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Viability and Sustainability

In this lecture, the fundamental concepts of viability
and sustainability of transportation networks are made
explicit.

These concepts are rigorously defined through formal
definitions and rest against the backdrop of environ-
mental goals.

Generally speaking, in this framework, viability is con-
cerned with whether or not the environmental goals are
achievable, given the transportation network topology
and travel demands as well as the environmental para-
meters.

Sustainability, on the other hand, is concerned with the
attainment of the goals through a variety of policy in-
struments, given not only the transportation network
and the environmental parameters, but also the cost
structure and the travel behavior.

Clearly, in this framework, viability of a transportation

network is a precursor to sustainability.
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First, I consider viability of a transportation network,
given that the origin/destination pairs are known as well
as the associated travel demands. Subsequently, I take
what may be viewed as a longer perspective and provide
formal definitions of viability in the following situations:

Situation 1

Given the origin nodes and the total number of trips
produced in each origin node, the travelers select their
destinations as well as their travel paths.

Situation 2

Given the destination nodes and the total number of
trips attracted to each destination, the travelers select
both their origins and their travel paths.

Situation 3

Given the origin nodes, the destination nodes, and the

total number of trips generated in all the origin nodes,

which is equal to the number of trips attracted to each

destination, the travelers are free to select their origins,

their destinations, as well as their travel paths.
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Situation 1 models the scenario in which travelers have
predetermined origins, typically places of residence, and
seek to determine their work destinations as well as the
routes of travel to the destinations.

Situation 2, on the other hand, models the scenario in
which travelers have predetermined destinations, such as
places of work, and seek to determine their residential
locations, as well as their paths of travel.

Finally, Situation 3 is the most flexible one in a sense

in that travelers determine their places of employment,

their places of residence, as well as the routes of travel

between the origin/destinations. In the Table, I sum-

marize the classification of fixed demand networks in

distinct situations.
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Classification of fixed demand networks in
different situations

Given To be Determined
Baseline: • O/D pairs and demands • routes of travel
Situation 1: • Origin nodes and • destinations and

trip productions routes of travel
Situation 2: • Destination nodes and • origins and

trip attractions routes of travel
Situation 3: • Origins nodes, • origins,

destination nodes, and destinations,
total number of trips and routes of travel
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Viability of Networks with Known O/D Pairs and
Travel Demands

Here transportation networks with fixed travel demands
are considered. I assume, as in the classical traffic net-
work models, that the origin/destination pairs are known
and given a priori as are the associated travel demands.
Note that, in regards to viability of a transportation net-
work, I do not consider the travel cost structure on the
network nor the behavior of the travelers.

The cost parameters and behavior of the travelers enter

into the equation when we investigate sustainability of

a network.
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I motivate the definition of viability by first presenting
two problems.

Problem 1 (Determination of the Tightest Achiev-
able Environmental Quality Standard)

Given a network topology G = [N, L], the set of ori-
gin/destination pairs W , the vector of travel demands
d, and the vector of link emissions h, what is the tight-
est environmental quality standard, denoted by Q∗, that
can be achieved by the transportation network?

The solution to this question can be formulated as a
mathematical programming problem, in particular, a lin-
ear programming problem, given by:

Minimize Q (1)

subject to: ∑

p∈Pw

xp = dw, ∀w ∈ W, (2)

∑

a∈L

ha

∑

p∈P

xpδap ≤ Q, (3)

xp ≥ 0, ∀p ∈ P. (4)
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The first set of constraints (2) guarantees that the path
flow pattern satisfies the travel demands, whereas the
second one (3) guarantees that the path flow pattern
does not exceed the tightest environmental quality stan-
dard (which is endogenous to this problem).

Finally, the last set of constraints ensures that the path

flows are nonnegative.
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I now solve this problem for a specific network example
depicted in the Figure.

Example 1

I present a small example for illustrative purposes. The
network is depicted in the first Figure and consists of two
nodes: 1, 2; three links: a, b, c, and one origin/destination
pair: w1 = (1,2). There are three paths connecting the
O/D pair, each of which consists of a single link, that
is, p1 = a, p2 = b, and p3 = c. The travel demand is
dw1 = 10.

