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Traffic Congestion
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Electronic Toll Collection Facilities
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Introduction

• Traffic congestion has become part of everyday life in major
metropolitan areas.
– An article in The Economist, April 27, 2002, discusses the congestion

in Britain.

Tolled you so
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Introduction

• “The real costs of motoring (in Britain) have been falling for
decades.”
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Introduction

• “Nearly all the recent road studies the government has
commissioned have supported the use of road tolls.”

• “A big road-building programme without pricing is as
ludicrous as giving a heroine addict a last fix.”
[David Begg, Chairman, Commission for Integrated
Transport.]

• “The capital’s mayor, Ken Livingstone, is committed to
introducing a £5 daily fee on cars entering the city centre from
next January. London is the first big city in the world to try
this, . . .”

• Toll is now £8
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Congestion Charging in London – Feb. 17, 2003
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Introduction

• Two types of models in traffic assignment
– User equilibrium (or optimum) models assume that at

equilibrium, no traveler has any incentive to change his or
her route.

• An example of Nash equilibrium.
– System optimum models choose routes that minimize total

system cost when demand is fixed, or maximize Net User
Benefit (NUB) when demand is elastic.

• Implicitly assume that it is possible to control travelers’
behavior.

• These models generally distribute travel demands to
routes in the network differently.
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s2(v2) = v2 + 50

s4 (v4)=10v4
s3(v3)=v3 + 50

s1(v1)=10v1

Braess’ Paradox

User Cost = 83
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User Cost = 92

In either case, System Cost = 6 x 83
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Traffic Assignment Models: Fixed Demand

• VFD = {v: v = ∑k xk, Axk = bk, xk > 0, ∀ k ∈ K}

• User Equilibrium: Find vU ∈ VFD such that

                             s(vU)T(v – vU) > 0,  ∀ v ∈ VFD

• Tolled User Equilibrium: Find v[β] ∈ VFD such that

                      (s(v[β]) + β)T(v – v[β])> 0,  ∀ v ∈ VFD

where β is a given toll vector.

• System Optimum:

                vS = argmin{s(v)Tv: v ∈VFD}
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Marginal Social Cost Pricing

• Toll Pricing Problem: Find β so that v[β] = vS.

FDSTSTSS Vuvuvvsvs ∈∀≥−∇+ ,0)())()((

• Marginal Social Cost Pricing tolls

STS vvs )(∇=β

• An optimality condition for the system problem:
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s4 (v4)=10v4

β2 = 3

s3(v3)=v3 + 50

s1(v1)=10v1

Braess’ Paradox with MSCP Tolls

Note:
• User Cost = 83 + 33 = 116
• Four out of five arcs are tolled.

β4 = 30

β1 = 30

β5 = 0

 2

41

3

6 6

β3 = 3

s2(v2) = v2 + 50

s5(v5) =v5 + 10
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First-Best Toll Pricing

• Stockholm Network – Fixed Demand
– Morning Rush 278,873 trips
– Nodes/Links/Centroids = 417/963/46

• Results per Vehicle
– Travel Time 42.96 minutes
– MSCP tolls 128.53 minutes (88.86 Kr), 914 toll booths
– MINREV tolls 9.4 minutes (8.125 Kr), 192 toll booths
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First-Best Toll Set

• The system flow, vS, is in a tolled user equilibrium
with β being the toll vector if and only if there is ρ
such that (β,ρ) satisfies the following:
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Bergendorff, P., D. W. Hearn, and M. V. Ramana, “Congestion Toll Pricing of Traffic Networks,”
Network Optimization, P. M. Pardalos, D. W. Hearn and W. W. Hager (Eds.), Springer-Verlag
Series, Lecture Notes in Economics and Mathematical Systems, 1997,  pp. 51-71.
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First-Best Toll Pricing Framework

• Solve vS = argmin{s(v)Tv: v ∈VFD}
• Solve a toll selection problem :
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Hearn, D. W.  and  Ramana, M. V., “Solving Congestion Toll Pricing Models,”
 in  Equilibrium and Advanced Transportation Modeling, P. Marcotte and S. Nguyen (Eds.),
Kluwer Academic Publishers, 1998, pp. 109-124.
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Numerical Results for MINREV

