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Introduction

In this lecture, the focus is on policy instruments for
sustainable transportation networks when the travelers
behave in a user-optimized fashion.

Here it is assumed that the networks are viable in that
they satisfy the appropriate definition of viability for the
given situation.

I first consider traffic networks with given origin/desti-
nation pairs and fixed travel demands, and provide an
emission pricing scheme which guarantees that the net-
work will be sustainable, that is, that the environmental
quality standard will be met and that the traffic flow
pattern will be in equilibrium.

I then extend the pricing concept for the case of Situa-
tions 1 through 3, as previously discussed.

Subsequently, I turn to elastic demand traffic network
problems and provide a mechanism for emission pricing
for such networks which guarantees sustainability, that
is, that the environmental quality standard is met and
the traffic flow pattern is in equilibrium.

I also discuss a computational procedure which can be

applied to compute the equilibrium patterns in both the

fixed demand and the elastic demand traffic network

policy models presented in this lecture.
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Summary of policy instruments for sustainability
of U-O networks developed in Chapter 5

Fixed demand networks
Emission pricing for: Baseline: • Known O/D pairs and demands

Situation 1: • Known origin nodes and
trip productions

Situation 2: • Known destination nodes and
trip attractions

Situation 3: • Known origin nodes, destination
nodes, and total number of trips

Elastic demand networks
Emission pricing for: Baseline: • Known O/D pairs
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Pricing for Sustainable Fixed Demand Networks

I now develop a traffic network policy model which guar-
antees sustainability of the network in question, under
the assumption that the travelers behave in a user-
optimized manner.

The policy that is presented is that of emission pricing
but, unlike some other tolls, here it is guaranteed that
the tolls are equitable, in that the travelers pay accord-
ing to their emissions.

In order to fix ideas, a simplified model is first presented,
which is classical in the sense that the user link travel
cost functions are assumed to be separable.

From the optimality conditions for this problem, I then

argue that they are also appropriate as equilibrium con-

ditions for the more general case in which the user travel

cost function on each link may depend not only on the

flow on a particular link but also on the flows on other

links in the network.
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Notation

The notation utilized in this lecture is the same as in
previous lectures of this course, except where noted.

A Simple Model

Consider a traffic network consisting of the graph G =
[N,L], where N denotes the set of nodes and L the set
of links.

It is assumed, as given, a vector of travel demands d as-
sociated with the origin/destination pairs. Also, I con-
sider the “classical” form of the user link travel cost
functions, due to Beckmann, McGuire, and Winsten
(1956), where the user travel cost on link a, denoted
by ca, is separable, that is:

ca = ca(fa), ∀a ∈ L. (1)

Moreover, I assume that this function is increasing in
the flow for each link in the network.

The travel cost on a path p, hence, is equal to the sum
of the travel costs on links that comprise that path, that
is:

Cp =
∑
a∈L

ca(fa)δap, ∀a ∈ L. (2)
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Recall that, in the case of such functions, the traffic net-
work equilibrium conditions, which state that, in equi-
librium, all used paths for each O/D pair have equal
and minimal travel costs, can be reformulated as a so-
lution to an optimization problem, where the objective
function is given by:

Minimize
∑
a∈L

∫ fa

0
ca(x)dx. (3)
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In the simple pricing model for sustainability one retains,
hence, the objective function of the classical traffic net-
work equilibrium model, as well as the constraints, but
now one adds the environmental quality constraint.

After making the substitution for the link load fa =∑
p∈P xpδap in the objective function (in order to simplify

the derivation), one obtains the following problem:

Minimize
∑
a∈L

∫ ∑
p∈P

xpδap

0
ca(x)dx (4)

subject to: ∑
p∈Pw

xp = dw, ∀w ∈W, (5)

∑
a∈L

ha
∑
p∈P

xpδap ≤ Q̄, (6)

xp ≥ 0, ∀p ∈ P. (7)

Observe that conditions (5)–(7) correspond precisely to

Linear System 1, the existence of a solution to which

guarantees viability of a transportation network with

given O/D pairs and travel demands.
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Optimality Conditions

I now derive the optimality conditions for the optimiza-
tion problem given by (4)–(7).