The emission factors are: ha = 0.1, hb = 0.2, and hc =
0.3.

A straightforward application of the simplex method
(see Bazarra, Jarvis, and Sherali (1990)) to Problem
4.1 for this example, where one seeks to solve:

Minimize Q

subject to:

xp1 + xp2 + xp3 = 10,

0.1xp1 + 0.2xp2 + 0.3xp3 ≤ Q,

xp1 ≥ 0, xp2 ≥ 0, xp3 ≥ 0,

yields: Q∗ = 1, that is, the tightest emission quality

standard that is achievable by this network is given by

1.
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I next ask the question as to what is the maximum de-
mand that is achievable, given a desired environmental
quality standard.

Problem 2 (Determination of the Maximum Achiev-
able Travel Demand, Given the Environmental Qual-
ity Standard)

Given a network topology G = [N, L], the set of ori-
gin/destination pairs W , the vector of link emissions h,
and the desired environmental quality standard Q̄, what
is the maximum total demand that is achievable?

The solution to this question can also be formulated as
a linear programming problem given by:

Maximize
∑

w∈W

dw (5)

subject to: ∑

p∈Pw

xp = dw, ∀w ∈ W, (6)

∑

a∈L

ha

∑

p∈P

xpδap ≤ Q̄, (7)

xp ≥ 0, ∀p ∈ P. (8)
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Note that, in this problem, the constraints (6) (as (2)
in Problem 1) guarantee that the path flow pattern sat-
isfies the travel demands, but now the travel demands
are no longer known but are variables whose optimal
values are to be determined. Constraint (7) guarantees
that the environmental quality standard is met by the
path flow pattern, but now, in contrast to the analogous
constraint in Problem 1, there is a known environmental
quality standard, denoted by Q̄, which one wishes not
to exceed.

Hence, in this problem, the travel demands, rather than

the environmental quality standard, are endogenous and

to be determined by the solution of the optimization

problem.
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Example 2

I now consider, again, the network in the first Figure,
with emission factors: ha = 0.1, hb = 0.2, and hc = 0.3.

The desired environmental standard, denoted by Q̄, is
equal to 1. Problem 2 applied to the example, is given
by:

Maximize dw1

subject to:

xp1 + xp2 + xp3 = dw1,

0.1xp1 + 0.2xp2 + 0.3xp3 ≤ 1,

xp1 ≥ 0, xp2 ≥ 0, xp3 ≥ 0,

and its solution is obtained via an application of the
simplex method yielding: d∗

w1
= 10.

Hence, the highest achievable travel demand for the net-

work, given the desired environmental standard of 1, is

equal to 10.

12



Henceforth, I will term a transportation network with
given origin/destination pairs and travel demands viable
if there exists a solution to the following linear system:

Linear System 1

Determine a vector x satisfying:

∑

p∈Pw

xp = dw, ∀w ∈ W, (9)

∑

a∈L

ha

∑

p∈P

xpδap ≤ Q̄, (10)

xp ≥ 0, ∀p ∈ P. (11)

Note that the existence of a solution to this linear sys-

tem of equations and inequalities guarantees that the

demand associated with the O/D pairs can be satisfied

by a path flow pattern, which also simultaneously sat-

isfies the environmental quality standard. Clearly, there

may be more than one such path flow pattern.
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If, for a particular transportation network, the imposed
environmental quality standard is not smaller than the
tightest achievable standard for the network, that is:
Q̄ ≥ Q∗ (where Q∗ is the solution to Problem 1), then
the network is viable.

In other words, there exists a feasible path flow pattern,
that is, one that is nonnegative and satisfies the travel
demands, while, at the same time, not exceeding the
imposed environmental quality (emissions) standard for
the network equal to Q̄.

The focus in this course is on environmental quality

standards as regards air quality and vehicular emissions.

