2: The Supply Chain Network Performance Measure for an
Individual Firm under Competition

The supply chain network performance/efficiency measure, Ei (Gi ), for the
supply chain network topology of a given firm i, Gi , under competition and the
equilibrium demand vector d∗, is defined as:

Ei = Ei (Gi ) =

∑nR
k=1

d∗
ik

ρik (d∗)

nR
, i = 1, . . . , I . (21)
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The Importance of Supply Chain Network Suppliers and Their Components

Definition 5.1: Importance of a Supplier for the Whole Competitive Supply
Chain Network G

The importance of a supplier j , corresponding to a supplier node j ∈ G, I (j), for
the whole competitive supply chain network, is measured by the relative supply
chain network efficiency drop after j is removed from the whole supply chain:

I (j) =
4E
E =

E(G)− E(G − j)

E(G)
, j = 1, . . . , nS , (22)

where G − j is the resulting supply chain after supplier j is removed from the
competitive supply chain network G.
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The Importance of Supply Chain Network Suppliers and Their Components

We also can construct using an adaptation of (22) a robustness-type measure
for the whole competitive supply chain by evaluating how the supply chain is
impacted if all the suppliers are eliminated due to a major disruption.
Specifically, we let:

I (

nS∑
j=1

j) =
4E
E =

E(G)− E(G −
∑nS

j=1 j)

E(G)
, (23)

measure how the whole supply chain can respond if all of its suppliers are
unavailable.
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The Importance of Supply Chain Network Suppliers and Their Components

Definition 5.2: Importance of a Supplier for the Supply Chain Network of an
Individual Firm under Competition

The importance of a supplier j , corresponding to a supplier node j ∈ Gi , Ii (j),
for the supply chain network of a given firm i under competition, is measured
by the relative supply chain network efficiency drop after j is removed from Gi :

Ii (j) =
4Ei

Ei
=
Ei (Gi )− Ei (Gi − j)

Ei (Gi )
, i = 1, . . . , I ; j = 1, . . . , nS . (24)

The corresponding robustness measure for the supply chain of firm i if all the
suppliers are eliminated is:

Ii (

nS∑
j=1

j) =
4Ei

Ei
=
Ei (Gi )− Ei (Gi −

∑nS
j=1 j)

Ei (Gi )
, i = 1, . . . , I . (25)
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The Importance of Supply Chain Network Suppliers and Their Components

Definition 5.3: Importance of a Supplier’s Component for the Whole
Competitive Supply Chain Network G

The importance of a supplier j ’s component lj ; lj = 1j , . . . , nl j , corresponding
to j’s component node lj ∈ G, I (lj ), for the whole competitive supply chain
network, is measured by the relative supply chain network efficiency drop after
lj is removed from G:

I (lj ) =
4E
E =

E(G)− E(G − lj )

E(G)
, j = 1, . . . , nS ; lj = 1j , . . . , nl j . (26)

where G − lj is the resulting supply chain after supplier j ’s component lj is
removed from the whole competitive supply chain network.

The corresponding robustness measure for the whole competitive supply chain
network if all suppliers’ component lj ; lj = 1j , . . . , nl j , are eliminated is:

I (

nS∑
j=1

lj ) =
4E
E =

E(G)− E(G −
∑nS

j=1 lj )

E(G)
, lj = 1j , . . . , nl j . (27)
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The Importance of Supply Chain Network Suppliers and Their Components

Definition 5.4: Importance of a Supplier’s Component for the Supply Chain
Network of an Individual Firm under Competition

The importance of supplier j ’s component lj ; lj = 1j , . . . , nl j , corresponding to
a component node lj ∈ Gi , Ii (lj ), for the supply chain network of a given firm i
under competition, is measured by the relative supply chain network efficiency
drop after lj is removed from Gi :

Ii (lj ) =
4Ei

Ei
=
Ei (Gi )− Ei (Gi − lj )

Ei (Gi )
, i = 1, . . . , I ; j = 1, . . . , nS ; lj = 1j , . . . , nl j .

(28)

The corresponding robustness measure for the supply chain network of firm i if
all suppliers’ component lj , lj = 1j , . . . , nl j , are eliminated is:

Ii (

nS∑
j=1

lj ) =
4Ei

Ei
=
Ei (Gi )− Ei (Gi −

∑nS
j=1 lj )

Ei (Gi )
, i = 1, . . . , I ; lj = 1j , . . . , nl j .

(29)
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The Algorithm - The Euler Method

Iteration τ of the Euler method

X τ+1 = PK(X τ − aτF (X τ )), (30)

where PK is the projection on the feasible set K and F is the function that
enters the variational inequality problem (17).