Since the user travel cost functions are increasing func-
tions of the flow, the objective function is convex and
the constraints, which are linear, are also convex. Hence,
the Kuhn-Tucker optimality conditions can be stated as
follows: x∗ ∈ RnP

+ is an optimal solution if it satisfies
the travel demands and satisfies the following system of
equalities and inequalities: For each O/D pair w ∈ W
and each path p ∈ Pw:

C̄p(x
∗, τ ∗) = Cp(x

∗) + τ ∗
∑
a∈L

haδap

{
= λw, if x∗p > 0
≥ λw, if x∗p = 0,

(8)

where τ ∗ is the Lagrange multiplier associated with the

environmental quality constraint (5) with τ ∗ having the

interpretation here as being the marginal cost of emis-

sion abatement.
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In addition, one must have that:

Q̄−
∑
a∈L

ha
∑
p∈P

x∗pδap

{
= 0, if τ ∗ > 0
≥ 0, if τ ∗ = 0.

(9)

Note that C̄p in (8) denotes the generalized cost asso-
ciated with traveling now on path p after the imposi-
tion of the tolls, where the toll on a path p is equal to
τ ∗

∑
a∈L haδap.

Hence, the higher the emission factors on a utilized path,
the higher the toll payment for travelers on that path.

This optimization problem can be solved by any gen-

eral purpose convex programming algorithm. However,

later, I will present an algorithm which can be applied

to solve all the models presented in this lecture.
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Emission Pricing Policies

According to (8) and (9), the following emission toll
policies satisfy the equilibrium conditions:

Link Pricing Policy

The link pricing policy given by ta = τ ∗ha, ∀a ∈ L, where
τ ∗ is the equilibrium marginal cost of emission abate-
ment and ta denotes the toll on link a, guarantees that
the transportation network is sustainable.

Path Pricing Policy

The path pricing policy given by tp = τ ∗
∑

a∈L haδap for
all p ∈ P , where tp denotes the toll on path p guarantees
that the network will be sustainable.

An example is now presented, in which the tolls can

be solved for explicitly, as well as the equilibrium flow

pattern.
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Example 1

The network topology is depicted in the Figure. The
network consist of two nodes, denoted by 1 and 2; three
links, denoted by a, b, and c, and a single O/D pair
w1 = (1,2). Let p1 = a, p2 = b, and p3 = c. The travel
demand dw1 = 10. The user link travel cost functions
are:

ca(fa) = 2fa + 5, cb(fb) = fb + 8, cc(fc) = 1.5fc + 5.

The emissions are: ha = 0.1, hb = 0.2, and hc = 0.3,
with the environmental quality standard Q̄ = 1.

One is interested in determining a pricing policy, as de-
scribed above.

First, note that the viable solution xp1 = 10, and xp2 =

xp3 = 0 is, in fact, the only feasible solution with condi-

tions (9) holding as an equality.
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Hence, one has, from conditions (8), that for path p1,
which is the only path that will be utilized, that

Ĉp1 = ca + τ ∗.1 = 2f∗a + 5 + τ ∗.1 = 25 + τ ∗.1.

Moreover, since paths p2 and p3 will not be utilized, one
has also that:

C̄p2 = cb+τ ∗.2 = fb+8+τ ∗.2 = 8+τ ∗.2 ≥ C̄p1 = 25+τ ∗.1.

In addition, one has that:

C̄p3 = cc+.3τ ∗ = 1.5fc+5+.3τ ∗ = 5+.3τ ∗ ≥ C̄p1 = 25+τ ∗.1.

But these two inequalities imply that:

17 ≤ .1τ ∗ and 20 ≤ .2τ ∗,

or that τ ∗ ≥ 170.
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Letting then τ ∗ = 170, one obtains the following link
emission toll policy: ta = haτ ∗ = 17, tb = hbτ

∗ = 34, and
tc = hcτ ∗ = 51, yielding generalized path travel costs of:

C̄p1 = 42, C̄p2 = 42, C̄p3 = 56.

Note that one has equity here since the travelers who

travel on path p1 do now pay a positive toll according

to their emissions.
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The General Model

Observe that conditions (8) and (9), although derived
from an optimization problem, may be interpreted as
equilibrium conditions.

I now consider these conditions as equilibrium condi-
tions, and present a generalized version of the preceding
model, which considers user link travel cost functions
which are no longer separable.

Moreover, the equilibrium conditions will be shown to
satisfy a variational inequality problem.

