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In this lecture the focus is on general economic equi-
librium problems, in particular, Walrasian price or pure
exchange equilibria. This problem has been extensively
studied in the economics literature dating to Walras
(1874); see also Wald (1951), Debreu (1959), and Mas-
Colell (1985). Specifically, in this chapter we apply the
powerful theory of variational inequalities to both the
qualitative analysis of general economic equilibria as well
as to their computation.

Network Equilibrium Equivalence

We first briefly review the pure exchange economic equi-
librium model and give its variational inequality formu-
lation. Some fundamental theoretical results are then
presented. The network equilibrium formulation is also
given here.

Consider a pure exchange economy with l commodities,

and with column price vector p taking values in Rl
+ and

with components p1, . . . , pl. Denote the induced aggre-

gate excess demand function z(p), which is a row vector

with components z1(p), . . . , zl(p). Assume that z(p) is

generally defined on a subcone C of Rl
+ which contains

the interior Rl
++ of Rl

+, that is, R++ ⊂ C ⊂ Rl
+.
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Hence, the possibility that the aggregate excess demand

function may become unbounded when the price of a

certain commodity vanishes is allowed. As usual, as-

sume that z(p) satisfies Walras’ law, that is, 〈z(p), p〉 = 0

on C and that z(p) will be homogeneous of degree zero

in p on C, that is, z(αp) = z(p) for all p ∈ C, α > 0.
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Because of homogeneity, one may normalize the prices
so that they take values in the simplex:

Sl = {p : p ∈ Rl
+,

l∑
i=1

pi = 1}, (1)

and, therefore, one may restrict the aggregate excess
demand function to the intersection D on Sl with C.
Let

Sl
+ = {p : p > 0, p ∈ Sl}, (2)

and note that Sl
+ ⊂ D ⊂ Sl.

As is standard in general economic equilibrium theory,
assume that

(i) The function z(p) : D 7→ Rl is continuous.

(ii) The function z(p) satisfies Walras’ law

〈z(p), p〉 = 0, ∀p ∈ D. (3)
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The definition of a Walrasian equilibrium is now stated.

Definition 1 (Walrasian Price Equilibrium)

A price vector p∗ ∈ Rl
+ is a Walrasian equilibrium price

vector if

z(p∗) ≤ 0. (4)

The following theorem establishes that Walrasian price
vectors can be characterized as solutions of a variational
inequality.

Theorem 1 (Variational Inequality Formulation of
Walrasian Equilibrium)

A price vector p∗ ∈ D is a Walrasian equilibrium if and
only if it satisfies the variational inequality

〈z(p∗), p − p∗〉 ≤ 0, ∀p ∈ Sl. (5)
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Proof: Observe, first, that variational inequality (5) is
equivalent to

〈z(p∗), p〉 ≤ 0, ∀Sl, (6)

by virtue of Walras’ law (3). Assume now that p∗ ∈ D is
a Walrasian equilibrium price vector, that is, it satisfies
(4). Then, clearly, (6) holds true. On the other hand,
assuming that (6) holds for all p ∈ Sl and selecting p =
(0,0, . . . ,1,0, . . . ,0) with a 1 at the i-th position, one
concludes that zi(p∗) ≤ 0; i = 1, . . . , l.

The proof is complete.

Recall the geometric interpretation of a variational in-
equality. The interpretation in the above variational in-
equality model is that z(p∗) is “orthogonal” to the set
Sl and points away from the set Sl. In particular, the
result is the following.

Proposition 1

A price vector p∗ is a Walrasian equilibrium, or, equiv-
alently, a solution of the above variational inequality if
and only if it is a fixed point of the projection map

G(p) = PSl(p + ρz(p)), (7)

where ρ > 0 and PSl indicates the projection map onto

the compact convex set Sl.
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Note that if the aggregate excess demand function z(p)
is defined and is continuous on all of Sl, that is, D = Sl,
then the existence of at least one Walrasian equilibrium
price vector in Sl follows immediately.

However, since D is not necessarily compact, this re-
sult no longer holds. Nevertheless, one may still apply
this theorem to deduce that z(p) exhibits the needed
behavior near the boundary of Sl, in particular, that at
least some of the components of z(p) become in a sense
“large” as p approaches points on the boundary of Sl

that are not contained in D. Several existence proofs
of this type can be found in Border (1985). We now
provide the result proven in Dafermos (1990).

