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Traffic Equilibria
(Inelastic Demand)

• a directed graph G = (V,E)
• k origin-destination pairs (s1 ,t1), …, (sk ,tk)
• fixed amount di of traffic from si to ti
• for each edge e, a cost function ce(•)

– assumed continuous, nonnegative, nondecreasing

s1 t1

c(x)=x Flow = ½

Flow = ½
c(x)=1

Example: (k,r=1)
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Wardrop Equilibria

Defn [Wardrop 52]: a traffic flow is a
Wardrop equilibrium if all flow routed on
min-cost paths (given current congestion).
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s t
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Flow = .5

Flow = .5

s t
1

Flow = 0

Flow = 1
x

Example:
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Wardrop Equilibria

Defn [Wardrop 52]: a traffic flow is a
Wardrop equilibrium if all flow routed on
min-cost paths (given current congestion).

Question [Ch 3, Beckmann/McGuire/Winsten 56]:
"Will there always be a well determined
equilibrium[...]?"

x
s t

1
Flow = .5

Flow = .5

s t
1

Flow = 0

Flow = 1
x

Example:
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The BMW Potential Function

Answer [Beckmann/McGuire/Winsten 56]: Yes.
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The BMW Potential Function

Answer [Beckmann/McGuire/Winsten 56]: Yes.

Proof: Consider the "potential function":

�(f) = Σe ∫f  ce(x)dx

• defined so that first-order optimality
condition = defn of Wardrop equilibrium

• apply Weierstrauss's Theorem

QED.  (also get uniqueness, etc.)

0
e
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Potential Functions
in Game Theory

Did you know?: Potential functions now
standard tool in game theory for proving
the existence of a pure-strategy Nash eq.

• define function � s.t. whenever player i
switches strategies, ∆� = ∆ui
– local optima of � = pure-strategy Nash equilibria

– [Rosenthal 73]: traffic eq w/ discrete population
– [Monderer/Shapley 96]: general "potential games"
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Inefficiency of Wardrop Eq

Motivation [Ch 4, BMW 56]:
• "An economic approach to traffic analysis should

[...] provide criteria by which to judge the
performance of the system."
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s t
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x

Pigou's example [Pigou 1920]:

(WE not Pareto optimal)
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Quantifying Inefficiency

Goal: quantify inefficiency of WE.
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Quantifying Inefficiency

Goal: quantify inefficiency of WE.

Ingredient #1: objective function.
– will use average travel time (standard)
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Quantifying Inefficiency

Goal: quantify inefficiency of WE.

Ingredient #1: objective function.
– will use average travel time (standard)

Ingredient #2: measure of approximation.
– will use ratio of obj fn values of WE, system

opt (standard in theoretical CS)

x
s t
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Flow = .5

Flow = .5
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1

Flow = 0

Flow = 1
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Quantifying Inefficiency

Defn:

– = 4/3 in Pigou's example (33% loss)
– the closer to 1 the better
– aka "coordination ratio", "price of anarchy"

[Kousoupias/Papadimitriou 99,01]
– first studied for WE by [Roughgarden/Tardos 00]

inefficiency
ratio

=
average travel time in WE

average travel time in sys opt



13

Potential Fns & Inefficiency

Assume: each cost fn is affine: ce(x) = aex+be

Claim: BMW potential fn a good approximation
of true objective function (avg travel time).
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Potential Fns & Inefficiency

Assume: each cost fn is affine: ce(x) = aex+be

Claim: BMW potential fn a good approximation
of true objective function (avg travel time).

Objective: C(f) = Σe ce(fe)fe = Σe [aefe+be]fe

Potential: �(f) = Σe ∫f  ce(x)dx = Σe [½aefe+be]fe0
e
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Potential Fns & Inefficiency

Assume: each cost fn is affine: ce(x) = aex+be

Claim: BMW potential fn a good approximation
of true objective function (avg travel time).

Objective: C(f) = Σe ce(fe)fe = Σe [aefe+be]fe

Potential: �(f) = Σe ∫f  ce(x)dx = Σe [½aefe+be]fe

So: �(f) ≤ C(f) ≤ 2�(f)
�

2�
C

0
e
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Potential Fns & Inefficiency

So: �(f) ≤ C(f) ≤ 2�(f)
• (affine cost functions) �

2�
C
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Potential Fns & Inefficiency

So: �(f) ≤ C(f) ≤ 2�(f)
• (affine cost functions)

Consequence: inefficiency ratio ≤ 2
• proof: C(WE) ≤ 2�(WE) ≤ 2�(OPT) ≤ 2C(OPT)

�

2�
C



18

Potential Fns & Inefficiency

So: �(f) ≤ C(f) ≤ 2�(f)
• (affine cost functions)

Consequence: inefficiency ratio ≤ 2
• proof: C(WE) ≤ 2�(WE) ≤ 2�(OPT) ≤ 2C(OPT)

In fact: [RT00] more detailed argument ⇒
inefficiency ratio ≤ 4/3
– Pigou's example the worst! (among all        networks,

traffic matrices)

�

2�
C
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More General Cost Fns?

General Cost Functions: worst inefficiency
ratio grows slowly w/"steepness"
– e.g., degree-d bounded polynomials (w/nonnegative

coefficients) [Roughgarden 01]
– naive argument: ratio ≤ d+1
– optimal bound: ≈ d/ln d
– worst network = analogue of  

Pigou's example
– for d = 4: ≈ 2.15

s t

xd

1
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Epilogue

• potential function introduced in
[Beckmann/McGuire/Winsten 56] to prove
existence of Wardrop equilibria

• now standard tool in game theory to prove
existence of pure Nash equilibria

• now standard tool in theoretical CS + OR to
bound inefficiency of equilibria
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