Of course, the definition of viability may be modified

to capture other environmental quality standards (and

goals) as well, provided that the system of equations

and inequalities are modified/expanded accordingly.
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Hence, one has the following definition:

Definition 1 (Viable Transportation Network with
Known O/D Pairs and Travel Demands)

A transportation network with known origin/destination
pairs and fixed travel demands associated with the ori-
gin/destination pairs is viable if there exists a solution
to the Linear System 1. Alternatively, a transportation
network is viable if Q∗ ≤ Q̄.

Note that viability is an achievability/feasibility concept

and it is relative to the desired environmental target or

quality standard Q̄ under the given demand structure

and network topology.
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Returning to the network depicted in Figure 1, and as-
suming now that the emission parameters remain as in
Example 1, but the travel demand doubles to 20, one
can see that the network is no longer viable, given an
environmental quality standard of 1.

Subsequently, I present a transportation network exam-

ple which is not viable under the fixed O/D pair and

travel demand scenario but is viable in Situation 1. This

suggests that environmental goals may be achievable if

one allows for an additional degree of flexibility such as,

for example, by also allowing for the selection of desti-

nation nodes.
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Viability of Traffic Networks in Other Situations

I now consider the viability of transportation networks
in the three distinct situations outlined above, each of
which is discussed separately. As mentioned earlier,
these situations reflect a longer time perspective for the
network since travelers now select not only their travel
paths but also their destinations, or their origins, or both
their origins and their destinations.

Note that, previously, I do not consider the cost struc-
ture on the network or the behavior of the travelers in
making their decisions. Such issues enter in when one
assesses whether or not a network is sustainable.

Hence, the determination of the precise travel demands

associated with the ultimate O/D pairs (as well as the

“ultimate” path flows from the portfolio of feasible flows)

can only be accomplished after the cost structure and

travelers’ behavior are superimposed on the network.
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Known Origins and Trip Productions

Given known origins corresponding to particular nodes
in a fixed demand traffic network, and which correspond
to locations in which trips are produced, and the total
number of trips produced at the origin nodes, we are in-
terested in determining whether such a network is viable
or not.

Specifically, I assume as given the origin nodes, with a
typical origin node denoted by y, and the number of
trips at each origin node, with the number of trips at
origin node y denoted by Oy.

Let POy
denote the set of paths originating at origin node

y and ending at any of the destination nodes.

Let Y denote the set of such paths in the network.

18



Assuming, as before, that one is given the environmental
quality standard Q̄ for the network, one can define the
following linear system:

Linear System 2

Determine a vector x satisfying the following linear sys-
tem: ∑

p∈POy

xp = Oy, ∀y ∈ Y, (12)

∑

a∈L

ha

∑

y∈Y

∑

p∈POy

xpδap ≤ Q̄, (13)

xp ≥ 0, ∀p ∈ POy
, ∀y ∈ Y. (14)
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Also, consider the solution to Problem 3.

Problem 3 (Determination of the Tightest Achiev-
able Quality Standard in the Case of Known Origins
and Trip Productions)

Minimize Q (15)

subject to: ∑

y∈POy

xp = Oy, ∀y ∈ Y, (16)

∑

a∈L

ha

∑

y∈Y

∑

p∈POy

xpδap ≤ Q, (17)

xp ≥ 0, ∀y ∈ POy
, ∀y ∈ Y, (18)

and denote the solution to this problem by Q1∗.

Then one can state the following definition of viability
of a transportation network in the case of Situation 1:

Definition 2 (Viability of a Transportation Network
with Known Origins and Trip Productions)

A network is said to be viable in the case of known

origins and trip productions if there exists a solution to

Linear System 2; equivalently, if Q1∗ ≤ Q̄.
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I now present an example which illustrates that a net-
work may not be viable in the case of fixed origin/desti-
nation pairs and travel demands but, nevertheless, may
be viable in the case of known origins and trip produc-
tions.

Example 3

This example illustrates the fact that a network may
not be viable in the case of known O/D pairs and travel
demands but, nevertheless, may be viable in Situation
1.

Consider the network depicted in the Figure, in which
there are three nodes: 1,2,3, and 4 links: a, b, c, d.
There are two O/D pairs: w1 = (1,2) and w2 = (1,3).

