Quantifying the Inefficiency of Wardrop Equilibria

Tim Roughgarden Stanford University

Traffic Equilibria (Inelastic Demand)

- a directed graph G = (V,E)
- k origin-destination pairs $(s_1, t_1), ..., (s_k, t_k)$
- fixed amount d_i of traffic from s_i to t_i
- for each edge e, a cost function $c_e(\cdot)$
 - assumed continuous, nonnegative, nondecreasing

Wardrop Equilibria

Defn [Wardrop 52]: a traffic flow is a Wardrop equilibrium if all flow routed on min-cost paths (given current congestion).

Wardrop Equilibria

Defn [Wardrop 52]: a traffic flow is a Wardrop equilibrium if all flow routed on min-cost paths (given current congestion).

Question [Ch 3, Beckmann/McGuire/Winsten 56]: "Will there always be a well determined equilibrium[...]?"

The BMW Potential Function

Answer [Beckmann/McGuire/Winsten 56]: Yes.

The BMW Potential Function

Answer [Beckmann/McGuire/Winsten 56]: Yes.

Proof: Consider the "potential function":

$$\Box(f) = \sum_{e} \int_{0}^{f} {}^{e}c_{e}(x) dx$$

- defined so that first-order optimality condition = defn of Wardrop equilibrium
- · apply Weierstrauss's Theorem

QED. (also get uniqueness, etc.)

Potential Functions in Game Theory

- Did you know?: Potential functions now standard tool in game theory for proving the existence of a pure-strategy Nash eq.
- define function \square s.t. whenever player is switches strategies, $\triangle \square = \triangle u_i$
 - local optima of [] = pure-strategy Nash equilibria
 - [Rosenthal 73]: traffic eq w/ discrete population
 - [Monderer/Shapley 96]: general "potential games"

Inefficiency of Wardrop Eq

Motivation [Ch 4, BMW 56]:

 "An economic approach to traffic analysis should [...] provide criteria by which to judge the performance of the system."

Pigou's example [Pigou 1920]:

(WE not Pareto optimal)

Goal: quantify inefficiency of WE.

Goal: quantify inefficiency of WE.

Ingredient #1: objective function.

- will use average travel time (standard)

Goal: quantify inefficiency of WE.

Ingredient #1: objective function.

- will use average travel time (standard)

Ingredient #2: measure of approximation.

- will use ratio of obj fn values of WE, system opt (standard in theoretical CS)

Defn:

```
ratio average travel time in WE average travel time in sys opt
```

- = 4/3 in Pigou's example (33% loss)
- the closer to 1 the better
- aka "coordination ratio", "price of anarchy" [Kousoupias/Papadimitriou 99,01]
- first studied for WE by [Roughgarden/Tardos 00]

Assume: each cost fn is affine: $c_e(x) = a_e x + b_e$

Claim: BMW potential fn a good approximation of true objective function (avg travel time).

Assume: each cost fn is affine: $c_e(x) = a_e x + b_e$

Claim: BMW potential fn a good approximation of true objective function (avg travel time).

Objective: $C(f) = \Sigma_e c_e(f_e) f_e = \Sigma_e [a_e f_e + b_e] f_e$

Potential: $\Box(f) = \sum_{e} \int_{0}^{f} c_{e}(x) dx = \sum_{e} \left[\frac{1}{2} a_{e} f_{e} + b_{e}\right] f_{e}$

Assume: each cost fn is affine: $c_e(x) = a_e x + b_e$

Claim: BMW potential fn a good approximation of true objective function (avg travel time).

Objective:
$$C(f) = \Sigma_e c_e(f_e) f_e = \Sigma_e [a_e f_e + b_e] f_e$$

Potential:
$$\Box(f) = \sum_{e} \int_{0}^{f} c_{e}(x) dx = \sum_{e} \left[\frac{1}{2} a_{e} f_{e} + b_{e}\right] f_{e}$$

So: $\Box(f) \leq C(f) \leq 2\Box(f)$

So: $\Box(f) \leq C(f) \leq 2\Box(f)$

(affine cost functions)

So: $\Box(f) \leq C(f) \leq 2\Box(f)$

(affine cost functions)

Consequence: inefficiency ratio < 2

proof: C(WE) ≤ 2□(WE) ≤ 2□(OPT) ≤ 2C(OPT)

So:
$$\Box(f) \leq C(f) \leq 2\Box(f)$$

(affine cost functions)

Consequence: inefficiency ratio ≤ 2

proof: C(WE) ≤ 2□(WE) ≤ 2□(OPT) ≤ 2C(OPT)

In fact: [RT00] more detailed argument \Rightarrow inefficiency ratio $\le 4/3$

- Pigou's example the worst! (among all traffic matrices)

networks,

More General Cost Fns?

General Cost Functions: worst inefficiency ratio grows slowly w/"steepness"

- e.g., degree-d bounded polynomials (w/nonnegative coefficients) [Roughgarden 01] χ^d
- naive argument: ratio ≤ d+1
- optimal bound: ≈ d/ln d
- worst network = analogue of Pigou's example
- for d = 4: ≈ 2.15

Epilogue

- potential function introduced in [Beckmann/McGuire/Winsten 56] to prove existence of Wardrop equilibria
- now standard tool in game theory to prove existence of pure Nash equilibria
- now standard tool in theoretical CS + OR to bound inefficiency of equilibria