
Traffic Network Equilibrium

Anna Nagurney

Isenberg School of Management

University of Massachusetts

Amherst, MA 01003

c©2002



Traffic Network Equilibrium

The problem of users of a congested transportation net-
work seeking to determine their travel paths of minimal
cost from origins to their respective destinations is a
classical network equilibrium problem.

It appears as early as 1920 in the work of Pigou, who

considered a two-node, two-link (or path) transportation

network, and was further developed by Knight (1924).

1



The problem has an interpretation as an economic equi-
librium problem where the demand side corresponds to
potential travelers, or consumers, of the network, whereas
the supply side is represented by the network itself, with
prices corresponding to travel costs. The equilibrium
occurs when the number of trips between an origin and
a destination equals the travel demand given by the mar-
ket price, that is, the travel time for the trips.

Wardropian Principles of Traffic

Wardrop (1952) stated the traffic equilibrium conditions
through two principles:

First Principle: The journey times of all routes actu-
ally used are equal, and less than those which would be
experienced by a single vehicle on any unused route.

Second Principle: The average journey time is mini-
mal.

The first principle is referred to as user-optimization

whereas the second is referred to as system-optimization.
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Beckmann, McGuire, and Winsten (1956) were the first

to rigorously formulate these conditions mathematically,

as had Samuelson (1952) in the framework of spatial

price equilibrium problems in which there were, how-

ever, no congestion effects. In particular, Beckmann,

McGuire, and Winsten (1956) established the equiva-

lence between the equilibrium conditions and the Kuhn-

Tucker conditions of an appropriately constructed op-

timization problem, under a symmetry assumption on

the underlying functions. Hence, in this case, the equi-

librium link and path flows could be obtained as the

solution of a mathematical programming problem.
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Traffic Network Equilibrium Models - Multimodal

Consider now a transportation network. Let a, b, c, etc.,
denote the links; p, q, etc., the paths. Assume that there
are J O/D pairs, with a typical O/D pair denoted by
w, and n modes of transportation on the network with
typical modes denoted by i, j, etc.

The Link Cost Structure

The flow on a link a generated by mode i is denoted by
fia, and the user cost associated with traveling by mode
i on link a is denoted by cia. Group the link flows into a
column vector f ∈ RnL, where L is the number of links
in the network. Group the link costs into a row vector
c ∈ RnL. Assume now that the user cost on a link and a
particular mode may, in general, depend upon the flows
of every mode on every link in the network, that is,

c = c(f), (1)

where c is a known smooth function.
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The Travel Demands and O/D Pair Travel Disutil-
ities

The travel demand of potential users of mode i trav-
eling between O/D pair w is denoted by diw and the
travel disutility associated with traveling between this
O/D pair using the mode is denoted by λiw. Group the
demands into a vector d ∈ RnJ and the travel disutilities
into a vector λ ∈ RnJ.

The flow on path p due to mode i is denoted by xip.

Group the path flows into a column vector x ∈ RnQ,
where Q denotes the number of paths in the network.

Conservation of Flow Equations

The conservation of flows equations are as follows. The
demand for a mode and O/D pair must be equal to the
sum of the flows of the mode on the paths joining the
O/D pair, that is,

diw =
∑
p∈Pw

xip, ∀i, w (2)

where Pw denotes the set of paths connecting w.

A nonnegative path flow vector x which satisfies (2) is
termed feasible. Moreover, we must have that

fia =
∑
p

xipδap, (3)

that is, that the flow on a link from a mode is equal

to the sum of the flows of that mode on all paths that

contain that link.
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A user traveling on path p using mode i incurs a user
(or personal) travel cost Ci

p satisfying

Ci
p =

∑
a

ciaδap, (4)

in other words, the cost on a path p due to mode i is
equal to the sum of the link costs of links comprising
that path and using that mode.

The traffic network equilibrium conditions are given be-
low.