For convergence of the general iterative scheme, which induces the Euler

method, the sequence {aτ} must satisfy:
∑∞
τ=0 aτ =∞, aτ > 0, aτ → 0, as

τ →∞.
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The Algorithm - The Euler Method - Explicit Formulae for the Computation of the Product and

Component Quantities

Qτ+1
ik = max{0,Qτ

ik + aτ (−
∂fi (Q)

∂Qik
−

nR∑
h=1

∂tcF
ih(Q)

∂Qik
+

nR∑
h=1

∂ρ̂ih(Q)

∂Qik
Qih + ρ̂ik (Q)

−
n

l i∑
l=1

λilθil )}; i = 1, . . . , I ; k = 1, . . . , nR . (31a)

QFτ+1

il = min{CAPF
il ,max{0,QFτ

il + aτ (−
n

l i∑
m=1

∂f F
im(QF )

∂QF
il

+ λil )}};

i = 1, . . . , I ; l = 1, . . . , nl i . (31b)

QSτ+1

jil = min{CAPS
jil ,max{0,QSτ

jil + aτ (−πjil −
nS∑

g=1

n
l i∑

m=1

∂cigm(QS )

∂QS
jil

+ λil )}};

j = 1, . . . , nS ; i = 1, . . . , I ; l = 1, . . . , nl i . (31c)
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The Algorithm - The Euler Method - Explicit Formulae for the Computation of the Prices and

Lagrange Multipliers

λτ+1
il = max{0, λτil + aτ (−

nS∑
j=1

QS
jil − QF

il +

nR∑
k=1

Qikθil )}; i = 1, . . . , I ; l = 1, . . . , nl i .

(31d)

πτ+1
jil = max{0, πτjil + aτ (−

∂ocj (π)

∂πjil
+ QS

jil )}; j = 1, . . . , nS ; i = 1, . . . , I ; l = 1, . . . , nl i .

(31e)
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Numerical Examples

We implemented the Euler method using Matlab on a Lenovo Z580. The

convergence tolerance is 10−6, so that the algorithm is deemed to have

converged when the absolute value of the difference between each successive

quantities, prices, and Lagrange multipliers is less than or equal to 10−6. The

sequence {aτ} is set to: {1, 1
2
, 1

2
, 1

3
, 1

3
, 1

3
, . . .}. We initialize the algorithm by

setting the product and component quantities equal to 50 and the prices and

the Lagrange multipliers equal to 0.
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Numerical Examples - Example 1
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Figure: Example 1
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Numerical Examples - Example 1

The capacities of the suppliers are:

CAPS
111 = 80, CAPS

112 = 90, CAPS
121 = 80, CAPS

122 = 50,

The firms are not capable of producing components 11 or 12, so their capacities are:

CAPF
11 = 0, CAPF

12 = 20, CAPF
21 = 0, CAPF

22 = 30.

The supplier’s production costs are:

f S
11(QS

111,Q
S
121) = 2(QS

111 + QS
121), f S

12(QS
112) = 3QS

112, f S
13(QS

122) = QS
122.

The supplier’s transportation costs are:

tcS
111(QS

111,Q
S
112) = 0.75QS

111 + 0.1QS
112, tcS

112(QS
112,Q

S
111) = 0.1QS

112 + 0.05QS
111,

tcS
121(QS

121,Q
S
122) = QS

121 + 0.2QS
122, tcS

122(QS
122,Q

S
121) = 0.6QS

122 + 0.25QS
121.

The opportunity cost of the supplier is:

oc1(π111, π112, π121, π122) = 0.5(π111−10)2+(π112−5)2+0.5(π121−10)2+0.75(π122−7)2.
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Numerical Examples - Example 1

The firms’ assembly costs are:

f1(Q11,Q12,Q21,Q22) = 2(Q11 + Q12)2 + 2(Q11 + Q12) + (Q11 + Q12)(Q21 + Q22),

f2(Q11,Q12,Q21,Q22) = 1.5(Q21 + Q22)2 + 2(Q21 + Q22) + (Q11 + Q12)(Q21 + Q22).

The firms’ production costs for producing their components are:

f F
11(QF

11,Q
F
21) = 3QF 2

11 + QF
11 + 0.5QF

11QF
21, f F

12(QF
12) = 2QF 2

12 + 1.5QF
12,

f F
21(QF

11,Q
F
21) = 3QF 2

21 + 2QF
21 + 0.75QF

11QF
21, f F

22(QF
22) = 1.5QF 2

22 + QF
22.