Theorem 2 (Existence)

Assume that the aggregate excess demand function

z(p) satisfies the following assumption: If Sl \ D is non-

empty, then with any sequence {pn} in Sl
+ which con-

verges to a point of Sl \ D there is associated a point

p̄ ∈ Sl
+, generally dependent on {pn}, such that the se-

quence 〈z(pn), p̄〉 contains infinitely many positive terms.

Then there exists a Walrasian equilibrium price vector

p∗ ∈ D.
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A special class of aggregate excess demand functions
is now considered, for which the following result holds
true.

Theorem 3

Assume that −z(p) is continuous and monotone on D.
Then p∗ ∈ D is a Walrasian equilibrium price vector if
and only if

〈z(p), p − p∗〉 ≤ 0, ∀p ∈ D, (8)

or, equivalently, if and only if

〈z(p), p∗〉 ≥ 0, ∀p ∈ D. (9)

An immediate consequence of the above is the following.

Corollary 1

Assume that −z(p) is continuous and monotone on D

and D is compact. Then the set of Walrasian equilibrium

price vectors is a convex subset of D.
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The uniqueness issue is now investigated; in particular,
if one strengthens the monotonicity assumption some-
what, one obtains the following result.

Theorem 4 (Uniqueness Under Strict Monotonic-
ity)

Assume that −z(p) is strictly monotone on D, that is,

〈z(p1) − z(p2), p1 − p2〉 < 0, ∀p1, p2 ∈ D, p1 6= p2.

Then there exists at most a single Walrasian price equi-
librium vector p∗.

Proof: Assume that p∗ ∈ D and q∗ ∈ D are Walrasian
price equilibrium vectors. Then each vector satisfies,
respectively, variational inequality (5), that is,

〈z(p∗), p − p∗〉 ≤ 0, ∀p ∈ Sl (10)

and

〈z(q∗), p − q∗〉 ≤ 0, ∀p ∈ Sl. (11)

Letting p = q∗ in (10), and p = p∗ in (11), and adding
the two resulting inequalities, one obtains

〈z(p∗) − z(q∗), p∗ − q∗〉 ≥ 0. (12)

But, by the definition of strict monotonicity on D, (12)

cannot hold unless p∗ = q∗. The proof is complete.
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c1 = −z1(p) cl = −zl(p)

d01 = 1 =
∑l

i=1 pl

Network formulation of the pure exchange
economy
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Below it is established that the variational inequality
model (5) for the Walrasian price equilibrium problem is
isomorphic to a network equilibrium model with special
structure.

Consider the following network equilibrium problem: A
network is given consisting of a single origin node 0, a
single destination node 1, and with a single
origin/destination pair (0,1). There are l links connect-
ing the origin/destination pair (0,1) (cf. Figure 1). A
fixed O/D demand d01 is assumed given. Let fi denote
the flow passing through link i; i = 1, . . . , l, and let ci be
the user cost associated with link i; i = 1, . . . , l.

Group the link loads into a column vector f ∈ Rl, and
the costs into a row vector c ∈ Rl. Assume the general
situation that a cost on a link may depend upon the
entire link load pattern, that is, ci = ci(f).

Then f∗ is a user equilibrium pattern if and only if no

user has any incentive to change his/her path, which in

the model corresponds to a link.
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In other words, mathematically, there exists an ordering
of the links ni; i = 1, . . . , l, such that

cn1(f
∗), . . . , cns(f

∗) = λ ≤ cns+1(f
∗) ≤ . . . ≤ cnl(f

∗) (13)

where

f∗
ni

{
> 0, i = 1, . . . , s,
= 0, i = s + 1, . . . , l.

(13) is equivalent to the following statement:

A vector f∗ ∈ K is a user equilibrium load pattern if and
only if it is a solution to the variational inequality

〈c(f∗), f − f∗〉 ≥ 0, ∀f ∈ K, (14)

where

K ≡ {f : f ≥ 0,

l∑
i=1

fi = d01}.
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The relationship between the variational inequality (5)
and the above network equilibrium problem is now es-
tablished. Consider the demand

d01 = 1,

the link flow pattern

f ≡ p,

and the user cost

c(·) ≡ −z(·). (15)

The equilibrium condition of the network with the cost
vector defined in (15) is:

zi(p
∗)

{
= λ, if p∗

i > 0
≤ λ, if p∗

i = 0.
(16)

Multiplying now the above inequalities by p∗
i ; i = 1, . . . , l,

and summing then the resulting equalities, and using
Walras’ law, one obtains

λ = 〈z(p∗), p∗〉 = 0.