Definition 1 (Traffic Network Equilibrium)

A flow and demand pattern (f∗, d∗) compatible with
(2) and (3) is an equilibrium pattern if, once estab-
lished, no user has any incentive to alter his/her travel
arrangements. This state is characterized by the fol-
lowing equilibrium conditions, which must hold for every
mode i, every O/D pair w, and every path p ∈ Pw:

Ci
p

{
= λiw, if xip

∗
> 0

≥ λiw, if xip
∗
= 0

(5)

where λiw is the equilibrium travel disutility associated

with the O/D pair w and mode i.
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The Elastic Demand Model with Disutility Func-
tions

Assume that there exist travel disutility functions, such
that

λ = λ(d), (6)

where λ is a known smooth function. That is, let the
travel disutility associated with a mode and an O/D pair
depend, in general, upon the entire demand pattern.

Let K denote the feasible set defined by

K = {(f, d) |∃x ≥ 0 | (2) , (3) hold}. (7)

The variational inequality formulation of equilibrium con-

ditions (4.5) is given in the next theorem. Assume that

λ is a row vector and d is a column vector.
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Theorem 1 (Variational Inequality Formulation)

A pair of vectors (f∗, d∗) ∈ K is an equilibrium pattern if
and only if it satisfies the variational inequality problem

c(f∗) · (f − f∗) − λ(d∗) · (d− d∗) ≥ 0, ∀(f, d) ∈ K. (8)

Proof: Note that equilibrium conditions (5) imply that[
Ci
p(f

∗) − λiw(d
∗)

] × [
xip − xip

∗] ≥ 0, (9)

for any nonnegative xip. Indeed, if xip
∗
> 0, then

[
Ci
p(f

∗) − λiw(d
∗)

]
= 0,

and (9) holds; whereas, if xip
∗
= 0, then

[
Ci
p(f

∗) − λiw(d
∗)

] ≥ 0,

and since xip ≥ 0, (9) also holds.
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Observe that (9) holds for each path p ∈ Pw; hence, one
may write∑

p∈Pw

[
Ci
p(f

∗) − λiw(d
∗)

] · [xip − xip
∗] ≥ 0, (10)

and, in view of constraint (2), (10) may be rewritten
as:∑

p∈Pw
Ci
p(f

∗) · (xip − xip
∗
) − λiw(d

∗) · (diw − diw
∗
) ≥ 0. (11)

But (11) holds for each mode i and every O/D pair w,
hence, one obtains:∑
i,w

Ci
p(f

∗) · (xip − xip
∗
) −

∑
i,w

λw(d
∗) · (diw − diw

∗
) ≥ 0. (12)

In view of (3) and (4), (12) is equivalent to: For (f∗, d∗) ∈
K, induced by a feasible x∗:∑
i,a

cia(f
∗) ·(fia−fia∗)−

∑
i,w

λiw(d
∗) ·(diw−diw∗

) ·(diw−diw∗
) ≥ 0,

∀(f, d) ∈ K, (13)

which, in vector form, yields (8).
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We now establish that (f∗, d∗) ∈ K, induced by a feasible
x∗ and satisfying variational inequality (8) (i.e., (12)),
also satisfies equilibrium conditions (5). Fix any mode
i, and any path p that joins an O/D pair w. Construct a

feasible flow x such that xjq = xjq
∗
(j, q) 6= (i, p), but xip 6=

xip
∗
. Then djv

∗
= djv, (j, v) 6= (i, w), but diw = diw

∗
+xip−xip∗.

Upon substitution into (12) one obtains

Ci
p(f

∗) · (xip − xip
∗
) − λiw(d

∗) · (diw − diw
∗
) ≥ 0. (14)

Now, if xip
∗
> 0, one may select xip such that xip > xip

∗

or xip < xip
∗
, and, consequently, (14) will hold only if[

Ci
p(f

∗) − λiw(d
∗)

]
= 0.

On the other hand, if xip
∗

= 0, then xip ≥ xip
∗
, so that

(13) yields

Ci
p(f

∗) ≥ λiw(d
∗),

and the proof is complete.
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Qualitative Properties of the Model

Observe that in the above model the feasible set is
not compact. Therefore, a condition such as strong
monotonicity would guarantee both existence and unique-
ness of the equilibrium pattern (f∗, d∗); in other words,
if one has that[

c(f1) − c(f2)
] · [f2 − f2

] − [
λ(d1) − λ(d2)

] · [d1 − d2
]

≥ α(‖f1 − f2‖2 − ‖d1 − d2‖2), ∀(f1, d1), (f2, d2) ∈ K,
(15)

where α > 0 is a constant, then there is only one equi-
librium pattern.