Indeed, I now consider user link travel cost functions,
which may, in general, depend upon the entire vector of
link loads; that is, I assume that now

ca = ca(f), ∀a ∈ L. (10)
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Definition 1 (Traffic Network Equilibrium in the
Presence of Emission Tolls)

Given O/D pairs and fixed travel demands, in the pres-
ence of emission tolls and user-optimized behavior, a
path flow pattern and the marginal cost of emission
abatement (x∗, τ ∗) is said to be in equilibrium if it satis-
fies equilibrium conditions (8) and (9). Moreover, such
a traffic network is sustainable.

I now establish that the solution to the systems of equa-
tions and inequalities (8) and (9) satisfies a variational
inequality problem.

Theorem 1 (Variational Inequality Formulation of
Traffic Network Equilibrium in the Presence of Emis-
sion Tolls)

A traffic flow pattern and marginal cost of emission

abatement (x∗, τ ∗) ∈ K1 is an equilibrium of the traffic

network toll policy model described above if and only if

it is a solution to the variational inequality problem:
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Path Flow Formulation:

∑
w∈W

∑
p∈Pw

[
Cp(x

∗) + τ ∗
∑
a∈L

haδap

]
×

[
xp − x∗p

]

+


Q̄−

∑
a∈L

ha
∑
p∈P

x∗pδap


 × [τ − τ ∗] ≥ 0, ∀(x, τ) ∈ K1,

(11)
where K1 ≡ K̄1×R1

+ and K̄1 ≡ {x|x ≥ 0 and satisfies (5)},
or, equivalently, (f∗, τ ∗) ∈ K2 is an equilibrium link load
and marginal cost of emission abatement pattern if and
only if it satisfies the variational inequality problem:

Link Load Formulation:∑
a∈L

[ca(f
∗) + τ ∗ha] × [fa − f∗a ]

+

[
Q̄−

∑
a∈L

haf
∗
a

]
× [τ − τ ∗] ≥ 0, ∀(f, τ) ∈ K2, (12)

where K2 ≡ K̄2 × R1
+, and K̄

2 ≡ {f | there exists an x ≥
0 satisfying (5)}.
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Proof:

I first establish that if a path flow pattern and marginal
cost of emission abatement are in equilibrium, that is,
they satisfy equilibrium conditions (8) and (9), then this
pattern also satisfies variational inequality (11), equiva-
lently, variational inequality (12).

Note that from (8) one has that, for a fixed O/D pair
w and a fixed path p ∈ Pw:[

Cp(x
∗) + τ ∗

∑
a∈L

haδap − λw

]
×

[
xp − x∗p

]
≥ 0. (13)

Indeed, since if x∗p > 0, then the left-hand side of in-
equality (13) must be precisely equal to zero, in which
case (13) must hold. On the other hand, if x∗p = 0, then[
xp − x∗p

]
≥ 0, since the path flows must be nonnegative,

and the left-hand side of (13) is also nonnegative due
to (8) and, hence, since the product of two nonnegative
terms is also nonnegative, the inequality in (13) is also
satisfied.

Furthermore, since (13) holds for all paths connecting
O/D pair w, we can sum the inequality in (13) over all
such paths, that is:

∑
p∈Pw

[
Cp(x

∗) + τ ∗
∑
a∈L

haδap − λw

]
×

[
xp − x∗p

]
≥ 0, (14)

but since the path flows must sum up to the travel

demands (cf. (5)), (14) reduces to:
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∑
p∈Pw

[
Cp(x

∗) + τ ∗
∑
a∈L

haδap

]
×

[
xp − x∗p

]
≥ 0. (15)

But (15) also holds for any O/D pair and, hence, sum-
ming over all O/D pairs, yields the inequality:

∑
w∈W

∑
p∈Pw

[
Cp(x

∗) + τ ∗
∑
a∈L

haδap

]
×

[
xp − x∗p

]
≥ 0,

∀x ∈ K̄1. (16)

Using now the relationships between the path travel cost
and the link travel costs (see (2)), as well as the path
flow pattern and the link load pattern, inequality (16)
is equivalent, in link loads, to the inequality:∑

a∈L
[ca(f

∗) + τ ∗ha] × [fa − f∗a ] ≥ 0, ∀f ∈ K̄2. (17)
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I now turn to equilibrium conditions (9) and, arguing as
above, but for τ ∗, note that these equilibrium conditions
imply the inequality:

Q̄− τ ∗
∑
a∈L

ha
∑
p∈P

x∗pδap


 × [τ − τ ∗] ≥ 0, ∀τ ∈ R1

+. (18)

Summing now inequality (16) and (18), one obtains
variational inequality (11) (which is in path flows since
path flows are the variables). Similarly, summing in-
equalities (17) and (18), and using the relationship:
fa =

∑
p∈P xpδap, ∀a ∈ L, one obtains variational inequal-

ity (12).