Hence, the equilibrium condition (16) of the above net-
work with the cost function defined in (15) is identical
to the equilibrium condition (4) of the pure exchange
economy, with Walras’ law (3) holding.

Furthermore, variational inequality (14) which governs

the network equilibrium problem described above coin-

cides with variational inequality (5) which governs the

Walrasian price equilibrium problem.
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Recall now the costless migration equilibrium model de-
veloped in the migration lecture. In the case of a single
class of migrant, the resulting model’s network equi-
librium representation is identical to the network equi-
librium representation of the pure exchange economy
problem depicted in Figure 1. Hence, these two models
are isomorphic.

However, in the migration model, the flows on the net-
work links correspond to populations at the respective
locations, whereas in the pure exchange model, the
flows on the links correspond to prices.

The costs on the migration network correspond to the

disutility functions, whereas the costs on the Walrasian

network correspond to excess supply functions.
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We will subsequently show how the special network struc-

ture underlying the Walrasian price equilibrium model

can be exploited for computational purposes. The re-

sults in light of the discussion above, are applicable to

the migration equilibrium model as well.
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Sensitivity Analysis

ow the sensitivity analysis properties of Walrasian price
equilibria are investigated. In particular, the sensitivity
of the solution price vector to changes in the data is ex-
amined. The variational inequality approach allows one
to perform sensitivity analysis even when the equilibrium
lies on the boundary.

First, consider the comparison of two equilibria. We
begin with the statement of the following lemma, which
will be useful in the further analysis.

Lemma 1

Let z and z∗ denote two aggregate excess demand func-
tions, and let p and p∗ denote, respectively, their asso-
ciated Walrasian equilibrium price vectors. Then

〈z∗(p∗) − z(p), p∗ − p〉 ≥ 0. (17)

Moreover, when −z is strictly monotone (without any
monotonicity assumption imposed on z∗), then

〈z∗(p∗) − z(p∗), p∗ − p〉 ≥ 0, (18)

with equality holding only when p = p∗.
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Proof: Since p and p∗ are both Walrasian price equilib-
rium vectors, by Theorem 1, they must satisfy, respec-
tively, the variational inequalities

〈z(p), q − p〉 ≤ 0, ∀q ∈ Sl, (19)

〈z∗(p∗), q − p∗〉 ≤ 0, ∀q ∈ Sl. (20)

Letting q = p∗ in (19), and q = p in (20), and summing
the two resulting inequalities, one obtains (17).

From (17), one has that

〈z∗(p∗) − z(p) + z(p∗) − z(p∗), p∗ − p〉 ≥ 0. (21)

When −z(p) is strictly monotone, (21) yields

〈z∗(p∗)− z(p∗), p∗ − p〉 ≥ −〈z(p∗)− z(p), p∗ − p〉 ≥ 0; (22)

and, therefore, (18) follows with equality holding only

when p = p∗.
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Applying Walras’ law to (18) and (19) above, one con-
cludes with the following.

Corollary 2

Let z and z∗ denote two aggregate excess demand func-
tions, and let p and p∗ be their corresponding Walrasian
price vectors. Then

〈z∗(p∗), p〉 + 〈z(p), p∗〉 ≤ 0 (23)

and, assuming that −z is strictly monotone

〈z∗(p∗), p〉 ≤ 〈z(p∗), p〉, (24)

with equality holding only when p = p∗.

Now another sensitivity analysis result is stated.

Theorem 5

Let z and z∗ denote two aggregate excess demand func-
tions, and p and p∗ the corresponding Walrasian price
equilibrium vectors. Assume that z satisfies the strong
monotonicity assumption

〈z(p1) − z(p2), p1 − p2〉 ≤ −α‖p1 − p2‖2
, ∀p1, p2 ∈ D,

(25)
where α > 0. Then

‖p∗ − p‖ ≤ 1

α
‖z∗(p∗) − z(p∗)‖. (26)
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Proof: From Lemma 1 one has that (17) holds, and
from (17) that

〈z∗(p∗) − z(p) + z(p∗) − z(p∗), p∗ − p〉 ≥ 0. (27)