The paths connecting O/D pair w1 are: p1 = a and
p2 = b, whereas the paths connecting O/D pair w2 are:
p3 = c and p4 = d.

The travel demands are: dw1 = 6 and dw2 = 4.

The emission factors are: ha = 0.5, hb = 0.5, hc = 0.3,

and hd = 0.3.
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It is straightforward to verify that the minimum total
emissions, that is, the solution to Problem 1, are equal
to Q∗ = 4.2 for this network.

Assume, however, that the desired environmental quality
standard is Q̄ = 4.

Then, clearly, since Q̄ < Q∗, according to the defini-
tion of viability given in Definition 1, the network is not
viable.

Indeed, the environmental quality standard of 4 cannot

be achieved by this network.
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Suppose now that, rather than having the O/D pairs
being fixed with known travel demands, one now has
Situation 1 applying to the network example. There is
only a single origin node and that is node 1 (since it was
the origin for both O/D pairs in the original problem)
and the travelers are free to choose their destinations,
which can be either node 2 and/or node 3. The total
number of trips at node 1 is given by the sums of the
original travel demands and, hence, O1 = 6 + 4 = 10.

If one can provide one solution to Linear System 2, then
the network is viable under Situation 1 since one only
needs to establish the existence of a solution. One can
enumerate the paths as before.

Let xp1 = xp2 = 2.5 and xp3 = xp4 = 2.5. This flow pat-

tern is nonnegative, and satisfies both the first equation

in Linear System 4.2 since 2.5 + 2.5 + 2.5 + 2.5 = 10

as well as the second constraint since 0.5 × 2.5 + 0.5 ×
2.5 + 0.3 × 2.5 + .3 × 2.5 = 4 = Q̄.
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Hence, according to Definition 2, the network (which

was not originally viable in the case of known O/D pairs

and associated travel demands) is now viable in Situa-

tion 1.
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Known Destinations and Trip Attractions

Now consider the problem in which the destinations are
predetermined, but the travelers select their origins (and
their travel paths).

Hence, I assume now that one has, as given, the total
number of trips Dz attracted to each destination z and
let PDz

denote the paths from the origin nodes to the
destination node z.

Let Z denote the set of such paths in the network.

In order to determine whether a network is viable in

Situation 2, I consider the following linear system, which

is analogous to Linear Systems 1 and 2, but for the case

when only the destinations and the trip attractions are

given.
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Linear System 3

Determine a vector x satisfying the following linear sys-
tem: ∑

p∈PDz

xp = Dz, ∀z ∈ Z, (19)

∑

a∈L

ha

∑

z∈Z

∑

p∈PDz

xpδap ≤ Q̄, (20)

xp ≥ 0, ∀p ∈ PDz
, ∀z ∈ Z. (21)

Also, consider the solution to the following problem:

Problem 4 (Determination of the Tightest Achiev-
able Environmental Quality Standard in the Case
of Known Destinations and Trip Attractions)

Minimize Q (22)

subject to: ∑

p∈PDz

xp = Dz, ∀z ∈ Z, (23)

∑

a∈L

ha

∑

z∈Z

∑

p∈PDz

xpδap ≤ Q, (24)

xp ≥ 0, ∀p ∈ PDz
, ∀z ∈ Z, (25)

and denote the optimal value of the objective function

by Q2∗.
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One can now state the definition of viability of a trans-
portation under Situation 2.

Definition 3 (Viability of a Transportation Network
with Known Destinations and Trip Attractions)

A network is said to be viable in the case of known desti-

nations and trip attractions, if there exists a solution to

Linear System 3; equivalently, if Q2∗ ≤ Q̄, where recall

that Q̄ denotes the environmental quality standard.
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Known Total Number of Trips

I assume now that the total number of trips T generated
in all origin nodes of the network (and equal to the total
number of trips attracted to the destination nodes in the
network) is given.

I am interested in determining whether or not the trans-
portation network is viable in Situation 3.