The firms’ transportation costs for shipping their products to the demand markets are:

tcF
11(Q11,Q21) = Q2

11 + Q11 + 0.5Q11Q21, tcF
12(Q12,Q22) = 2Q2

12 + Q12 + 0.5Q12Q22,

tcF
21(Q21,Q11) = 1.5Q2

21+Q21+0.25Q11Q21, tcF
22(Q12,Q22) = Q2

22+0.5Q22+0.25Q12Q22.
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Numerical Examples - Example 1

The transaction costs of the firms are:

c111(QS
111) = 0.5QS2

111 + 0.25QS
111, c112(QS

112) = 0.25QS2

112 + 0.3QS
112,

c211(QS
121) = 0.3QS2

121 + 0.2QS
121, c212(QS

122) = 0.2QS2

122 + 0.1QS
122.

The demand price functions are:

ρ11(d11, d21) = −1.5d11 − d21 + 500, ρ12(d12, d22) = −2d12 − d22 + 450,

ρ21(d11, d21) = −2d21 − 0.5d11 + 500, ρ22(d12, d22) = −2d22 − d12 + 400.
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Numerical Examples - Example 1

The Euler method converges in 380 iterations.

Q∗11 = 13.39, Q∗12 = 4.51, Q∗21 = 18.62, Q∗22 = 5.87.

d∗11 = 13.39, d∗12 = 4.51, d∗21 = 18.62, d∗22 = 5.87.

ρ11 = 461.30, ρ12 = 435.11, ρ21 = 456.07, ρ22 = 383.75.

QF∗
11 = 0.00, QF∗

12 = 11.50, QF∗
21 = 0.00, QF∗

22 = 14.35.

QS∗
111 = 35.78, QS∗

112 = 42.18, QS∗
121 = 48.99, QS∗

122 = 34.64.

λ∗11 = 81.82, λ∗12 = 47.48, λ∗21 = 88.58 λ∗22 = 44.05.

π∗11 = 45.78, π∗12 = 26.09, π∗21 = 58.99, π∗22 = 30.09.

The profits of the firms are, respectively, 2,518.77 and 3,485.51. The profit of

the supplier is 3,529.19.
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Numerical Examples - Example 1 - Performance Measures

Table: Supply Chain Network Performance Measure values for Example 1

E(G) E(G − 1) E(G − 11) E(G − 21) E(G − 31)
Whole Supply Chain 0.0239 0 0 0.0181 0.0183

Ei (Gi ) Ei (Gi − 1) Ei (Gi − 11) Ei (Gi − 21) Ei (Gi − 31)
Firm 1’s Supply Chain 0.0197 0 0 0.0071 0.0203
Firm 2’s Supply Chain 0.0281 0 0 0.0292 0.0163
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Numerical Examples - Example 1 - Importance Measures

Table: Importance and Rankings of Supplier 1’s Components 1, 2, and 3 for
Example 1

Importance for the Importance for
Whole Supply Chain Ranking Firm 1’s Supply Chain Ranking

Supplier 1 1 1
Component 1 1 1 1 1
Component 2 0.2412 2 0.6401 2
Component 3 0.2331 3 −0.0329 3

Importance for the
Firm 2’s Supply Chain Ranking

Supplier 1 1
Component 1 1 1
Component 2 −0.0387 3
Component 3 0.4197 2

Importance for the Importance for Importance for
Whole Supply Chain Firm 1’s Supply Chain Firm 2’s Supply Chain

Supplier 1 1 1 1
Ranking 1 1 1

Component 1 1 1 1
Ranking 1 1 1

Component 2 0.2412 0.6401 −0.0387
Ranking 2 1 3

Component 3 0.2331 −0.0329 0.4197
Ranking 2 3 1
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Numerical Examples - Example 2

Example 2 is the same as Example 1 except that supplier 1 is no longer the
only entity that can produce components 11 and 12.

The capacities of the firms are now:

CAPF
11 = 20, CAPF

12 = 20, CAPF
21 = 20, CAPF

22 = 30.