Condition (15) implies that the user cost function on a

link due to a particular mode should depend primarily

upon the flow of that mode on that link; similarly, the

travel disutility associated with a mode and an O/D pair

should depend primarily on that mode and that O/D

pair. The link cost functions should be monotonically

increasing functions of the flow and the travel disutil-

ity functions monotonically decreasing functions of the

demand.
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The Elastic Demand Model with Demand Func-
tions

We assume that there exist travel demand functions,
such that

d = d(λ) (16)

where d is a known smooth function. Assume here that
d is a row vector. In this case, the variational inequality
formulation of equilibrium conditions (5) is given in the
subsequent theorem, whose proof appears in Dafermos
and Nagurney (1984a).

Theorem 2 (Variational Inequality Formulation)

Let M denote the feasible set defined by

M = {(f, d, λ)|λ ≥ 0,∃ x ≥ 0 | (2), (3)hold}. (17)

The vector X∗ = (f∗, d∗, λ∗) ∈ M is an equilibrium pat-
tern if and only if it satisfies the variational inequality
problem:

F (X∗) · (X −X∗) ≥ 0, ∀X ∈ M, (18)

where F : M 7→ Rn(L+2J) is the function defined by

F (f, d, λ) = (c(f),−λT , d− d(λ)). (19)
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Qualitative Properties of the Model

To obtain existence one could impose either a strong
monotonicity condition or coercivity condition on the
functions c and d. However, strong monotonicity (or
coercivity), although reasonable for c, may not be a
reasonable assumption for d. The following theorem
provides a condition under which the existence of a so-
lution to variational inequality (18) is guaranteed under
a weaker condition.

Theorem 3 (Existence)

Let c and d be given continuous functions with the
following properties: There exist positive numbers k1

and k2 such that

cia(f) ≥ k1, ∀a, i and f ∈ M (20)

and

diw(λ) < k2, ∀w, λ with λiw ≥ k2. (21)

Then (18) has at least one solution.
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As in the model with known travel disutility functions,

the difficulty of showing existence of a solution for vari-

ational inequality (18) is that the feasible set is un-

bounded. This difficulty can be circumvented as fol-

lows. Observe that due to the special structure of the

problem, no equilibrium may exist with very large travel

demands because such demands would contradict as-

sumption (21), in view of (16). A bounded vector d, in

turn, would imply that f is also bounded. This would

then imply that c(f) is bounded and, therefore, λ is

bounded by virtue of (5) and (1). Consequently, one

expects that imposing constants of the type d ≤ η and

λ ≤ V , for η and V sufficiently large, will not affect the

set of solutions of (18), while rendering the set com-

pact. We now present a proof through the subsequent

two lemmas.
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First, fix

V >
∑
f ib≤k2J

max cia(f) (22)

and consider the compact, convex set

L = {(f, d, λ)|0 ≤ λ ≤ V ; 0 ≤ d ≤ k2; ∃x ≥ 0| (2), (3) hold}.
(23)

Consider the variational inequality problem:

Determine X∗ ∈ L, such that

F (X∗) · (y −X∗) ≥ 0, ∀y ∈ L. (24)

Since F is continuous and L is compact, there exists at

least one solution, say, X∗ = (f∗, d∗, λ∗) to (24). The

claim is that X∗ is actually a solution to the original

variational inequality (18).
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Lemma 1

If X∗ = (f∗, d∗, λ∗) is any solution of variational inequal-
ity (24), then

diw
∗
< k2, ∀i, w (25)

λiw
∗
< V, ∀i, w. (26)

Lemma 2

Let X∗ = (f∗, d∗, λ∗) be a solution of variational inequal-
ity (24). Suppose that

diw
∗
< k2, ∀w, i (27)

λiw
∗
< V, ∀w, i. (28)

Then X∗ is a solution to the original variational inequal-

ity (18).
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Using similar arguments one may establish existence
conditions for the model in which travel disutility func-
tions are assumed given, that is, one has the following
result.

Theorem 4 (Existence)

Let c and λ be given continuous functions with the
following properties: There exist positive numbers k1

and k2 such that

cia(f) ≥ k1, ∀a, i and f ∈ K

and

λiw(d) < k1, ∀w, i and d with diw ≥ k2.