I now show that a solution to variational inequality (11)
and, equivalently, a solution to variational inequality
(12), satisfies the equilibrium conditions (8) and (9).

Indeed, consider first variational inequality (11), and

make the following substitutions: Let τ = τ ∗, and let

xp = x∗p, for all paths p ∈ Pω, for all ω 6= w. Further, for

paths p ∈ Pw, let r denote some path such that xr > 0

(we know that such a path must exist since the travel

demand for each O/D pair is positive), and select some

path q ∈ Pw; for all paths p 6= q ⊂ r, let xp = x∗p. Let

xr = x∗r − δ, for some small δ > 0, and let xq = x∗q + δ.
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Clearly, such a constructed path flow pattern is feasible.
Substitution into variational inequality (11), after some
algebraic simplifications, yields then:

Cq(x
∗) + τ ∗

∑
a∈L

haδaq ≤ Cr(x
∗) + τ ∗

∑
a∈L

haδar. (19)

Now, if x∗q > 0, one can construct an analogous path
flow (and marginal cost of emission abatement pattern)
but with a δ reallocation from path q to path r yielding:

Cq(x
∗) + τ ∗

∑
a∈L

haδaq ≥ Cr(x
∗) + τ ∗

∑
a∈L

haδar. (20)

However, in order for (19) and (20) to hold simulta-
neously, one must have that they hold with an equality
and, thus, I have shown the first part of equilibrium con-
ditions, that is, if the flows on paths are positive then
their generalized path travel costs must be equal.

On the other hand, inequality (19) holds even if the

path flow on q is zero (in this case one cannot make

a construction such as (11) since it would mean that

the resulting flow on q would be negative and, hence,

infeasible), which implies the second condition of (8),

that is, that unused paths or those with zero flow have

generalized path travel costs that cannot be less than

those on used paths.
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In order to establish that a solution to variational in-
equality (11) also satisfies equilibrium conditions (9), I
make the following construction: set xp = x∗p, for all
paths p ∈ P , and substitute into variational inequality
(11), which yields:

Q̄− τ ∗
∑
a∈L

ha
∑
p∈P

x∗pδap


 × [τ − τ ∗] ≥ 0, ∀τ ∈ R1

+. (21)

It is easy to see that (21) implies equilibrium conditions
(9), since if τ ∗ = 0, one knows that τ − τ ∗ = τ ≥ 0, and
for the entire expression to be nonnegative, it must be
that Q̄− τ ∗

∑
a∈L haδap ≥ 0. On the other hand, if τ ∗ > 0,

then since the inequality must hold for any τ ≥ 0, one
can let τ = τ ∗+δ and substitute the resultant into (21),
yielding: 

Q̄− τ ∗
∑
a∈L

ha
∑
p∈P

x∗pδap


 × δ ≥ 0. (22)

Similarly, one can let τ = τ ∗−δ for the same small δ > 0,
in which case substitution into (21) yields:

Q̄− τ ∗
∑
a∈L

ha
∑
p∈P

x∗pδap


 δ ≤ 0. (23)
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However, for both (22) and (23) to hold, one must
conclude that for τ ∗ > 0:

Q̄− τ ∗
∑
a∈L

ha
∑
p∈P

x∗pδap = 0. (24)

I have, thus, also verified the second part of equilibrium
conditions (8).

Hence, the proof of equivalence in the case of the path

flow variational inequality (11) is complete. What re-

mains to be shown only is that a solution to the link

load formulation (12) also satisfies equilibrium condi-

tions (8), since in the course of establishing the proof

for (11), I have already established, since fa=
∑

p∈P xpδap,

∀a ∈ L, that (9) must hold. But the first term of vari-

ational inequality (12) is derived from the first term

of variational inequality (11) and, thus, the conclusion

must follow.
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I now put both variational inequality problem (11) and
(12) into standard form. I first consider variational in-
equality (11), which is in path flow variables, and define
the column vector X ≡ (x, τ) ∈ K1 and the column vec-
tor F (X), where

F (X) ≡ (C(X), T(X)).

C(X) is the nP -dimensional vector with component p
given as follows:

Cp(X) : Cp(x) + τ
∑
a∈L

haδap,

whereas T(X) is the one-dimensional vector with com-
ponent:

T(X) : Q̄−
∑
a∈L

ha
∑
p∈P

xpδap.