The linear system that one needs to investigate the ex-
istence of a solution to, hence, is:

Linear System 4

Determine a vector x satisfying:

∑

p∈P

xp = T, (26)

∑

a∈L

ha

∑

p∈P

xpδap ≤ Q̄, (27)

xp ≥ 0, ∀p ∈ P. (28)
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Equivalently, one can investigate the solution to the fol-
lowing problem and see whether the solution exists and
whether the optimal value of the objective function, de-
noted by Q3∗, satisfies: Q3∗ ≤ Q̄.

Problem 5 (Determination of Tightest Achievable
Environmental Quality Standard in the Case of Known
Total Number of Trips)

Minimize Q (29)

subject to: ∑

p∈P

xp = T, (30)

∑

a∈L

ha

∑

p∈P

xpδap ≤ Q, (31)

xp ≥ 0, ∀p ∈ P. (32)

The optimal value of the objective function is denoted

by Q3∗.
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Analogously to the definitions of viability of a network
in Situations 1 and 2 above, I now state:

Definition 4 (Viability of a Transportation Network
in the Case of Known Total Number of Trips)

A network is said to be viable in the case of known

total number of trips if there exists a solution to Linear

System 4; equivalently, if Q3∗ ≤ Q̄.
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An example is now presented which illustrates that a
transportation network may not be viable in the case of
given travel O/D pairs and travel demands; may not be
viable in the case of known origins and trip productions:
but, nevertheless, may be viable in the case of known
total number of trips.

Example 4

Consider the transportation network depicted in the Fig-
ure consisting of four nodes: 1, 2, 3, 4, and five links:
a, b, c, d, and e. Consider, first, the case of known O/D
pairs and travel demands and assume that there are 3
O/D pairs: w1 = (1,3), w2 = (1,2), and w3 = (2,4).

Assume that the travel demands are: dw1 = 2, dw2 = 2,
and dw3 = 2.

Let the paths be as follows: For O/D pair w1: p1 = a,
p2 = b; for O/D pair w2: p3 = e, and for O/D pair w3:
p4 = c, and p5 = d.

The emission factors are: ha = 0.1, hb = 0.1, hc =

0.2, hd = 0.2, and he = 0.7. Assume that the desired

environmental quality standard Q̄ = 0.6.
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It is easy to see that this environmental quality standard
is not achievable by this network under fixed O/D pairs
by noting that the emissions generated just by travelers
between O/D pair w2 are equal to 1.4.

Suppose now that one wishes to investigate whether the
network is viable in Situation 1.

Note that one now has two origin nodes: 1 and 2 (which
corresponded to the origin nodes in the O/D pairs orig-
inally), and three possible destination nodes: 2, 3, and
4.

The trip production at node 1, O1, is equal to dw1 + dw2

since O/D pairs w1 and w2 both had origin nodes 1 or
2 + 2 = 4, whereas the trip production at node 2, O2,
is equal to 2.

One notes that the solution to Problem 3 yields Q1∗ =

0.8, which still exceeds the desired environmental quality

standard of 0.6.
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Finally, consider Situation 3, where the total number of
trips T = 2+2+2 = 6 (and corresponds to dw1+dw2+dw3

in the original network).

It is easy to verify that the environmental quality stan-
dard of 0.6 is now achievable.

For example, a path flow pattern that satisfies Linear
System 4 is given by: xp1 = xp2 = 3, with all other path
flows equal to 0.

Hence, the first equation in Linear System 4 is satisfied
as well as the second constraint. Furthermore, the path
flows are nonnegative.

Alternative path flow patterns which would satisfy the

system are: xp1 = 6, with all other path flows being

zero, and xp2 = 6, with all other path flows being zero.
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Note that viability of transportation networks was de-
fined in the context of the network topology, the given
emission factors, as well as the environmental quality
standard.

Examples 3 and 4 illustrate that a network may be viable
in one situation but not in another situation. Of course,
one may also make a network viable through technolog-
ical improvements such as through the reduction of the
emission factors.

We leave the discussion of technological and network

design issues for a letare lecture in this course.
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Viability of Elastic Demand Traffic Networks

I now consider transportation networks in which the travl
demands no longer take on fixed values but are now vari-
ables. Hence, in the case of known origin/destination
pairs, the associated travel demands would now be vari-
ables.