Then variational inequality (8) has at least one solu-

tion.
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The Fixed Demand Model

We now present the fixed demand model is presented is
this section. Specifically, it is assumed that the demand
diw is now fixed and known for all modes i and all ori-
gin/destination pairs w. In this case, the feasible set K
would be defined by

K = {f | ∃x ≥ 0 | (2), (3) hold}. (29)

The variational inequality governing equilibrium condi-
tions (5) for this model would be given as in the subse-
quent theorem. Smith (1979) stated the traffic equilib-
rium conditions thus whereas Dafermos (1980) identi-
fied the formulation as being that of a finite-dimensional
variational inequality problem.

Theorem 5 (Variational Inequality Formulation)

A vector f∗ ∈ K, is an equilibrium pattern if and only if
it satisfies the variational inequality problem

c(f∗) · (f − f∗) ≥ 0, ∀f ∈ K. (30)
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Qualitative Properties

Existence of an equilibrium f∗ follows from the standard
theory of variational inequalities solely from the assump-
tion that c is continuous, since the feasible set K is now
compact.

In the special case where the symmetry condition[
∂cia
∂f jb

= ∂cjb
∂f ia

]
, ∀i, j; a, b

holds, then the variational inequality problem (30) is
equivalent to solving the optimization problem:

Minimizef∈K
∑
a,i

∫ f ia

0
cia(x)dx. (31)

This symmetry assumption, however, is not expected

to hold in most applications, and thus the variational

inequality problem which is the more general problem

formulation is needed. For example, the symmetry con-

dition essentially says that the flow on link b due to

mode j should affect the cost of mode i on link a in the

same manner that the flow of mode i on link a affects

the cost on link b and mode j.

19



In the case of a single mode problem, the symmetry
condition would imply that the cost on link a is affected
by the flow on link b in the same manner as the cost on
link b is affected by the flow on link a.

In the above framework, with the appropriate construc-
tion of the representative network, one can also handle
the following situations.

Situation 1: Users of the network have predetermined
origins, but are free to select their destinations as well
as their travel paths.

Situation 2: Users of the network have predetermined
destinations, but they are free to select their origins as
well as their travel paths.

Situation 3: Users of the network are free to select

their origins, their destinations, as well as their travel

paths.
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The above situations lead, respectively, to the following
network equilibrium problems.

Problem 1: The total number Oi
u of trips produced in

each origin node u by each mode (or class) i is given.
Determine the O/D travel demands and the equilibrium
flow pattern.

Problem 2: The total number Di
v of trips attracted

to each destination node v by each mode i is given.
Determine the O/D travel demands and the equilibrium
flow pattern.

Problem 3: The total number T i of trips generated in

all origin nodes by all modes i of the network are given,

which is equal to the total number of trips attracted

to all destinations by each mode. Determine the trip

productions Oi
u, the trip attractions Di

v, the O/D travel

demands, and the equilibrium flow pattern.
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Here, of course, travel cost should be interpreted lib-
erally. Above we assume that each user of the net-
work, subject to the constraints, chooses his/her origin,
and/or destination, and path, so as to minimize his/her
travel cost given that all other users have made their
choices. The additional factors of attractiveness of the
origins and the destinations are taken into account by
being incorporated into the model as “travel costs” by a
modification of the network through the addition of ar-
tificial links with travel cost representing attractiveness.

For example, in Problem 1, we can modify the origi-

nal network by adding artificial nodes ψi, for each mode

i, and joining every destination node v of the original

network with ψi by an artificial link (v, ψi). We assume

that the travel cost over the artificial links is zero. It

is easy to verify that in computing the equilibrium flows

according to equilibrium conditions (5) on the expanded

network, one can recover the equilibrium flows for the

original network. One can make analogous construc-

tions for Problems 2 and 3.
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Stability and Sensitivity Analysis

In 1968, Braess presented an example in which the ad-

dition of a new link to a network, which resulted in a

new path, actually made all the travelers in the network

worse off in that the travel cost of all the users was

increased. This example, which came to be known as

Braess’s paradox, generated much interest in addressing

questions of stability and sensitivity of traffic network

equilibria.
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The Braess Paradox

We now present the Braess’s paradox example. For easy
reference, see the two networks depicted in the Figure.