• Customized DWD versus CPLEX

Network Nodes Arcs OD Iter Sec. Toll Rev. Iter Sec. Toll Rev.
Sioux Falls 24 76 528 7 0.49 20.67 77 0.12 20.67

Hull 501 798 142 15 5.98 3462.82 2298 0.97 3464.67
Stockholm 416 962 1623 40 116.02 1.851K 8090 25.72 1.860K
Winnipeg 1052 2836 4345 68 9491.41 85186.7 Out of memory

Dantzig-Wolfe CPLEX 7.0

Bai, L., Hearn, D.W., and Lawphongpanich, S., “Decomposition Techniques for the Minimum Toll Revenue
Problem,” Networks, Vol. 44, No. 2, 142 - 150, 2004.
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Numerical Results for MINTB

• Dynamic Slope Scaling Procedure (Modified)

Test Nodes Arcs OD Pairs
Set (Ave.) (Ave.) (Ave.) Iter Sec. # Booths Iter Sec. # Booths
1 100 366 25 7 2.65 29 5 2.03 29
2 200 827 30 7 10.70 42 5 7.77 42
3 300 2155 35 8 27.85 45 3 12.71 45
4 400 3067 45 10 81.83 58 7 56.97 58
5 500 4860 50 10 117.33 69 6 71.53 69

29% 30% 0%

Original DSSP Modified DSSP

Ave. Improvement

Hearn, D. W., Yildirim, M. B., Ramana,  M. V. and  Bai, L. H., “Computational Methods for Congestion Toll
Pricing Models,” Proceedings of The 4th International IEEE  Conference on Intelligent Transportation Systems,
2001.
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Numerical Results for MINTB (cont.)

Network Nodes Arcs OD Pairs Iter Sec. # Booths Iter Sec. # Booths
Sioux Falls 24 76 528 8 1.68 38 8 1.57 39

0% 7% -3%
Hull 501 798 142 12 26.87 48 5 11.82 49

58% 56% -2%
Stockholm 416 962 1623 26 660.01 127 11 301.32 127

58% 54% 0%Improvement

Original DSSP Modified DSSP

Improvement

Improvement

• Real Networks

Bai, L., Hearn, D.W., and Lawphongpanich, S., “A Heuristic Method for the Minimum Toll Booth
Problem,” submitted to TRB, January, 2006.
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Traffic Assignment Models: Elastic Demand

• VED = {v: v = ∑k xk, Axk = tkEk, xk > 0, tk > 0, ∀ k∈K}

• User Equil.: Find (vU ,tU) ∈ VED such that

            s(vU)T(v – vU) – w(tU )T(d – tU) > 0,  ∀ (u,d) ∈ VED

– where w(t) = inverse demand function.

• Tolled User Equil.: Find (v[β],t[β]) ∈ VED such that

    (s(v[β]) +β)T(u–v[β]) – w(t[β])T(d – t[β]) > 0, ∀(u, d) ∈ VED
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Traffic Assignment Models: Elastic Demand (cont)

• System Optimum (Maximize NUB):

0)())((
)(
)(

=−+
∀≤
∀≥+

STSSTS

kT
k

STS

kTS

ttwvvs
kEttw
kAvs

β
ρ
ρβ

• Toll Set:








∈−= ∑∫ ED

k

tt

k
SS Vtvvvsdzzwtv k ),(:)()(maxarg),(

0

Hearn, D. W. and M. B. Yildirim, "A Toll Pricing Framework for Traffic Assignment Problems with
Elastic Demand," Current Trends in Transportation and Network Analysis: Papers in honor of
Michael Florian, M. Gendreau and P. Marcotte (Eds.), Kluwer Academic Publishers, 135-145, 2002.

Yildirim, M. B. and Hearn, D. W., “A First Best Toll Pricing Framework for Variable Demand Traffic
Assignment Problems,”Transportation Research, 2004.
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Numerical Issue: Approximate System
Solution

• Existing algorithms for TA (e.g., Frank-Wolfe, PARTAN,
RSD) only provide an approximate SOPT solution. This
resulted in empty (nonegative) toll sets for Hull, Winnipeg and
Stockholm even with 10-6 optimality gap.

