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Introduction

In this lecture, I explore technology and network design
issues for sustainable transportation networks. Research
and development are progressing in such areas as elec-
tric drive vehicles powered by hydrogen-based fuels and
vehicles with internal combustion engines operated on
alcohol fuels derived from renewable biomass sources
(see Transportation Research Board 1997 and Sperling
1995).

Although the design of such vehicles in a cost-effective
and efficient manner has yet to be realized, such inno-
vations lie on the horizon.

In addition, the introduction of alternative modes of
transportation to an existing network may allow for emis-
sion reduction, since it is well-known that, on the aver-
age, older vehicles emit more than new vehicles.

Indeed, “super-emitters” – that is, those cars that emit

much more now than when they were new, are 10%

of those cars and light trucks that account for approxi-

mately half of the emissions. Interestingly, the cleanest

50 % produce less than 1% of the emissions. Super-

emitters tend to be older vehicles, although some may

be newer ones with inappropriately maintained engines,

defective emission-control equipment, or with tampered

emission controls (cf. Sperling 1995 and the references

therein).
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In this lecture, I model technology and network design
instruments which can be used in conjunction with the
market-based policy instruments of the preceding chap-
ters to explore sustainability of transportation networks.

Here, as in other lectures in this course, I emphasize

the network topology in the formulations and analyses.

Note that technology innovations aimed at emission re-

duction, in practice, may be grouped in the following

categories: new fuels, new vehicles, and/or new travel

options.

2



Model summary

• Optimal budget allocation for emission reduction
• Optimal viability achievement
• New mode introduction
• Viable growth
• System optimality under mode allocation control
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Advances in intelligent vehicle highway systems as well

as in the development of emission sensors are making

the realization of the implementation of the policy in-

struments described in this course possible.
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Optimal Budget Allocation for Emission Reduction

I now construct a model which allows a transportation
planner to determine how a given budget should be al-
located in order to reduce the total emissions by the
greatest possible amount.

Let ∆ha denote the change in emission factor on a link
a, where ∆ha is assumed to be nonnegative since it
represents the reduction in the emission factor ha on
the link a.

Let B denote the budget available to the authority for
network improvements in the form of emission reduc-
tions (due, for example, to technology innovations).

Let ka denote the cost associated with making a reduc-
tion on link a.

I assume here that a flow pattern on the transporta-
tion network is given and I denote the induced link load
pattern by f∗.

Note that, for the sake of generality, I do not explic-

itly state whether the solution f∗ is system- or user-

optimized (or neither).
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Then the optimization problem facing the transporta-
tion authority is:

Maximize
∑

a∈L

f∗
a∆ha (1)

subject to: ∑

a∈L

ka∆ha ≤ B, (2)

0 ≤ ∆ha ≤ ua, ∀a ∈ L, (3)

where ua denotes the upper bound possible on the re-
duction in the emission factor on link a ∈ L.

The objective function (1) represents the total emis-
sion reduction. The constraint (2) expresses the budget
constraint, whereas the constraints (3) ensure that the
emission reductions are within technologically feasible
limits.

Note that in the above framework, one could also in-

vestigate a “second best” policy in which only certain

links’ emission factors can be reduced, in which case one

would simply have to sum in constraint (2) over those

links and bound them according to (3).
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Observe that the problem is a linear programming prob-
lem, which may be solved by the well-known simplex
method. Moreover, there exist commercial software
codes for this algorithm for practical applications.

I now present a simple example for illustrative purposes.

Example 1

The network is the two node, two link network depicted
in the Figure.

Let the user link travel cost functions be:

ca(fa) = fa + 5, cb(fb) = fb + 5,

with a travel demand dw1 = 10 associated with O/D pair
w1 = (1,2).

Assume that the travel behavior is that of user-optimization
and that the emission factors on the links are:

ha = 0.5, hb = 0.5.

Hence, one has that f∗
a = f∗

b = 5, with incurred path
costs on path p1 = a, Cp1 = 10, and on path p2 = b,
Cp2 = 10.

Suppose that the authority has 1 dollar in his budget for
emission reduction and that the unit costs for reduction
are ka = 2, kb = 2.

Furthermore, assume that the upper bounds on emission

factor reductions are ua = 0.25 and ub = 0.25.
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The problem can then be formulated as:

Maximize 5∆ha + 5∆hb

subject to:

2∆ha + 2∆hb ≤ 1,

0 ≤ ∆ha ≤ 0.25,

0 ≤ ∆hb ≤ 0.25.

The solution of this problem yields: ∆ha = 0.25, ∆hb =

0.25, with a total reduction in emissions of 2.5 and an

exhaustion of the budget.
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Multimodal Version

I now construct a multimodal version of the above bud-
get allocation problem. Let j denote a typical mode.
∆hj

a denotes the reduction in the emission factor of the
mode, whereas fj

a
∗

denotes the link load of mode j on
link a. Note that, again, I permit flexibility in terms of
how this load pattern is achieved.