Assume a network as the first network depicted in the
Figure in which there are 4 links: a, b, c, d; 4 nodes:
1,2,3,4; and a single O/D pair w1 = (1,4). There are,
hence, 2 paths available to travelers between this O/D
pair: p1 = (a, c) and p2 = (b, d).

The link travel cost functions are:

ca(fa) = 10fa cb(fb) = fb + 50

cc(fc) = fc + 50 cd(fd) = 10fd.

Assume a fixed travel demand dw1 = 6.

It is easy to verify that the equilibrium path flows are:

x∗p1
= 3 x∗p2

= 3;

the equilibrium link flows are:

f∗a = 3 f∗b = 3 f∗c = 3 f∗d = 3;

with associated equilibrium path travel costs:

Cp1 = 83 Cp2 = 83.
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Assume now that, as depicted in the Figure, a new link
“e,” joining node 2 to node 3, is added to the original
network, with user cost ce(fe) = fe+10. The addition of
this link creates a new path p3 = (a, e, d) that is available
to the travelers. Assume that the travel demand dw1

remains at 6 units of flow. Note that the original flow
distribution pattern xp1 = 3 and xp2 = 3 is no longer an
equilibrium pattern, since at this level of flow the cost
on path p3, Cp3 = 70. Hence, users from paths p1 and
p2 would switch to path p3.

The equilibrium flow pattern on the new network is:

x∗p1
= 2 x∗p2

= 2 x∗p3
= 2;

with equilibrium link flows:

f∗a = 4 f∗b = 2 f∗c = 2 f∗e = 2 f∗d = 4;

and with associated equilibrium path travel costs:

Cp1 = 92 Cp2 = 92.

Indeed, one can verify that any reallocation of the path
flows would yield a higher travel cost on a path.

Note that the travel cost increased for every user of the

network from 83 to 92!

26



We now present the stability results for the models.

Theorem 6

Assume that the strong monotonicity condition (15) is
satisfied by the traffic network equilibrium model with
known inverse demand functions with constant α. Let
(f, d) denote the solution to variational inequality (18)
and let (f∗, d∗) denote the solution to the perturbed
variational inequality where we denote the perturbations
of c and λ by c∗ and λ∗, respectively. Then

‖((f∗−f), (d−d∗))‖ ≤ 1

α
‖((c∗(f∗)−c(f∗)), (λ∗(d∗)−λ(d∗)))‖.

(32)
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Theorem 7

Assume that c(f) is strongly monotone with constant
ᾱ and that f satisfies variational inequality (30). Let
f∗ denote the solution to the perturbed variational in-
equality with perturbed cost vector c∗. Then

‖f∗ − f‖ ≤ 1

ᾱ
‖c∗(f∗) − c(f∗)‖. (33)
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In order to attempt to further illuminate paradoxical
phenomena in transportation networks, the sensitivity
analysis results are presented for the fixed demand model.

Theorem 8

Assume that f ∈ K satisfies variational inequality (30)
and that f∗ ∈ K is the solution to the perturbed varia-
tional inequality with perturbed cost vector c∗. Then

[c∗(f∗) − c(f)] · [f∗ − f ] ≤ 0. (34)

Inequality (34) may be interpreted as follows: Although

an improvement in the cost structure of a network may

result in an increase of some of the incurred costs and

a decrease in some of the flows, a certain total average

cost in the network may be viewed as nonincreasing.
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Toll Policies

In this section we describe how tolls, either in the form of

path tolls or link tolls, can be imposed in order to make

the system-optimizing solution also user-optimizing. Tolls

serve as a mechanism for modifying the travel cost as

perceived by the individual travelers. We shall show that

in the path-toll collection policy there is a degree of free-

dom that is not available in the link-toll collection policy

and how one can take advantage of this added degree

of freedom. The analysis is conducted for the traffic

network equilibrium model with fixed travel demands.
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Recall that the system-optimizing flow pattern is one

that minimizes the total travel cost over the entire net-

work, whereas the user-optimized flow pattern has the

property that no user has any incentive to make a uni-

lateral decision to alter his/her travel path. One would

expect the former pattern to be established when a cen-

tral authority dictates the paths to be selected, so as to

minimize the total cost in the system, and the latter,

when travelers are free to select their routes of travel so

as to minimize their individual travel cost. The latter

solution, however, results in a higher total system cost

and, in a sense, is an underutilization of the transporta-

tion network. In order to remedy this situation tolls can

be applied with the recognition that imposing tolls will

not change the travel cost as perceived by society since

tolls are not lost.
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In particular, in this section it shall be shown how tolls
can be collected on a link basis, that is, every member
of a class (or mode) on a link will be charged the same
toll, irrespective of origin or final destination, or on a
path basis, in which every member of a class traveling
from an origin to a destination on a particular path will
be charged the same toll.