Clearly, the variational inequality (11) can now be put
into standard form where K ≡ K1.

Next, consider variational inequality (12), which is in link
load variables and define the column vector X ≡ (f, τ)
and the column vector F (X), where

F (X) ≡ (c(X), T(X)).
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c(X) is the n-dimensional vector with component a given
by:

ca(X) = ca(f) + haτ,

whereas T(X) is as defined for the variational inequality

in path flow variables above.
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Pricing in Alternative Situations

Here I develop pricing policies and address transporta-
tion networks in the alternative situations.

Furthermore, I introduce, for the first time, the concept
of an expanded or supernetwork, which is based on the
original transportation network in the given situation but
which allows one to determine not only the equilibrium
path flow akin to those in the networks with fixed travel
demands, but also the travel demands themselves.

It is assumed that the given networks are viable accord-
ing to the respective definitions. The notion of an ex-
panded network was also utilized in Nagurney (1999a) to
transform multimodal networks under distinct situations
into a multimodal traffic network equilibrium problem
with known O/D pairs and travel demands.

That work was an extension of the idea developed for
single modal networks by Dafermos (1976) who called
such network problems integrated traffic network equi-
librium problems.

The models therein, however, in contrast to those de-

scribed here, were not concerned with sustainability is-

sues in an environmental setting. See also the recent

book on supernetworks by Nagurney and Dong (2002).
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Emission Pricing for Networks with Known Origins
and Trip Productions

Consider now traffic networks in Situation 1 in which
the origins are known as well as the trip productions.

Assume user-optimized behavior on such networks and a
general user link travel cost function on each link a ∈ L
given by (10).

I first state the equilibrium conditions for a network in
such a situation (in the absence of any policies such as
tolls).

I then provide a construction of the network in expanded
form which allows one to reduce either the equilibrium
problem without or with tolls to the corresponding prob-
lem with known O/D pairs and travel demands.

Definition 2 (Equilibrium Conditions for User-
Optimization in Situation 1)

A traffic flow pattern on a transportation network in
Situation 1 is said to be in equilibrium if all used paths
emanating from each origin node are equal and minimal,
that is, one has that for each y ∈ Y , and p ∈ Py:

Cp(x
∗)

{
= λy, if x∗p > 0
≥ λy, if x∗p = 0,

(25)

where
∑

p∈POy x
∗
p = Oy, ∀y ∈ Y .

26



I now need to introduce the expanded or supernetwork
concept in this situation, that is, when one is given
known origins and trip productions.

Construction of Expanded Network for Situation 1

I do the network construction as follows: Construct a
“super” demand or sink node, denoted by ψ, and from
each destination node construct then a single link ter-
minating in the destination node ψ.

Associate with each link a in the original network a user
travel cost ca, which is assumed to take on the general
form given by (10). Associate with each of the artificial
links terminating in node ψ a user travel cost equal to
zero.

I now denote by p̂ the path, which consists of the links
in path p plus the artificial link terminating in ψ.

In addition, define then the O/D pairs on the expanded

network consisting, respectively, of each of the original

origin nodes y and with destination node ψ. Associate

with each such O/D pair ŵ the corresponding “travel

demand,” given by Oy.
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Note that, in the model with known origins and trip
productions, it is path travel costs on paths emanating
from each origin to all the destinations that are equalized
for all used paths.

Equilibrium conditions (8) and (9) are then applied to

the expanded network. Equivalently, in order to obtain

the equilibrium path flows and marginal cost of emission

abatement, one can solve variational inequality (11) or

(12). Note that, once, the solution is obtained to the

pricing problem on the expanded network, one can then

recover the travel demands to the original network in

Situation 1, by simply summing the resulting path flows

on the paths between each origin y and the respective

destination nodes.
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An example is now given.

Example 2

Consider the network with topology as given in the Fig-
ure, along with the expanded or supernetwork construc-
tion.

In this network there are three nodes: 1, 2, 3, and
four links: a, b, c, d, in the original network and four
nodes and six links in the expanded network. There are
two destinations: 2 and 3 and, hence, according to the
network expansion construction, one has a single “O/D”
pair denoted by ŵ1 = (1, ψ) and four paths connecting
the O/D pair: p̂1 = (a, e), p̂2 = (b, e), p̂3 = (c, f), and
p̂4 = (d, f).