Also, let uj
a denote the upper bound on link a associated

with the reduction of the emission factor for mode j.

The multimodal budget allocation problem is then:

Maximize
∑

j

∑

a∈L

fj
a
∗
∆hj

a (4)

subject to: ∑

j

∑

a∈L

kj
a∆hj

a ≤ B, (5)

0 ≤ ∆hj
a ≤ uj

a, ∀j, ∀a ∈ L. (6)
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Optimal Viability Achievement

I now address the cost associated with the achievement
of the viability of a transportation network.

Specifically, I am interested in formulating the problem
whose solution will provide the reduction of the emission
factors at minimal total cost so that the environmen-
tal quality standard is achieved, given a specific flow
pattern, which is denoted, again, by f∗.

Assume, as given, a cost function k̂a associated with
reducing the emission factor on link a. The function
is a function of the change (reduction) in the emission
factor.

Using the same notation as in the preceding model
(single-modal version), one has the following optimiza-
tion problem, whose solution yields the optimal emission
factor reductions at minimal total cost, given the desired
environmental quality standard Q̄:

Minimize
∑

a∈L

k̂a(∆ha) (7)

subject to: ∑

a∈L

f∗
a(ha − ∆ha) ≤ Q̄, (8)

0 ≤ ∆ha ≤ ua, ∀a ∈ L. (9)
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The objective function (7) expresses the total cost as-
sociated with emission factor reduction, whereas con-
straint (8) expresses the environmental quality standard
achievement.

Finally, constraints (9) ensure that the emission reduc-
tions are within technologically feasible limits.

Note that there may not exist a solution to this problem
if the feasible set governed by constraints (8) and (9)
is empty.

Indeed, this would mean that there is no technologically
feasible manner (given the state of the art) to achieve
the standard with the given flow pattern.

Of course, one could also formulate the problem which

would consist of nonlinear constraints (and a nonlinear

objective function) that permits the flows to vary as

well.
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Indeed, this problem would then take the form:

Minimize
∑

a∈L

k̂a(∆ha) (10)

subject to: ∑

a∈L

(ha − ∆ha)fa ≤ Q̄, (11)

fa =
∑

p∈P

xpδap, ∀a ∈ L, (12)

∑

p∈Pw

xp = dw, ∀w ∈ W, (13)

xp ≥ 0, ∀p ∈ P, (14)

0 ≤ ∆ha ≤ ua, ∀a ∈ L. (15)
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Example 2

An example for the model (7)–(9) is now presented.
The network is the one as depicted in the first Figure
with user link cost functions, travel demand, and emis-
sion factors as in Example 1.

Assume that the cost functions k̂a and k̂b are linear and
fixed, that is, k̂a = 10 and k̂b = 10.

The optimization problem is, hence:

Minimize 10∆ha + 10∆hb

subject to:

(0.5 − ∆ha)5 + (0.5 − ∆hb)5 ≤ 2.5,

0 ≤ ∆ha ≤ 0.25,

0 ≤ ∆hb ≤ 0.25.

The optimal solution to this problem is:

∆ha = 0.25, ∆hb = 0.25.

The total cost associated with such an emission reduc-

tion is 5 and the environmental quality standard is pre-

cisely met.
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Introduction of a New Mode

I now present models to assist in the evaluation of
whether or not a new mode should be introduced. Two
distinct cases are considered:

1. in the first case, mode switching is allowed, that is, a
portion of the users of the original mode of transporta-
tion can switch to the new mode so as to achieve the
tightest possible environmental quality standard and

2. in the second case, no such mode switching is per-
mitted.

I first present some needed notation. Let d0
w for all

w ∈ W denote the original travel demands associated
with the O/D pairs in the transportation network.

Let superscript 1 refer to mode 1 and superscript 2 to

mode 2.
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The problem I am interested in formulating is, hence:

Minimize Q (16)

subject to:

d1
w + d2

w = d0
w, ∀w ∈ W, (17)

∑

p∈Pw

x1
p = d1

w, ∀w, (18)

∑

p∈Pw

x2
p = d2

w, ∀w (19)

∑

a∈L

h1
a

∑

p∈P

x1
pδap +

∑

a∈L

h2
a

∑

p∈P

x2
pδap ≤ Q, (20)

x1
p ≥ 0, x2

p ≥ 0, ∀w ∈ W. (21)

The objective function (16) denotes the tightest en-

vironmental quality standard to be achieved. In con-

straints (17), on the other hand, the demands d1
w and

d2
w for all w are variables and they must sum for each

O/D pair to the (original) demand for that O/D pair,

which is assumed to be given.
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Also, constraints (18) and (19) ensure that the path
flows associated with the original mode and the new
mode satisfy the (to be determined) optimal travel de-
mands for each mode.