Table: Equilibrium Solution and Incurred Demand Prices for Example 2

Q∗ Q∗11 = 14.43 Q∗121 = 5.13 Q∗21 = 19.60 Q∗22 = 7.02

QF∗
QF∗

11 = 10.23 QF∗
12 = 12.50 QF∗

21 = 11.28 QF∗
22 = 15.47

QS∗
QS∗

111 = 28.89 QS∗
112 = 46.19 QS∗

121 = 41.97 QS∗
122 = 37.78

λ∗ λ∗11 = 68.04 λ∗12 = 51.49 λ∗21 = 77.35 λ∗22 = 47.40

π∗ π∗111 = 38.89 π∗112 = 28.10 π∗121 = 51.97 π∗122 = 32.19

d∗ d∗11 = 14.43 d∗12 = 5.13 d∗21 = 19.60 d∗22 = 7.02

ρ ρ11 = 458.75 ρ12 = 432.72 ρ21 = 453.58 ρ22 = 380.83

The profits of the firms are now 2,968.88 and 4,110.89, and the profit of the

supplier is now 3,078.45.
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Numerical Examples - Example 2 - Performance Measures

Table: Supply Chain Network Performance Measure Values for Example 2

E(G) E(G − 1) E(G − 11) E(G − 21) E(G − 31)
Whole Supply Chain 0.0262 0.0086 0.0105 0.0197 0.0195

Ei (Gi ) Ei (Gi − 1) Ei (Gi − 11) Ei (Gi − 21) Ei (Gi − 31)
Firm 1’s Supply Chain 0.0217 0.0067 0.0106 0.0071 0.0226
Firm 2’s Supply Chain 0.0308 0.0105 0.0105 0.0324 0.0163
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Numerical Examples - Example 2 - Importance Measures

Table: Importance and Rankings of Supplier 1 and its Components 1, 2, and 3
for Example 2

Importance for the Importance for
Whole Supply Chain Ranking Firm 1’s Supply Chain Ranking

Supplier 1 0.6721 0.6897
Component 1 0.5984 1 0.5121 2
Component 2 0.2476 3 0.6721 1
Component 3 0.2586 2 −0.0438 3

Importance for
Firm 2’s Supply Chain Ranking

Supplier 1 0.6598
Component 1 0.6590 1
Component 2 −0.0505 3
Component 3 0.4710 2

Importance for the Importance for Importance for
Whole Supply Chain Firm 1’s Supply Chain Firm 2’s Supply Chain

Supplier 1 0.6721 0.6897 0.6598
Ranking 2 1 3

Component 1 0.5984 0.5121 0.6590
Ranking 2 3 1

Component 2 0.2476 0.6721 −0.0505
Ranking 2 1 3

Component 3 0.2586 −0.0438 0.4710
Ranking 2 3 1
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Numerical Examples - Example 3

Example 3 is the same as Example 2, except that two more suppliers are now
available to the firms in addition to supplier 1.
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Figure: Example 3
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Numerical Examples - Example 3

The data associated with suppliers 2 and 3 are following.

The capacities of suppliers 2 and 3 are:

CAPS
211 = 60, CAPS

212 = 70, CAPS
221 = 50, CAPS

222 = 60,

CAPS
311 = 50, CAPS

312 = 80, CAPS
321 = 80, CAPS

322 = 60.

The production costs of the suppliers are:

f S
21(QS

211,Q
S
221) = QS

211 + QS
221, f S

22(QS
212) = 3QS

212, f S
23(QS

222) = 2QS
222,

f S
31(QS

311,Q
S
321) = 10(QS

311 + QS
321), f S

32(QS
312) = QS

312, f S
33(QS

322) = 2.5QS
322.

The transportation costs are:

tcS
211(QS

211,Q
S
212) = 0.5QS

211 + 0.2QS
212, tcS

212(QS
212,Q

S
211) = 0.3QS

212 + 0.1QS
211,

tcS
221(QS

221,Q
S
222) = 0.8QS

221 + 0.2QS
222, tcS

222(QS
222,Q

S
221) = 0.75QS

222 + 0.1QS
221,

tcS
311(QS

311,Q
S
312) = 0.4QS

311 + 0.05QS
312, tcS

312(QS
312,Q

S
311) = 0.4QS

312 + 0.2QS
311,

tcS
321(QS

321,Q
S
322) = 0.7QS

321 + 0.1QS
322, tcS

322(QS
322,Q

S
321) = 0.6QS

322 + 0.1QS
321.

University of Massachusetts Amherst Dong ”Michelle” Li and Anna Nagurney



Numerical Examples - Example 3

The opportunity costs are:

oc2(π211, π212, π221, π222) = (π211−6)2+0.75(π212−5)2+0.3(π221−8)2+0.5(π222−4)2,

oc3(π311, π312, π321, π322) = 0.5(π311−5)2+1.5(π312−5)2+0.5(π321−3)2+0.5(π322−4)2.