But from the strong monotonicity condition (25), (27)
yields

〈z∗(p∗)−z(p∗), p∗−p〉 ≥ −〈z(p∗)−z(p), p∗−p〉 ≥ α‖p∗ − p‖2.
(28)

By virtue of the Schwartz inequality, (28) yields

α‖p∗ − p‖2 ≤ ‖z∗(p∗) − z(p∗)‖‖p∗ − p‖, (29)

from, whence, (26) follows and the proof is complete.
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A General Walrasian Iterative Scheme

Now a general iterative scheme for the computation of
Walrasian price equilibria is described. The scheme is
based on the general iterative scheme of Dafermos and,
at each iteration, the scheme allows for the exploitation
of the special network structure depicted in Figure 1. In
the study of algorithms and their convergence, the stan-
dard assumption in the economics literature (cf. Scarf
(1973)) is that the aggregate excess demand function
z(p) is well-defined and continuous on all of Sl. Here
this assumption is also made. The scheme is as follows.

The Walrasian Iterative Scheme

Construct a smooth function g(p, q) : Sl × Sl 7→ Rl with
the following properties:

(i) g(p, p) = −z(p), ∀p ∈ Sl,

(ii) for every p, q ∈ Sl, the l× l matrix ∇pg(p, q) is positive
definite.

Any smooth function g(p, q) with the above properties
generates the following algorithm.

Step 0: Initialization

Start with some p0 ∈ Sl. Set k := 1.
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Step 1: Construction and Computation

Compute pk by solving the variational inequality

〈g(pk, pk−1)
T
, p − pk〉 ≥ 0, ∀p ∈ Sl.

Step 2: Convergence Verification

If |pk − pk−1| ≤ ε, with ε > 0, a prespecified tolerance,

then stop; otherwise, set k := k +1, and go to Step 1.
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For simplicity, and easy reference, denote the above vari-
ational inequality by VIk(g, Sl). Since ∇pg(p, q) is positive
definite, VIk(g, Sl) admits a unique solution pk. Thus, we
obtain a well-defined sequence {pk}. It is easy to verify
that if the sequence {pk} is convergent, say pk → p∗, as
k → ∞, then p∗ is an equilibrium price vector, that is, it
is a solution of variational inequality (9.5). In fact, on
account of the continuity of g(p, q), VIk(g, Sl) yields

−〈z(p∗), p − p∗〉 = 〈g(p∗, p∗)T , p − p∗〉

= lim
k→∞

〈g(pk, pk−1)
T
, p − pk〉 ≥ 0, ∀p ∈ Sl

so that p∗ is a solution of the original variational inequal-

ity (5).
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We now establish conditions on g(p, q) which guarantee
that the sequence {pk} is convergent. For simplicity, let
| · | denote the usual Euclidean norm in the space Rl and

let ‖ · ‖ denote the norm of the operator Q : G
1

2V 7→ Rl,

‖Q‖ = sup
u∈G

1
2 V,|u|=1

|Qu| (33)

where

G(p, q) =
1

2
(∇pg(p, q) + ∇pg

T(p, q)), (34)

which is positive definite.

V = {v : v ∈ Rl,

l∑
i=1

vi = 0} (35)

and

G
1

2V = {u : u = G
1

2(p, q)v, v ∈ V }. (36)

The conditions for convergence are now presented.

Theorem 7 (Convergence)

Assume that

‖G−1

2(p1, q1)∇qg(p
2, q2)G−1

2(p3, q3)‖ < 1, (37)

for all (p1, q1), (p2, q2), (p3, q3) ∈ Sl. Then the sequence

{pk} obtained by solving VIk(g, Sl) is Cauchy on Sl.
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Proof: Let p = pk+1 for VIk(g, Sl), that is,

〈g(pk, pk−1)
T
, pk+1 − pk〉 ≥ 0, (38)

and let p = pk for VIk+1(g, Sl), that is,

〈g(pk+1, pk)
T
, pk − pk+1〉 ≥ 0. (39)

Adding (38) and (39), one obtains

〈(g(pk, pk−1) − g(pk+1, pk))
T
, pk+1 − pk〉 ≥ 0, (40)

or

〈(g(pk+1, pk) − g(pk, pk))
T
, pk+1 − pk〉

≤ 〈(g(pk, pk−1) − g(pk, pk))
T
, pk+1 − pk〉. (41)