Constraint (20) guarantees that the path flow pattern

will not exceed the environmental quality standard, which

is to be determined at the tightest value possible.
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Note that here one can also consider a second best pol-
icy in which a new mode of transportation only connects
one or more (but not necessarily all) O/D pairs of travel,
in which case the constraints (17)–(20) would be mod-
ified accordingly.

Mode Switching Not Permitted

I now consider the case in which the introduction of

a new mode generates its own travel demand and no

switching takes place from the original mode to the new

one. Again, I am interested in determining the tightest

environmental quality standard that can be achieved in

this situation.

18



The problem is, thus:

Minimize Q (22)

subject to: ∑

p∈Pw

x1
p = d1

w, ∀w ∈ W, (23)

∑

p∈Pw

x2
p = d2

w, ∀w ∈ W, (24)

∑

a∈L

h1
a

∑

p∈P

x1
pδap +

∑

a∈L

h2
a

∑

p∈P

x2
pδap ≤ Q, (25)

x1
p ≥ 0, x2

p ≥ 0 ∀p ∈ P. (26)

Of course, in this case, one can also construct a model

in which one has the second-best policy in the sense

that only a subset of the O/D pairs are introduced to

the new mode.
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Viable Growth

I now turn to the determination of the maximal growth
of a transportation network that is possible, in terms of
the travel demand, while adhering to the desired envi-
ronmental quality standard Q̄.

Specifically, let ∆dw denote the nonnegative change as-
sociated with the travel demand for O/D pair w ∈ W .

I seek to maximize the total change in the travel demand
for the entire network.

The optimization problem is given by:

Maximize
∑

w∈W

∆dw (27)

subject to:
∑

p∈Pw

xp = dw + ∆dw, ∀w ∈ W. (28)

∑

a∈L

ha

∑

p∈P

xpδap ≤ Q̄, (29)

xp ≥ 0, ∀p ∈ P, (30)

∆dw ≥ 0, ∀w ∈ W. (31)
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The objective function (27) represents the total change
or growth in travel demand. The constraint (28) guar-
antees that the path flow pattern satisfies the new travel
demands, whereas constraint (29) ensures that the en-
vironemental quality standard will not be exceeded by
the path flow pattern.

Constraints (30) and (31) guarantee nonnegativity of
the path flows and the travel demand changes.

This optimization problem is a linear programming prob-

lem and, hence, amenable to solution via the simplex

method.
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Example 3

The network is depicted in the Figure and is comprised
of three nodes: 1, 2, 3; three links: a, b, c; and a single
O/D pair w1 = (1,3). Let path p1 = (a, c) and path
p2 = (b, c).

The travel demand is dw1 = 100 and the emission factors
on the links are ha = 0.1, hb = 0.1, and hc = 0.1. As-
sume that the environmental quality standard Q̄ = 30.
The optimization problem for optimal viable growth is
then:

Maximize ∆dw

subject to:

xp1 + xp2 = 100 + ∆dw1,

0.1xp1 + 0.1xp2 + 0.1(xp1 + xp2) ≤ 30,

xp1 ≥ 0, xp2 ≥ 0,

∆dw1 ≥ 0.

A solution to this problem yields ∆dw1 = 50, resulting

in a new travel demand of 150. Note that there are

alternative optimal path flow patterns, given for example

by x∗
p1

= 150, x∗
p2

= 0, and x∗
p1

= x∗
p2

= 75.
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System-Optimization with Mode Allocation Con-
trol

I now present a model which allows the controller to
allocate the flows on the network across modes while
still satisfying the total demand associated with each
O/D pair. Hence, one now no longer can assume that
the travel demand associated with each mode and each
O/D pair are fixed.

For example, the controller may select modes of trans-
portation which are lower emitters so as to not violate
the environmental quality standard by allocating more
of the flows to the lower emitters.

Let j denote mode j, which is used as a superscript for
the link cost functions, the path flows and the travel
demands.

Here, I present a path flow formulation, but now I allow
for switching among the modes for an O/D pair.

Let Dw denote the total demand for O/D pair.
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The multimodal system-optimization problem with mode
allocation control is, hence:

Minimize S(x) =
∑

j

∑

p∈P

Ĉj
p (32)

subject to:
∑

p∈Pw

xj
p = dj

w, ∀w ∈ W, ∀j, (33)

∑

j

dj
w = Dw, ∀w ∈ W, (34)

xj
p ≥ 0, ∀p ∈ P, ∀j, (35)

dj
w ≥ 0, ∀w ∈ W, ∀j. (36)

The vector x in the objective function in (32) is the vec-

tor of path flows for all the modes. Note that constraint

(34) reflects that mode allocation is permitted across

the modes for each O/D pair.
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The references for this lecture (including the text) are
given below.
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