• In general, feasible flows (even near optimal) may not have
nonegative toll sets. See Bai et al., “Relaxed Toll Sets for
Congestion Pricing Problems,” in Mathematical and
Computational Models for Congestion Pricing, S.
Lawphongpanich, D. W. Hearn and M. J. Smith (eds.),
forthcoming, Springer-Verlag, 2005/06.
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Relaxed Toll Sets

• For a given feasible flow vector û ∈ VFD and ε > 0,
the relaxed toll set at û, T+(û,ε), is the set of all β for
which these exists a corresponding ρ satisfying the
following conditions:
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Relaxed Toll Sets – Primary result

• Let
}:)ˆ()ˆ)ˆ(()ˆ(min{( FDT

mscp Vvuvuusus ∈−∇+−=ε

• Then,
– εmscp > 0
– If ∇s(û) > 0, then T+(û,εmscp) is nonempty.

• Theorem: Let s(.) be strongly monotone with
modulus α > 0. For anyη > 0, there exists a δ > 0
such that ||vβ - vs|| < η whenever β ∈ T+(û,εmscp)  and
||û – vs|| < δ.
– A toll vector from a “good” relaxed toll set induces a user

equilibrium that is approximately system optimal.
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First-Best Toll Pricing - Results

• Characterized toll sets as polyhedra
• Toll Pricing Framework allows secondary objectives:

– MINREV, MINTB, MINMAX, and ROBINHOOD
• Decomposition techniques for MINREV

– Cutting Plane Algorithm
– Dantzig-Wolfe Decomposition

• Modified DSSP algorithm for MINTB
• Extended results to all variable demand models

– Elastic Demand
– Combined Distribution-Assignment

• Relaxed toll sets



26

Second-Best Toll Pricing

• For political reasons or otherwise, there are some
roads that are not tollable.
– The second-best problem belongs to a harder class of

problems − Mathematical Programs with Equilibrium
Constraints (MPECs).

– Problems of current interest such as pricing of cordon,
HOT (High Occupancy Toll) and FAIR (Fast and
Intertwined Regular) Lanes.
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FAIR Lanes

• In the FAIR LANE concept, lanes in a designated highway are
separated into two sections, fast and regular lanes.
– Fast lanes would be electronically tolled and users of the regular lanes

would receive credits that can be used as toll payments on days when
they choose to use the fast lanes.

1

2

43

b c

g

ed

1

2

43
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f
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r

Acceptable tolls:
βb, βc, βd , βe = 0, βf > 0, βr < 0
vfβf + vrβr > 0
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Cordon Pricing

• Cordon Pricing is a system that collects tolls from vehicles that
passes through certain roads or points in a traffic network.
Typically, these points form a loop around a defined area, e.g.,
a city center or a historical area, where traffic needs to be
restricted.

 Centroids
  Road intersections

Arcs in the cordon form a
cut-set separating
centroids in the cordoned
area from those on the
perimeter.



29

2nd Best Toll Pricing Problem – ED-VI
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Equivalent Formulation – ED-KKT

• The sequentially bounded constraint qualification (SBCQ)
holds for ED-VI.
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Properties of 2nd Best Tolls – NUB bounds

• Theorem: Assume that the user and system problems
have solutions (vU,tU ) and (vS,tS).  Further, assume
that s(v) and –w(t) are monotonic and continuous and
(∇s(v), ∇w(t)) exists and is continuous. Then, ED-VI
has a global optimal solution with objective value in
the interval [NUB(vU,tU ) ,NUB (vS,tS) ].
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Properties of 2nd Best Tolls –
Constant Toll Revenue*

• Any β such that (β, ρ) satisfies the following system of
equations is a valid toll.
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Properties of 2nd Best Tolls – Formulas?

• To motivate another property, consider the following two-arc
problem where Arc 1 is tollable and Arc 2 is not.

1 2

Arc 1

Arc 2

where s1(v1) = v1, s2(v2) = v2 + 2, and w(t) = 9 – t/2
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Properties of 2nd Best Tolls – Formulas?

• In the literature (see, e.g., McDonald, 1995, and Verhoef,
2000), the optimal toll for Arc 1 is

( ) 1818.25455.3
5.01

5.03636.3

)(
)()(

)()( 222
22

1111

=
+

−=

′
′−′

′
+′= vvs

twvs
twvvsβ

• In this expression, the optimal toll includes a portion of MSCP
from the non-tollable arc.
– Are there similar formulas for general networks?
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Properties of 2nd Best Tolls – Formulas?