By the Mean Value Theorem, there exists a t ∈ (0,1),
such that

〈(g(pk+1, pk) − g(pk, pk))
T
, pk+1 − pk〉 = (pk+1 − pk)

T

∇pg(tp
k + (1 − t)pk+1, pk)(pk+1 − pk), (42)

or

〈(g(pk+1, pk) − g(pk, pk))
T
, pk+1 − pk〉

=
1

2
(pk+1 − pk)

T · (∇pg(tp
k + (1 − t)pk+1, pk)+

∇T
p g(tpk + (1 − t)pk+1, pk) · (pk+1 − pk). (43)
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Let Gk be defined as

Gk =
1

2
(∇pg(tp

k+(1−t)pk+1, pk)+∇T
p g(tpk+(1−t)pk+1, pk)).

(44)
Observe that Gk is symmetric and positive definite. Us-
ing now (41), (43), and (44) yields

〈(pk+1 − pk)
T
, Gk(p

k+1 − pk〉

≤ 〈g(pk, pk−1) − g(pk, pk), pk+1 − pk〉. (45)

Define now the inner product on V as

(v1, v2)k = vT
1 Gkv2, ∀v1, v2 ∈ V (46)

which induces the norm

|v|k = (vTGkv)
1

2 = |G
1

2

kv|, ∀v ∈ V. (47)

By applying the Mean Value Theorem, (45) yields

|pk+1 − pk|2k ≤ (pk−1 − pk)
T
G

1

2

k−1G
−1

2

k−1

∇qg(p
k, spk + (1 − s)pk−1)G

−1

2

k G
1

2

k(p
k+1 − pk) (48)

for s ∈ (0,1).
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Using now the Schwarz inequality and condition (37)
yields

|pk+1 − pk|2k ≤ |G
1

2

k−1(p
k − pk−1)| × ‖G−1

2

k−1

∇qg(p
k, spk + (1 − s)pk−1)G

−1

2

k ‖ × |G
1

2

k(p
k+1 − pk)|

= |pk − pk−1|k−1‖G−1

2

k−1∇qg(p
k, spk + (1 − s)pk−1)G

−1

2

k ‖
×|pk+1 − pk|k. (49)

Hence,

|pk+1 − pk|k ≤ γ|pk − pk−1|k−1, k = 1,2, . . . , (50)

where γ is the maximum over the compact set Sl of the
lefthand side of (37).

From (50) one obtains

|pk+1 − pk|k ≤ γ|pk − pk−1|k−1 ≤ . . . ≤ γk|p1 − p0|0. (51)
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On the other hand, since Gk; k = 1,2, . . ., is nonsingular,
for every (p, q) ∈ Sl × Sl, there is a β > 0 such that

|pk+1 − pk| ≤ β−1|pk+1 − pk|k,

∀pk+1, pk; k = 0,1,2, . . . . (52)

Therefore, (51) yields

|pk+r − pk| ≤
k+r−1∑

i=k

|pi+1 − pi| ≤ β−1
k+r−1∑

i=k

|pi+1 − pi|i

≤ β−1|p1 − p0|0
k+r−1∑

i=k

γi = β−1|p1 − p0|0
γk

1 − γ
(53)

which shows that {pk} is a Cauchy sequence in Sl and
the proof is complete.

Of course, the resulting variational inequality subprob-

lems, in this case, VIk(g, Sl), should be constructed in

such a way so that each is easy to solve. We empha-

size this point later in discussing the projection method

and the relaxation method, and the specific equilibra-

tion algorithms for the solution of the embedded sub-

problems.
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Proposition 2

Assume that the Jacobian matrix ∇pg(p, q) is also sym-
metric. Then a necessary condition for (35) to hold is
that the Jacobian matrix ∇z(p) is negative definite over
V for any p ∈ Sl, that is,

vT∇z(p)v < 0, ∀v ∈ V, v 6= 0,∀p ∈ Sl. (54)

The above condition implies that the function −z(p) is
strictly monotone on Sl, that is,

〈z(p1) − z(p2), p1 − p2〉 < 0, ∀p1, p2 ∈ Sl, p1 6= p2. (55)

Proof: Assume that condition (37) holds and select

p1 = p2 = p3 = q1 = q2 = q3.

Note that

−∇pz(p) = ∇pg(p, p) + ∇qg(p, p).