In the case of Situation 1, the trip productions would
no longer be fixed but would be allowed to vary.

Similarly, in the case of Situation 2, the trip attractions
would no longer be fixed but could vary, and in Situation
3, the total number of trips would also be allowed to
vary.

Indeed, one may immediately write down the elastic

counterparts to the Linear Systems 1–4, given, respec-

tively, by Linear Systems 5–8.
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Linear System 5

Determine a vector of travel demands d and a vector of
path flows x satisfying:

∑

p∈Pw

xp = dw, ∀w ∈ W, (33)

∑

a∈L

ha

∑

p∈P

xpδap ≤ Q̄, (34)

xp ≥ 0, ∀p ∈ P. (35)

Note that, in contrast to Linear System 1, one now

needs to determine not only the vector of path flows x

but also the vector of travel demands d.
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Linear System 6

Determine a vector of trip productions O and a vector
of path flows x satisfying the following linear system:

∑

p∈POy

xp = Oy, ∀y ∈ Y, (36)

∑

a∈L

ha

∑

y∈Y

∑

p∈POy

xpδap ≤ Q̄, (37)

xp ≥ 0, ∀p ∈ POy
, ∀y ∈ Y. (38)

Linear System 7

Determine a vector of trip attractions D and a vector
of path flows x satisfying the following linear system:

∑

p∈PDz

xp = Dz, ∀z ∈ Z, (39)

∑

a∈L

ha

∑

z∈Z

∑

p∈PDz

xpδap ≤ Q̄, (40)

xp ≥ 0, ∀p ∈ PDz
, ∀z ∈ Z. (41)
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Linear System 8

Determine the total number of trips T and a vector of
path flows x satisfying:

∑

p∈P

xp = T, (42)

∑

a∈L

ha

∑

p∈P

xpδap ≤ Q̄, (43)

xp ≥ 0, ∀p ∈ P. (44)

It is clear that there always exists a solution to each

of the Linear Systems 4–8, since the trivial solution of

setting the path flows equal to zero (with the demands,

or trip productions or attractions, also equal to zero) will

always guarantee that even the tighest environmental

quality standard is met. However, this implies that there

will be no travel on the transportation network!
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One can also establish that there always exists a nontriv-
ial solution to each of the Linear Systems 5–8, although
the total number of demands, or trip productions, or trip
attractions, or total number of trips may be very small.

Hence, we have the following observation:

Observation 1

A transportation network in the case of elastic demands,
or elastic trip productions, or elastic trip attractions, or
elastic total number of trips is always viable in that the
corresponding linear system always has a solution.

In the case of such “elastic” traffic networks, Problem 2,
and its counterparts to the elastic versions of Situations
1, 2, and 3, are relevant.

Indeed, a transportation authority may wish, for exam-

ple, to solve Problem 2 in order to determine whether

or not the total demand would be sufficient in order to

maintain the transportation network.
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In the case of the elastic version of Situation 1 (see
also Linear System 5) the relevant problem would be
the following:

Problem 6 (Determination of Maximum Achievable
Trip Productions, Given the Environmental Quality
Standard)

Determine a vector of trip productions O and a vector
of path flows x satisfying:

Maximize
∑

y∈Y

Oy (45)

subject to: ∑

p∈POy

xp = Oy, ∀y ∈ Y, (46)

∑

a∈L

ha

∑

y∈Y

∑

p∈POy

xpδap ≤ Q̄, (47)

xp ≥ 0, ∀p ∈ POy
, ∀y ∈ Y. (48)

The solution to this problem would determine the to-

tal number of trip productions that can be handled by

the network, given the emission factors and the desired

environmental quality standard.
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Analogously, one can construct the mathematical pro-

gramming problems in order to determine the maximal

trip attractions, or the maximal total number of trips

that can be handled by the network.
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Sustainable Transportation Networks

I now turn to the presentation of one of the most fun-
damental concepts in this course, that of sustainability .

The term “sustainability” necessarily implies that a sys-
tem will last.