• Results related to the previous question:
– When the KKT multipliers exist, the second-best tolls can

always be written as an expression involving marginal
social cost pricing (MSCP) terms.

– The KKT conditions associated with ED-KKT yields the
following expression of an optimal toll vector.

– An interpretation:
• An optimal 2nd best toll on a link involves its own MSCP as well as

those from non-tollable arcs via the KKT multipliers.
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Properties of 2nd Best Tolls – Formulas?

• ED-KKT for the two arc example
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Properties of 2nd Best Tolls – Formulas?

• An optimal solution

• Using the expression,
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Properties of 2nd Best Tolls – Formulas?

• The above result assumes that the multipliers exist.
– Scheel and Scholtes [2000] show that MFCQ is violated at

every feasible solution of ED-KKT.
– However, the multipliers exist when the strong stationarity

conditions hold at an optimal solution to ED-KKT
– A similar expression for the tolls can be obtained using the

‘tightened’ NLP associated with ED-KKT.
• The multipliers for this problem exist, e.g., when s(v)

and w(t) are linear.



39

Equivalent Formulation: ED-EX

• The set VED can be expressed as a convex
combination of its extreme points, (ui,di), i = 1,..., n.
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Cutting Constraint Algorithm for ED-EX

• Let (u1,d1) be a system optimal solution. Set r = 1.
• Solve the following master problem:

• Solve the subproblem:

Otherwise, set r = r + 1 and go to 1.
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Cutting constraint algorithm for ED-EX

• The solutions to the problem in Step 3 are distinct.
– Because the number of extreme points of VED is finite, the

algorithm must stop after a finite number of iterations.

• In Step 2, the master problem is generally nonconvex
and may not satisfy MFCQ.
– Unless we obtain global solutions, the sequence of

objective values for the master problem may not decrease
monotonically.

– In our implementation, MINOS is able to solve the master
problem when the cutting constraints are relaxed, i.e.,

ritdtwvuvs iTiT ,,1,)()()())(( L=−≥−−−+ εβ
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Example: Elastic Demand

Network 1

2 8

7

6

5

4

3

9

-280(2, 4)
-260(2, 3)
-240(1, 4)
-220(1, 3)

bkakOD pair

Inverse Demand Function: wk(t) = ak + bkt
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Example: Elastic Demand

55(9, 8)489(6, 8)

425(9, 7)610(6, 5)

472(8, 7)443(5, 9)
54(8, 4)52(5, 7)

134(8, 3)205(5, 6)

491(7, 8)358(2, 6)
97(7, 4)22(2, 5)

342(7, 3)97(1, 6)

297(6, 9)116(1, 5)
CaTaArcsCaTaArcs

Travel Cost function: sa(v) = Ta(1+0.15(va/Ca))
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Example: Elastic Demand

-4.7638E-140.001431.885

2.4725-35.641441.524

1.8326-91.221446.593

19.7560-289.681466.312

27.7850-740.151468.111

% Equil. GapSubprobMasterIt.

 Objective Value 1

2 8

7

6

5

4

3

9

Tollable arcs: (5,7), (7,4), and (8,4).
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Example: NUB versus Arcs Tolled

     Tollable arcs:

1

2 8

7

6

5

4

3

9

1340.00

1360.00

1380.00

1400.00

1420.00

1440.00

1460.00

1480.00

0 1 2 3 4 5

# arcs in the subset
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Numerical Results: Fixed Demand

• Use GAMS
– CPLEX to solve the subproblem in Step 3.
– MINOS to solve the master problem in Step 2.

• Two networks from the literature
– Sioux Falls: 76 links, 24 nodes, 528 OD pairs.
– Hull: 798 links, 501 nodes, 158 OD pairs.