Therefore, (37) takes the form

‖I + G−1

2(p, p)∇pz(p)G
−1

2(p, p)‖ < 1. (56)

Set

B(p) = G−1

2(p, p)∇pz(p)G
−1

2(p, p). (57)
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Substituting now (57) into (56) and expanding the left-
hand side of (56), we obtain

‖I + B‖2 = sup
u∈G

1
2 V,|u|=1

|(I + B)u|2

= sup
u∈G

1
2V,|u|=1

uT(I + B)T(I + B)u

= sup
u

(1 + 2uTBu + uTBTBu) < 1 (58)

or,

2uTBu < −uTBTBu. (59)

Since u = G
1

2(p, p)v, (59) yields

2vT∇pz(p)v < −vT∇T
p z(p)G−1

2(p, p)G−1

2(p, p)∇pz(p)v

= −|G−1

2(p, p)∇pz(p)v|2 ≤ 0, ∀v ∈ V, p ∈ Sl, v 6= 0.

Hence, ∇pz(p) is negative definite over V for any p ∈ Sl.

The proof is complete.
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Note that since z(p) is homogeneous of degree zero

∇z(p) cannot be positive definite. Therefore, z(p) is

never strictly monotone on a set containing a segment

of the ray originating from the origin of the l-dimensional

space. However, it can be strictly monotone on the l−1

dimensional simplex Sl (see, e. g., Dafermos (1990)).
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The Projection Method

It is now demonstrated that the general iterative scheme
induces a projection method and, subsequently, that it
also induces the relaxation method. In the context of
the pure exchange model both the projection method
and the relaxation method resolve the variational in-
equality problem into simpler subproblems, which can
then be solved using equilibration algorithms.

We refer to the equilibration algorithms, respectively, as
WPEA, to denote “Walrasian Projection Equilibration
Algorithm,” and WREA, to denote “Walrasian Relax-
ation Equilibration Algorithm,” and state each of these,
for completeness.

Note that the network subproblems induced by the pro-

jection method are characterized by linear link cost func-

tions, whereas those induced by the relaxation method

are, in general, nonlinear.
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The projection method corresponds to the choice

g(p, q) = −z(q) +
1

ρ
G(p − q), (60)

where ρ is a positive scalar and G is a fixed, symmetric
positive definite matrix. In this case properties (i) and
(ii) are satisfied. In fact,

(i). g(p, q) = −z(p) + 1
ρ
G(p − p) = −z(p),

(ii). ∇pg(p, q) = ρ−1G, is positive definite and symmet-
ric.

Condition (37) then takes the form

‖I + ρG−1

2∇pz(p)G
−1

2‖ < 1. (61)

The following lemma give conditions under which (61)
is satisfied.

Lemma 2

If −z(p) is strongly monotone on Sl, then condition

(61) is satisfied.
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With such a selected g(p, q), each subproblem VIk(g, Sl)
is isomorphic to the network equilibrium problem with
linear link cost functions. In particular, one may select
G to be the diagonal positive definite matrix of the form

 α1 · · · 0
... . . . ...
0 · · · αl




where αi; i = 1,2, . . . , l, is any positive number. A nat-
ural choice is to have αi = −∂zi

∂pi
|p0; i = 1,2, . . . , l, in which

case VIk(g, Sl) is then isomorphic to the separable net-
work equilibrium problem depicted in Figure 2. Such a
problem can be solved in closed form using an equilibra-
tion algorithm. Here, for completeness, its resolution in
the context of the Walrasian price model is presented.
First, some notation is given.
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induced by the projection method
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Let the components of g(p, pk−1) be given by

gi(p, pk−1) = −zi(p
k−1) +

1

ρ
αi(pi − pk−1

i ), i = 1,2, . . . , l,

and define

hi(p
k−1) = −zi(p

k−1) − 1

ρ
αip

k−1
i , i = 1,2, . . . , l.

Then

gi(p, pk−1) =
1

ρ
αipi + hi(p

k−1), i = 1,2, . . . , l.

The Walrasian Projection Equilibration Algorithm is stated
immediately following.

WPEA

Step 0: Sort

Sort the numbers hi; i = 1,2, . . . , l, in nondescending or-
der, and relabel them accordingly. Assume, henceforth,
that they are relabeled. Also, define hl+1 ≡ ∞. Set
L := 1.
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Step 1: Computation

Compute

λL =
1 + ρ

∑L
i=1

hi

αi

ρ
∑L

i=1
1
αi

.