Moreover, it should last in the context of the environ-
mental setting in which it is situated and within the
framework of the users of the system, which, unless
an authority imposes some policies in order to modify
their behavior, may be in conflict with the environmental
goals which serve to determine the ultimate existence
and usage of the system itself.

In the context of a transportation network, sustainability

of the network is crucially linked to the behavior of the

users of the network system, which are the travelers,

and their interaction on the network through the travel

demand structure, the cost structure, as well as any

environmental policies.
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I now provide a motivating example.

Example 5

I return to the network depicted in the first Figure, con-
sisting of two nodes, three links, and a single O/D pair
w1 = (1,2). Assume, as in Examples 1 and 2, that the
emission factors are: ha = 0.1, hb = 0.2, and hc = 0.3,
and the desired environmental quality standard, as in
Problem 2, is Q̄ = 1.

I now impose a cost structure on the network consisting
of user travel link cost functions as follows:

ca(fa) = 2fa + 5, cb(fb) = fb + 8, cc(fc) = 1.5fc + 5.
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Assuming the behavioral principle (also commonly re-
ferred to as Wardrop’s first principle) of user-optimization,
the travelers, in order to minimize their path travel costs
(and in the absence of any policy interventions in order
to guarantee that the behavior complies with the de-
sired environmental quality standard), select their paths,
where p1 = a, p2 = b, and p3 = c, as follows:

x∗
p1

= 3, x∗
p2

= 3, x∗
p3

= 4,

which corresponds to the link load pattern:

f∗
a = 3, f∗

b = 3, f∗
c = 4,

and incurred user travel costs on the paths:

Cp1 = Cp2 = Cp3 = 11.

Indeed, this path flow pattern satisfies the traffic net-
work equilibrium conditions given in (15).

Note, however, that the total emissions under this user-

optimized path flow pattern is: haf∗
a +hbf

∗
b +hcf∗

c = 0.3+

0.6+1.2 = 2.1, which clearly exceeds the environmental

quality standard of Q̄ = 1.
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Nevertheless, we know that the network is viable in that
there exists a solution to the Linear System 1, with the
path flow pattern: xp1 = 10, xp2 = xp3 = 0.

Suppose now that one considers a policy of adding tolls
to the roads so that the travelers still behave in a user-
optimized manner, but now one also wishes to guarantee
that the environmental quality standard will be met.

If one assigns tolls ta, tb, and tc, on links a, b, and c,
respectively, as: ta = 0, tb = 17, and tc = 20, then
the new user-optimized pattern will be: x∗

p1
= 10, x∗

p2
=

x∗
p3

= 0, with associated generalized user path travel

costs: C̄p1 = Cp1 + ta = 25, C̄p2 = Cp2 + tb = 25, and
C̄p3 = Cp3 + tc = 25.

Hence, in the presence of tolls as assigned above, this

user-optimized path flow pattern satisfies the environ-

mental target since the total emissions generated are

equal to 1.
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However, note that travelers on link a, although they
emit all the emissions, are not tolled since the toll on
link a, ta, is equal to zero.

In subsequent lectures, I provide policy instruments, in-
cluding tolls and pollution permits, which make users
of the transportation networks pay according to their
emissions.

I am now ready to state the definition of a sustainable
transportation network.

Definition 5 (Sustainable Transportation Network)

Henceforth, a transportation network is said to be sus-

tainable if the flow pattern satisfies the conservation of

flow equations and does not exceed the imposed en-

vironmental quality standard, subject to the operating

behavioral principle(s) underlying the network.
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Note that the definition of a sustainable transportation
network does not exclude the imposition of policies; in
fact, policies will be viewed as an essential tool in direct-
ing transportation networks to sustainability. Indeed,
the Table emphasizes this important point.

49



Relationship between viability and sustainability of
a network

Viability Appropriate Policy
+ ⇒ Sustainability

Behavioral Principle
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The principal reference for this lecture is the text for this

course Sustainable Transportation Networks (2000), Anna

Nagurney, Edward Elgar Publishers, Cheltenham, Eng-

land.
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