In the link-toll collection policy a toll ria is associated
with each link a and mode i. In the path-toll collection
policy a toll rip is associated with each path p and mode
i.

Of course, even in the link-toll collection policy one may
define a “path toll” for class i through the expression

rip =
∑
a

riaδap. (35)
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Observe that after the imposition of tolls the travel cost
as perceived by society remains cia(f), for all links a and
all modes i. The travel cost as perceived by the individ-
ual, however, is modified to

C̄i
p = Ci

p(f) + rip, ∀p, i. (36)

Consequently, a system-optimizing flow pattern is still
defined as before, that is, it is one that solves the prob-
lem

Minimizef∈K
∑
a,i

ĉia(f) (37)

where ĉia(f) = cia(f) × fia.

In particular, the solution to (37), under the assumption
that each ĉia(f) is convex, is equivalent to the following
statement: For every O/D pair w, and every mode i,
there exists an ordering of the paths p ∈ Pw, such that

Ĉi′

p1
(f) = . . . = Ĉi′

psi
(f) = µiw ≤ Ĉi′

psi+1
(f) ≤ . . . ≤ Ĉi′

pmw
(38)

xipri > 0, ri = 1, . . . , si

xipri = 0, ri = si+1, . . . ,mw,

where mw denotes the number of paths for O/D pair w.
Here we use the notation

Ĉi′

p =
∑
j

∑
a,b

∂ĉb
j(f)

∂fia
δap. (39)
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On the other hand, in view of equilibrium conditions (5)
one can deduce that the system-optimizing flow pattern
x, after the imposition of a toll policy, is at the same
time user-optimizing if: For every O/D pair w, every
path p ∈ Pw, and every mode i:

C̄i
p1
(f) = . . . = C̄i

psi
(f) = λ̄iw ≤ C̄i

psi+1
(f) ≤ . . . ≤ C̄i

pmw
(f)

(40)

xipri > 0, ri = 1, . . . , si

xipri = 0, ri = si+1, . . . ,mw.
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We now state:

Proposition 1

A toll-collection policy renders a system-optimizing flow
pattern user-optimizing if and only if for each mode i,
and O/D pair w

rip1
= λ̄iw − C̄i

p1
(f)

... ... (41)

ripsi = λ̄iw − C̄i
psi

(f)

ripsi+1
≥ λ̄iw − C̄1

psi+1
(f)

... ...

ripmw ≥ λ̄iw − C̄i
pmw

(f). (42)

Proof: It is clear that if (38) and (40) are satisfied

for the same flow pattern x, then (41) and (42) follow.

Conversely, if (41) and (42) are satisfied, then any f

that satisfies (38) also satisfies (40).
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We now turn to the determination of the link-toll and
the path-toll collection policies.

Solution of the Link-Toll Collection Policy

Using (35), (36), and (41) and (42), one reaches the
conclusion that the link toll collection policy is deter-
mined by

ria =
∑
j,b

∂ĉjb(f)

∂fia
− cia(f) (43)

where both the first and the second terms on the right-
hand side of expression (43) are evaluated at the system-
optimizing solution f .

Usually the link toll pattern constructed above will be

the only solution of the link-toll collection problem. There

are, however, simple networks in which there may be al-

ternatives.
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Hence, to determine the link toll policy, compute the

system-optimizing solution. This can be accomplished

using a general-purpose convex programming algorithm,

an appropriate nonlinear network code, or, in the case

of separable linear user cost functions, an equilibration

algorithm. Once the system-optimizing solution is es-

tablished, one then substitutes that flow pattern f into

equation (43) to compute the link toll ria for all links a

and all modes (or classes) i.