The emission factors are: ha = 0.5, hb = 0.5, hc = 0.3,

and hd = 0.3, and that the desired environmental quality

standard Q̄ = 4.
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I now impose a travel cost structure as follows:

ca(fa) = fa + 5, cb(fb) = fb + 5,

cc(fc) = 2fc + 1, cd(fd) = 2fd + 1,

with user travel costs on the “new” links given by:

ce(fe) = cf(ff) = 0.

Furthermore, from O1 = 10 one constructs the travel
demand on the expanded network given by dŵ1

= 10.

Utilizing the equilibrium conditions (8) and by the “sym-
metry” in the network and the user link travel cost func-
tions, one can conclude that f∗a = f∗b and f∗c = f∗d .

Further, I posit that, since the emissions factors are

low on the links relative to the travel demand and the

environmental quality standard, τ ∗ = 0.
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Hence, the solution of the emission pricing problem col-
lapses to the solution of a variational inequality prob-
lem governing the well-known traffic network equilibrium
conditions without any policies, or, equivalently, since
the user travel cost functions on the links are separable,
to the solution of the optimization reformulation.

Due, however, to the simplicity of the example, solutions
of the resulting algebraic equations yields:

x∗p̂1
= 2, x∗p̂2

= 2, x∗p̂3
= 3, x∗p̂4

= 3,

with induced link loads:

f∗a = f∗b = 2, f∗c = f∗d = 3,

and

f∗e = 4, f∗f = 6.

The incurred generalized path travel costs are:

C̄p̂1
= C̄p̂2

= C̄p̂3
= C̄p̂4

= 7,

which are also the path travel costs, respectively, on the

paths p1, p2, p3, and p4.
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Note that, hence, in the original network, the equilibrium
solution must be:

x∗p1
= 2, x∗p2

= 2, x∗p3
= 3, x∗p4

= 3,

and

dw1 = 4, dw2 = 6.

The total emissions generated are: haf∗a + hbf
∗
b + hcf∗c +

hdf
∗
d = 1+1+0.6+0.6 = 3.2, which is less than Q̄ = 4.

Thus, both equilibrium conditions (8) and (9) hold, re-

spectively, for the flow pattern and the marginal cost of

emission abatement.
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Emission Pricing for Networks with Known Desti-
nations and Trip Attractions

I here consider transportation networks in Situation 2,
in which now one is given the known destinations and
the trip attractions associated with the destinations. I
assume user-optimized behavior in that the travelers will
select their origins as well as their paths to the given
destinations so that the path travel costs on used paths
to each destination are equal and minimal.

The statement of the equilibrium conditions is:

Definition 3 (Equilibrium Conditions for User-
Optimization in Situation 2)

A traffic network is said to be in equilibrium in Situation
2 if the following conditions hold: For each destination
node z ∈ Z, and each path p ∈ Pz:

Cp(x
∗)

{
= λz, if x∗p > 0
≥ λz, if x∗p = 0,

(26)

where
∑

p∈PDz x
∗
p = Dz,∀z ∈ Z.
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Analogously to Situation 1, one can construct an ex-
panded network in Situation 2, which can be used to:
(1) determine the user-optimized traffic flow pattern
without any policies and (2) determine the user-optimized
traffic flow pattern in the presence of toll policies.

Construction of Expanded Network for Situation 2

The construction of the expanded or supernetwork is as
follows: Construct a super origin or source node denoted
by ξ and from node ξ construct as many links as there
are origin nodes, with each such link originating at the
supersource node and terminating at the origin node.
These links are artificial links.

Let the new paths in the network, which originate at
the supersource node and terminate in one of the des-
tination or attraction nodes, be denoted by p̂, where p̂
consists of the appropriate artificial link in addition to
the links on path p.

The user link costs on the artificial links are set equal

to zero.
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The O/D pairs on the expanded network become ŵ =
(ξ, z) for each destination node z with associated de-
mand dŵ = Dz.

The equilibrium conditions in the case of tolls according
to (8) and (9) are now applicable to the expanded net-
work where we make the substitutions of ŵ for w and p̂
for p.

Moreover, as in Situation 1, one can recover the path

flows and travel demand for the original network in this

case.
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Pricing for Networks with Known Number of Trips

I now turn to networks in Situation 3, in which the
known number of trips for the entire network is given
and denoted by T .