The transaction costs of the firms now become:

c121(QS
211) = 0.5QS2

211 + QS
211, c122(QS

212) = 0.25QS2

212 + 0.3QS
212,

c221(QS
221) = QS2

221 + 0.1QS
221, c222(QS

222) = QS2

222 + 0.5QS
222,

c131(QS
311) = 0.2QS2

311 + 0.3QS
311, c132(QS

312) = 0.5QS2

312 + 0.2QS
312,

c231(QS
321) = 0.1QS2

321 + 0.1QS
321, c232(QS

322) = 0.5QS2

322 + 0.1QS
322.
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Numerical Examples - Example 3

The Euler method converges in 563 iterations.

Table: Equilibrium Solution and Incurred Demand Prices for Example 3

Q∗ Q∗11 = 21.82 Q∗12 = 9.61 Q∗21 = 24.23 Q∗22 = 12.41

QF∗
QF∗

11 = 5.57 QF∗
12 = 9.11 QF∗

21 = 6.48 QF∗
22 = 12.94

QS∗
QS∗

111 = 13.71 QS∗
112 = 32.64 QS∗

121 = 21.77 QS∗
122 = 30.68

QS∗
211 = 20.45 QS∗

212 = 27.98 QS∗
221 = 10.07 QS∗

222 = 11.78

QS∗
311 = 23.13 QS∗

312 = 24.56 QS∗
321 = 34.94 QS∗

322 = 17.86

λ∗ λ∗11 = 37.68 λ∗12 = 37.94 λ∗21 = 45.03 λ∗22 = 39.83

π∗ π∗111 = 23.71 π∗112 = 21.32 π∗121 = 31.77 π∗122 = 27.45
π∗211 = 16.23 π∗212 = 23.65 π∗221 = 24.79 π∗222 = 15.78
π∗311 = 28.13 π∗312 = 13.19 π∗321 = 37.94 π∗322 = 21.86

d∗ d∗11 = 21.82 d∗12 = 9.61 d∗21 = 24.23 d∗22 = 12.41

ρ ρ11 = 443.04 ρ12 = 418.38 ρ21 = 440.64 ρ22 = 365.58

The profits of the firms are now 4,968.67 and 5,758.13, and the profits of the

suppliers are 1,375.22, 725.17, and 837.44, respectively.
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Numerical Examples - Example 2 - Performance Measures

Table: Supply Chain Network Performance Measure Values for Example 3

E(G) E(G − 1) E(G − 2) E(G − 3) E(G −
∑nS

j=1 j)

Whole Supply Chain 0.0403 0.0334 0.0361 0.0332 0.0086

Ei (Gi ) Ei (Gi − 1) Ei (Gi − 2) Ei (Gi − 3) Ei (Gi −
∑nS

j=1 j)

Firm 1’s Supply Chain 0.0361 0.0309 0.0303 0.0309 0.0067
Firm 2’s Supply Chain 0.0445 0.0358 0.0419 0.0355 0.0105
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Numerical Examples - Example 2 - Importance Measures

Table: Importance and Rankings of Suppliers for Example 3

Importance for the Importance for
Whole Supply Chain Ranking Firm 1’s Supply Chain Ranking

Supplier 1 0.1717 2 0.1443 2
Supplier 2 0.1035 3 0.1612 1
Supplier 3 0.1760 1 0.1438 3

All Suppliers 0.7864 0.8139

Importance for
Firm 2’s Supply Chain Ranking

Supplier 1 0.1939 2
Supplier 2 0.0566 3
Supplier 3 0.2021 1

All Suppliers 0.7641

Importance for the Importance for Importance for
Whole Supply Chain Firm 1’s Supply Chain Firm 2’s Supply Chain

Supplier 1 0.1717 0.1443 0.1939
Ranking 2 3 1

Supplier 2 0.1035 0.1612 0.0566
Ranking 2 1 3

Supplier 3 0.1760 0.1438 0.2021
Ranking 2 3 1

All Suppliers 0.7864 0.8139 0.7641
Ranking 2 1 3
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Summary and Conclusions

The behaviors of both suppliers and firms are captured in order to be able
to assess both supply chain network performance as well as vulnerabilities.

The firms have the option of producing the components needed in-house.

A unified variational inequality is constructed, whose solution yields the
equilibrium quantities of the components, produced in-house and/or
contracted for, the quantities of the final products, the prices charged by
the suppliers, as well as the Lagrange multipliers.

The model is used for the introduction of supply chain network
performance measures for the entire supply chain network economy
consisting of all the firms as well as for that of an individual firm.

Importance indicators are constructed that allow for the ranking of
suppliers for the whole supply chain or that of an individual firm, as well
as for the supplier components.
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Thank you!

For more information, please visit http://supernet.isenberg.umass.edu.
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