Step 2: Evaluation

If hL < λL ≤ hL+1, let s = L, λ = λL, and go to Step 3;
otherwise, set L := L + 1, and go to Step 1.

Step 3: Update

Set

pk
i =

ρ

αi
(λ − hi), i = 1,2, . . . , s

pk
i = 0, i = s + 1, s + 2, . . . , l.

The algorithm converges in a finite number of steps.

35



The Relaxation Method

The relaxation method corresponds to the choice

gi(p, q) = −zi(q1, . . . , qi−1, pi, qi+1, . . . , ql), ∀i = 1,2, . . . , l.

In this case properties (i) and (ii) are also satisfied. In
fact,

(i). g(p, p) = −z(p),

(ii). ∇pg(p, q) =




−∂z1

∂p1
· · · 0

... . . . ...
0 · · · −∂zl

∂pl


 is a diagonal ma-

trix.

By recalling the properties of the aggregate excess de-
mand function z(p), one deduces that it is reasonable
to assume that

∂zi

∂pi
< 0, ∀i = 1,2, . . . , l.

Hence, ∇pg(p, q) is positive definite. Furthermore,

∇qg(p, q) =




0 ∂z1

∂p2
· · · ∂z1

∂pl

∂z2

∂p1
0 · · · ∂z2

∂pl... ... . . . ...
∂zl

∂p1
· · · ∂zl

∂pl−1
0


 .
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and

∇pg
−1

2(p1, q1)∇qg(p2, q2)∇pg
−1

2(p3, q3)

=




0 ∂z1

∂p2
(−∂z1

∂p1
)
−1

2(−∂z2

∂p2
)
−1

2 · · ·
∂z2

∂p1
(−∂z2

∂p2
)
−1

2(−∂z2

∂p2
)
−1

2 0 · · ·
... ... . . .

∂zl

∂p1
(−∂z1

∂p1
)
−1

2(−∂zl

∂pl
)
−1

2 · · · · · ·


 .
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We now state the following.

Theorem 8

Let

−∂zT

∂pT
= min

i
{−∂zi

∂pi
}

and assume that

−∂zT

∂pT
>

∑
k 6=i

∂zi

∂pk

(−∂zk

∂pk

)
−1

2

(−∂zT

∂pT
)

1

2

, ∀i = 1,2, . . . , l.

Then, condition (37) of Theorem 7 is guaranteed to

hold.
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Note that (−∂zk

∂pk
)
−1

2(−∂zT

∂pT
)

1

2 ≤ 1, and, hence, this is a

diagonal dominance condition which has been imposed
in the literature to ensure the global stability of the
tatonnement process (see, e. g., Cornwell (1984)).

Recalling that ∇pg(p, q) is diagonal and positive definite,
and observing that the diagonal elements −∂zi

∂pi
depend

only on pi, we see that VIk(g, Sl) is equivalent to the sep-
arable strictly convex mathematical programming prob-
lem

min
p∈Sl

F (p) = min
p∈Sl

{
∫ p

0
g(p, pk−1)

T
dp}

= min
p∈Sl

{−
l∑

i=1

∫ pi

0
zi(p

k−1
1 , . . . , pk−1

i−1 , pi, q
k−1
i+1 , . . . , qk−1

l dpi}

which can be solved, in general, by any efficient math-

ematical programming algorithm.
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Now WREA is presented for solving VIk(g, Sl) where g(·)
is specified by above, which exploits the special network
structure of the problem. For a graphic depiction, see
Figure 3.

WREA

Step 0: Initialization

Start with the feasible point pk−1 ∈ Sl which is obtained
by solving VIk−1(g, Sl) and let n = k − 1.

Step 1: Selection

Select m and s such that

gm(pn, pk−1) = max
{i,pn

i >0}
{gi(p

n, pk−1)},

or

−z(pk−1
1 , . . . , pk−1

m−1, p
n
m, pk−1

m+1, . . . , p
k−1
l )

= max
{i,pn

i >0}
{−zi(p

k−1
1 , . . . , pk−1

i−1 , pn
i , pk−1

i+1, . . . , pk−1
l )},

gs(p
n, pk−1) = min

i
{gi(p

n, pk−1)},
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or

−zs(p
k−1
1 , . . . , pk−1

s−1 , pn
s , pk−1

s+1, . . . , p
k−1
l )

= min
i

{−zi(p
k−1
1 , . . . , pk−1

i−1 , pn
i , pk−1

i+1, . . . , pk−1
l )}.