Assume that the network is viable in this situation. I first
state the equilibrium conditions without the imposition
of any toll policy. In this situation, travelers select their
origins, their destinations, as well as their travel paths.

Hence, in this situation, it is the travel costs on used
paths from each origin to each destination which are
equalized and minimal in equilibrium. Formally stated,
one has the following:

Definition 4 (Equilibrium Conditions for User-
Optimization in Situation 3)

A traffic flow pattern is said to be in equilibrium in Sit-
uation 3 if for all p ∈ P :

Cp(x
∗)

{
= λ, if x∗p > 0
≥ λ, if x∗p = 0,

(27)

where
∑

p∈P x
∗
p = T .
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Construction of Expanded Network in Situation 3

In order to construct an expanded network or super-
network, which enables one to reduce this equilibrium
problem to that governing the case of known O/D pairs
and travel demands, one proceeds as follows: Construct
a supersource node ξ and a super sink node ψ.

Then construct an artificial link from the supersource
node to each origin node.

In addition, construct a link from each destination node
to the supersink node.

Denote by p̂ for this situation a path which consists of
p but has the appropriate artificial link from the super-
source node attached to it as well as the artificial link
at its terminus ending at the supersink node. There is
then defined to be a single artificial O/D pair on the
expanded network given by ŵ = (ξ, ψ).

The equilibrium conditions (27) are then subsumed by

the classical traffic network equilibrium conditions for

the expanded network (with only a single O/D pair).
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Furthermore, the equilibrium conditions (8) and (9) can
be now applied directly to the expanded network with
the appropriate substitutions for paths and O/D pair to
obtain the equilibrium conditions for the emission pricing
problem in the case of Situation 3.

Example 3

Consider the network in the Figure consisting of four
nodes: 1, 2, 3, 4, and five links: a, b, c, d, and e.
Construct the expanded network, which is also depicted
in the Figure, as follows: Add a single supersource node
ξ and a supersink node ψ and links f and g originating
in node ψ and terminating, respectively, in the origin
nodes 1 and 2.

Also, construct links h, i, and j originating in the des-
tination nodes 2, 3, and 4 and terminating in the super
sink node ψ.

There is then a single (artificial) O/D pair on the ex-

panded network ŵ = (ξ, ψ) with an associated (artificial)

travel demand dŵ = T = 6.
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The emission factors are: ha = 0.1, hb = 0.1, hc =
0.2, hd = 0.2, and he = 0.7. Assume that the desired
environmental quality standard Q̄ = 0.6.

The cost structure is now described. The user link cost
functions are:

ca(fa) = fa + 1, cb(fb) = fb + 1, cc(fc) = fc + 1,

cd(fd) = fd + 1, ce(fe) = 2fe + 5,

with the travel costs on the artificial links f, g, h, and i
being set equal to zero, by construction.

The paths, hence, on the expanded network are: p̂1 =
(f, a, h), p̂2 = (f, b, h), p̂3 = (f, e, j), p̂4 = (g, c, i), and
p̂5 = (g, d, i).

It is straightforward to verify that the path flow pattern:

x∗p̂1
= x∗p̂2

= 3, with all other path flows equal to zero,

and τ ∗ = 0 is an equilibrium solution for the problem.
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Summary of expanded network constructions

Situation 1
Known origins and Construct a supersink node ξ
trip productions: and add a zero cost link from

each destination node to ξ.
Situation 2

Known destinations: Construct a supersource node ψ
add a zero cost link from ψ to
each origin node.
Situation 3

Known total number: Construct a supersource node ψ and a
supersink node ξ and add a
zero cost link from ψ to each
origin node and a zero cost
link from each destination node
to ψ.
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Pricing for Sustainable Elastic Demand Traffic Net-
works

The topic now is that of pricing of elastic demand traffic
networks for sustainability where the behavior is that of
user-optimization.

As before, I assume that the travel cost on a link may
depend upon, in general, the entire link load pattern,
that is, we assume user link travel cost functions of the
form given by (10).