37



Solution of the Path-Toll Collection Policy

It is obvious from (41) and (42) that one may construct
an infinite number of solutions of the path-toll collec-
tion problem. For example, one may select, a priori, for
each class w, the level of personal travel cost λ̄iw, as well
as the values of ripsi+1

, . . . , ripmw , subject to only constraint

(42), and then determine a path toll pattern according
to (41). Hence, in this case there is some flexibility in
selecting a toll pattern, and one can incorporate addi-
tional objectives. Certain possibilities are:

(i) One may wish to ensure that some, if not all, classes
of travelers are charged with a nonnegative toll; in other
words, no subsidization is allowed for these classes. This
can be accomplished by choosing the corresponding λ̄iw
sufficiently large.

(ii) Suppose one wishes a “fair” policy. A possible one

would be to ensure that the level of personal travel cost

λ̄iw is equal to the personal travel cost λiw before the

imposition of tolls.
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We now present a simple example to illustrate how one
computes a link toll policy.

An Example

Consider the network depicted the figure in which there
are three nodes: 1, 2, 3; three links: a,b,c; and a single
O/D pair w1 = (1,3). Let path p1 = (a, c) and path
p2 = (b, c).

Assume, for simplicity, the user cost functions:

ca(fa) = fa + 5 cb(fb) = 2fb + 10 cc(fc) = fc + 15,

and the travel demand:

dw1 = 100.

We now turn to the computation of the link toll policy.
It is easy to verify that the system-optimizing solution
is:

xp1 = 67.5 xp2 = 32.5,

with associated link load pattern:

fa = 67.5 fb = 32.5 fc = 100,

and with marginal path costs:

Ĉ ′
p1

= Ĉ ′
p2

= 355.

The link toll policy that renders this system-optimizing
flow pattern also user-optimized is given by:

ra = 67.5 rb = 65 rc = 100,

with the induced user costs C̄p1 = C̄p2 = 355.
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Computation of Traffic Network Equilibria

We now focus on the computation of traffic network

equilibrium problems. In particular, the elastic, multi-

modal model with known travel disutility functions is

considered. The fixed demand model can be viewed as

a special case, and the algorithms that will be described

here can be readily adapted for the solution of this model

as well. Specifically, both the projection method and

the relaxation method are presented for this problem

domain.
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We first present the projection method and then the re-
laxation method. Assume that the strong monotonicity
condition (4.15) is satisfied.

The Projection Method

Step 0: Initialization

Select an initial feasible flow and demand pattern
(f0, d0)∈K. Also, select symmetric, positive definite ma-
trices G and −M , where G is an nL×nL matrix and −M
is an nJ × nJ matrix. Select ρ such that

0 < ρ < min

[
2α

η
,
2α

µ

]
,

where α is constant in the strong monotonicity con-
dition, and η and µ are the maximum over K of the
maximum of the positive definite symmetric matrices[

∂c

∂f

]T
G−1

[
∂c

∂f

]
and

[
∂λ

∂d

]T
M−1

[
∂λ

∂d

]
.

Set k := 1.
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Step 1: Construction and Computation

Construct

hk−1 = ρc(fk−1) −Gfk−1 (44)

and

tk−1 = ρλ(dk−1) −Mdk−1. (45)

Compute the unique user-optimized traffic pattern
(fk, dk) corresponding to travel cost and disutility func-
tions of the special form:

c̃k−1(f) = Gf + hk−1 (46)

and

λ̃k−1(d) = Md+ tk−1. (47)

Step 2: Convergence Verification

If |fk − fk−1| ≤ ε, with ε > 0, a prespecified tolerance,
stop; otherwise, set k := k+ 1, and go to Step 1.
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Possibilities for the selection of the matrices G and −M
are any diagonal positive definite matrices of appropri-
ate dimensions. One could also set G and M to the
diagonal parts of the Jacobian matrices

[
∂c
∂f

]
and

[
∂λ
∂d

]
,

evaluated at the initial feasible flow pattern. Observe
that if one selects diagonal matrices then the above sub-
problems are decoupled by mode of transportation and
each subproblem can be allocated to a distinct processor
for computation.

Observe that the projection method constructs a series

of symmetric user-optimized problems in which the link

user cost functions and the travel disutility functions are

linear. Hence, each of these subproblems can be con-

verted into a quadratic programming problem. More-

over, the subproblems can be solved using equilibration

algorithms.
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We now present the convergence theorem.