• Tollable arc selection
– An arc is tollable if its user equilibrium flow exceeds its

system optimum flow by a given percentage (‘excess’
percentage).
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Numerical Results: Fixed Demand

• Sioux Falls:

– Total delay at SOPT = 71.9426
– Total delay at UOPT = 74.8023

Excess # of Total Relative Iterations Master Sub-problem
% Tollable Delay Gap Required Problem (sec)

Arcs  (%) (sec)
5% 18 72.1036 0.9354 49 1731.61 11.77
10% 12 72.1861 0.9024 36 879.26 8.3
15% 4 73.0681 0.7764 14 182.13 2.65
25% 2 73.4916 0.4992 10 107.73 1.9
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Numerical Results: Fixed Demand

• Hull

– Total delay at SOPT = 179063
– Total delay at UOPT = 186720

Excess # of Total Relative Iterations Master Sub-problem
% Tollable Delay Gap Required Problem (sec)

Arcs  (%) (sec)
5% 179 179117 < 0.0001 16 6251.09 133.23

10% 135 179420 < 0.0001 8 1081.88 59.76
15% 93 179988 < 0.0001 7 1671.44 55.06
25% 58 180629 < 0.0001 7 2007.45 53.14
50% 21 181092 < 0.0001 10 3947.43 66.82
75% 12 181315 < 0.0001 8 3293.28 46.84

100% 10 181326 < 0.0001 11 5270.45 63.39
200% 8 181329 < 0.0001 11 5620.71 61.49
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Toll Pricing Framework.

• Solve the following toll selection problem:
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Numerical Example

Tollable arcs
1

2 8

7

6

5

4

3

9

Min Max MINTB
Arcs Flow Toll Toll Toll
(1,5) 5.12
(1,6) 2.82
(2,5) 36.35
(2,6) 10.56
(5,7) 41.42 3.56 3.23 4.78
(5,9) 0.05 0.05 0.73 2.28
(6,8) 13.37 2.69 1.69
(6,9) 0.61
(7,3) 21.24 1.59 1.92 0.37
(7,4) 12.91 2.9 3.23 1.69
(7,8) 7.28 3.9 3.23
(8,4) 20.7 1 2.69
(9,8) 0.05 4.92 3.23

Tot Rev. 283.46 283.46 283.46
Max Toll 4.92 3.23 4.78
# booths 8 8 5

NUB 1453.27 1453.27 1453.27

ED-VI

Note: Nonessential arcs are not listed.
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2nd Best Tolls - Conclusions

• Three equivalent formulations (ED-VI, ED-KKT, and ED-EX) for the 2nd

best toll pricing problem
• Properties of the 2nd best tolls

– Via the KKT multipliers, optimal 2nd best tolls involves MSCP tolls on
individual arcs as well as those from non-tollable arcs.

– Toll revenue is constant.
• Cutting constraint algorithm for ED-EX

– Converges finitely
– Relaxed version can be implemented using existing software for LP and NLP
– Can potentially solve large problems

• Toll pricing framework
– Find a 2nd best toll vector that optimizes a (secondary) objective.

Lawphongpanich, S. and Hearn, D. W., "An MPEC Approach to Second Best Toll
Pricing," Mathematical Programming, 33-55, 7 July 2004.
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Current Research

• Dynamic tolls to vary with time and traffic conditions
– Ph. D. research of Artyom Nahapetyan
– Period DTA – tomorrow TSL session on DTA (I) at 3:30

• Toll pricing for systems with multiple modes of
transportation, e.g., tolls on the roads and fares on the
transit network. Partial support from Volvo Research
Foundation. PIs are Toi Lawphongpanich (UF),
Younes Hammdouch (UAE), Agachai Sumalee (U. of
Leeds)
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Traffic Assignment Problem with Multiple
Modes

• Consider two travel options:
– Automobile only (auto-only)
– Mixed modes are

Walk-Metro: Travelers walk to metro stations, use
metro lines to reach the final metro stations, and walk
from there to their destinations.

Auto-Metro: Travelers drive to metro stations, use
metro lines to reach the final stations, and walk from
there to their destinations.

Y. Hamdouch, M. Florian, D. W. Hearn, and S. Lawphongpanich, "Congestion Pricing
for Multi-Modal Transportation Systems," accepted and under revision for
Transportation Research B.
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Underlying Networks

• There is an underlying network for each travel option.
– Auto only option

1

2

3 74

Nodes = road intersections
Arcs = roads and highways
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Underlying Networks: Walk-Metro Option
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Underlying Networks: Auto-Metro Option
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Multi-mode Pricing - Summary

• Developed a system problem that leads to the toll
pricing framework
– SOPT maximizes partial (metro benefit) NUB
– UOPT problem is a VI

• Show that 2nd best pricing is not needed for zero tolls
on walk, embark, disembark links

• Propose secondary toll selection problems unique to
the multi-mode case.
– For example, auto tolls are used to reduce transit fares
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End
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