If |gm(pn, pk−1) − gs(pn, pk−1)| ≤ ε, for ε > 0 a preset con-
vergence tolerance, then stop. The current pn is a so-
lution of VIk(g, Sl). Otherwise, go to Step 2.

Step 2: Equilibration

Equilibrate gm and gs by solving the following one-dimensional
mathematical programming problem for δ:

min zm(pk−1
1 , . . . , pk−1

m−1, p
n
m − δ, pk−1

m+1, . . . , p
k−1
l )

−zs(p
k−1
1 , . . . , pk−1

s−1 , pn
s + δ, pk−1

s+1, . . . , p
k−1
l ),

subject to 0 ≤ δ ≤ pn
m.
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Network equilibrium representation of subproblem
induced by the relaxation method
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Suppose that δn is the solution of the above minimiza-
tion problem. Let

pn+1
i = pn

i , ∀i 6= m, s,

pn+1
m = pn

m − δn

pn+1
s = ps + δn

and go back to Step 1 with n = n + 1.

The sequence {pn} obtained in this manner converges
to the solution of VIk(g, Sl), which can be seen by the
fact that

F (pn+1) < F (pn)

where F (·) is the objective function above.

Convergence condition of the projection method and

convergence condition of the relaxation method have

the following interpretation: If the price of a commod-

ity is a decreasing function of the demand for this com-

modity and is affected principally by the demand for the

commodity, then these conditions can be expected to

hold.
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A Numerical Example

Here a numerical example is presented which can be
solved either by the projection method and the relax-
ation method. The aggregate excess demand functions
in this economy are assumed derived from Cobb-Douglas
utility functions and are of the form:

zj(p) =
m∑

i=1

pTW i∑l
j=1 ai

j

(
ai

j

pj
) −

m∑
i=1

wi
j, j = 1, . . . , l,

where W i is the vector with components {wi
1, . . . , w

i
l}.

The example is taken from Eaves (1983) and the data

are given in Table 1 for ready reproducibility and conve-

nience. The values of ai
j and wi

j can be found in the cell

blocks. In this economy there are eight commodities

and five consumers.

44



Parameters for a Walrasian price equilibrium
example

ai
j, w

i
j i = 1 i = 2 i = 3 i = 4 i = 5

j = 1 0.3,3.0 0.0,0.0 0.0,0.0 0.0,0.0 0.0,4.0
j = 2 0.0,0.0 0.0,15. 1.0,0.0 0.0,0.0 0.0,0.0
j = 3 .13,0.0 0.0,0.0 0.0,0.0 0.0,5.0 0.0,0.0
j = 4 0.0,3.0 0.0,0.0 0.0,0.0 .73,4.0 .47,13.
j = 5 0.0,3.0 1.0,2.0 0.0,3.0 0.0,0.0 0.0,0.0
j = 6 0.0,5.0 1.0,0.0 0.0,0.0 0.0,0.0 .11,0.0
j = 7 .38,2.0 1.0,0.0 0.0,0.0 0.0,4.0 .05,6.0
j = 8 .19,0.0 1.0,0.0 0.0,0.0 .27,4.0 .37,6.0
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Computation of economic equilibria, thus far, has been
typically based either on classical algorithms for solv-
ing nonlinear systems of equations (see, e.g., Ginsburgh
and Waelbrock (1981)), or on simplicial approximation
methods pioneered by Scarf (1973) (see also the contri-
butions of Todd (1976, 1979), Shoven (1983), Whalley
(1977), Van der Laan and Talman (1987)). The former
techniques are applicable only when the equilibrium lies
in the interior of the feasible set, while the latter tech-
niques are general-purpose algorithms and are capable
of handling inequality constraints.

However, in their present state of development, they are
unable to handle large-scale problems (cf. Mathiesen
(1987)). General economic equilibrium problems have
been formulated as nonlinear complementarity problems
(see Manne (1985)), and a Newton-type method based
on this formulation has been used by many researchers
for the computation of equilibria (cf. Eaves (1983),
Manne and Preckel (1985), Rutherford (1987)).

Although this approach has been proven to be more

effective than fixed point methods, its convergence has

not been proven theoretically (see, e. g., Mathiesen

(1987)).
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Here we provide the references cited in the text as well
as additional ones.
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