Theorem 9

Assume that the strong monotonicity condition (15)

holds and that ρ is constructed as above. Then, for any

(f0, d0) ∈ K, the projection method converges to the

solution (f∗, d∗) of variational inequality (8).
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The relaxation method for the same model is now pre-
sented.

The Relaxation Method

Step 0: Initialization

Select an initial feasible traffic pattern (f0, d0) ∈ K. Set
k := 1.

Step 1: Construction and Computation

Construct new user cost functions:

ĉ(i) = c(i)(f
k−1
(1) , . . . , f

k−1
(i−1), fi, f

k−1
(i+1), . . . , f

k−1
(n) ) (48)

for each mode i, where the subscript i denotes the vector
of terms corresponding to mode i.

Construct new travel disutility functions:

λ̂(i) = λ(i)(d
k−1
(1) , . . . , d

k−1
(i−1), di, d

k−1
(i+1), . . . , d

k−1
(n) ) (49)

for each mode i.

Compute the solution to the user-optimized problem
with the above travel cost and travel disutility functions
for each mode i.

Step 2: Convergence Verification

Same as in Step 2 above in the Projection Method.
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Observe that the subproblem encountered at each it-
eration of the relaxation method will, in general, be
a nonlinear problem. Moreover, the above algorithm
yields n decoupled subproblems, each of which can also
be solved on a distinct processor.

We assume that the variational inequality corresponding
to the equilibrium problem with user cost functions (48)
and travel disutility functions (49) has a unique solution,
which can be computed by a certain algorithm. We
now give a condition for convergence of this relaxation
method.

Theorem 10

Assume that the functions ĉ(i), λ̂(i); i = 1, . . . , n, satisfy
the monotonicity property:[

ĉ(i)(f
′
(1), . . . , f(i), . . . , f

′
(n)) − ĉ(i)(f

′
(1), . . . , f̄(i), . . . , f

′
(n))

]

· [f(i) − f̄(i)
]

−
[
λ̂(i)(d

′
(1), . . . , d(i), . . . , d

′
(n)) − λ̂(i)(d

′
(1), . . . , d̄(i), . . . , d

′
(n))

]

· [d(i) − d̄(i)
]

(50)

≥ α1‖f(i) − f̄(i)‖2 + α2‖d(i) − d̄(i)‖2,

∀(f(i), d(i)), (f̄(i), d̄(i)), (f ′(i), d′(i)) ∈ K,

where α1, α2 are positive constants.
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Also, if there exists a constant γ; 0 < γ < 1, such that

sup{
∑
i,j;i6=j

‖∂ĉ(i)
∂f(j)

‖2}1

2 ≤ γα1 (51)

sup{
∑
i,j;i6=j

‖∂λ̂(i)

∂d(j)
‖2}1

2 ≤ γα2 (52)

for all (f(i), d(i)) ∈ K, then there is a unique solution

(f∗(i), d
∗
(i)); i = 1, . . . , n, to variational inequality (8), and

for an arbitrary (f0
(i), d

0
(i)) ∈ K; i = 1, . . . , n;

(fk(i), d
k
(i))→(f∗(i), d

∗
(i)); i = 1, . . . , n, as k → ∞, where

(f∗, d∗) satisfies variational inequality (8).
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In the case of a single-modal problem, the user cost
functions (48) would be separable, that is,

ĉa = ca(f
k−1
1 , . . . , fa, f

k−1
a+1, . . . , f

k−1
L ), ∀a (53)

and the travel disutility functions would also be separa-
ble, that is,

λ̂w = λw(d
k−1
1 , . . . , dw, d

k−1
w , . . . , dk−1

J ), ∀w, (54)

in which case the variational inequality problem at Step
1 would have an equivalent optimization reformulation
given by

Minimize
∑
a

∫ fa

0
ĉa(x)dx−

∑
w

∫ dw

0
λ̂w(y)dy (55)

subject to (f, d) ∈ K.

The projection method and the relaxation method may

also be used to compute the solution to the fixed de-

mand model. In this case, only the user cost functions

at each iteration would need to be constructed. Results

of numerical testing of these algorithms can be found

in Nagurney (1984, 1986). See also Mahmassani and

Mouskos (1988).
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