In addition, since the demand is no longer fixed, as in
the elastic demand traffic network models, I assume now
that one has associated with each O/D pair w a travel
disutility λw, such that

λw = λw(d), ∀w ∈W, (28)

that is, I assume that, in general, the travel disutility as-

sociated with traveling between O/D pair w may depend

upon the vector of travel demands.
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In this case, one may adapt equilibrium conditions (8)
directly and equilibrium conditions (9) are still applica-
ble, yielding the following definition:

Definition 5 (Traffic Network Equilibrium with Elas-
tic Demands in the Presence of Emission Pricing)

For each O/D pair w ∈W , and each path p ∈ Pw:

C̄p(x
∗, τ ∗) = Cp(x

∗)+τ ∗
∑
a∈L

haδap

{
= λw(d∗), if x∗p > 0
≥ λw(d∗), if x∗p = 0,

(29)

In addition, one must have that:

Q̄−
∑
a∈L

ha
∑
p∈P

x∗pδap

{
= 0, if τ ∗ > 0
≥ 0, if τ ∗ = 0,

(30)

where the path flow pattern must satisfy the demand

conservation of flow equations.
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Hence, in this problem, one also needs to determine the
travel demands, in addition to the path flows and the
marginal cost of emission abatement.

I now provide the variational inequality formulations in
path flows and in link loads of the equilibrium conditions
(akin to (11) and (12) for the model with fixed travel
demands). They are presented without proof since the
proofs are similar to that of Theorem 1.

Theorem 2 (Variational Inequality Formulations of
Elastic Demand Traffic Network Emission Pricing
Policy Model)

A traffic flow and demand pattern and marginal cost of
emission abatement (x∗, d∗, τ ∗)∈K3 is an equilibrium of
the traffic network emission pricing policy model with
elastic demands if and only if it is a solution to the
variational inequality problem:

Path Flow Formulation:∑
w∈W

∑
p∈Pw

[
Cp(x

∗) + τ ∗
∑
a∈L

haδap

]
×

[
xp − x∗p

]

−
∑
w∈W

λw(d
∗) × (dw − d∗w)

+


Q̄−

∑
a∈L

ha
∑
p∈P

xpδap


 × [τ − τ ∗] ≥ 0, ∀(x, τ, d) ∈ K3,

(31)
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where K3 ≡ K̄3 ×R1
+ and K̄3 ≡ {(x, d)|x ≥ 0,

and the demand equations hold}, or, equivalently,
(f∗, d∗, τ ∗) ∈ K4 is an equilibrium link load, travel de-
mand, and marginal cost of emission abatement pat-
tern if and only if it satisfies the variational inequality
problem:

Link Load Formulation:∑
a∈L

[ca(f
∗) + haτ

∗] × [fa − f∗a ] −
∑
w∈W

λw(d
∗) × (dw − d∗w)

[
Q̄−

∑
a∈L

haf
∗
a

]
× [τ − τ ∗] ≥ 0, ∀(f, d, τ) ∈ K4, (32)

where K4 ≡ K̄4 × R1
+ and K̄4 ≡ {f | there exists anx ≥

0, so that the demand equations hold}.
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I now show that variational inequalities (31) and (32)
can be put into standard form. I first establish this for
variational inequality (31) which is in path flow variables.

Define the column vector X ≡ (x, d, τ) ∈ K3 and the
column vector F (X) ≡ (C(X), L(X), T(X), where C(X)
and T(X) are as defined for the fixed demand model
and L(X) is the J-dimensional vector with component
w given by:

Lw(X) : λw(d).

For variational inequality (32) in link load variables, de-
fine the column vector X ≡ (f, d, τ) ∈ K4 and the column
vector

F (X) ≡ (c(X), L(X), T(X)),

where c(X) is as defined for the fixed demand emis-

sion pricing model, and L(X) and T(X) are as defined

above.
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In the special case in which the user link travel cost
functions are separable and given by (1), and the travel
disutility functions are also separable, that is,

λw = λw(dw), ∀w ∈W, (33)

one may obtain a solution to the simple case of the
traffic network policy model with elastic travel demands.
Indeed, one has:

Corollary 1 (Optimization Reformulation in a Spe-
cial Case)

The solution to the traffic network equilibrium policy
model in the case of separable user link travel cost func-
tions and travel disutility functions can be obtained by
solving the optimization problem:

Minimize
∑
a∈L

∫ ∑
p∈P

xpδap

0
ca(x)dx−

∑
w∈W

∫ dw

0
λw(y)dy (34)

subject to: ∑
p∈Pw

xp = dw, ∀w ∈W, (35)

∑
a∈L

ha
∑
p∈P

xpδap ≤ Q̄, (36)

xp ≥ 0, ∀p ∈ P. (37)
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A Computational Procedure

An algorithm is now presented which can be applied
to solve any variational inequality problem in which the
function F that enters the variational inequality is mono-
tone and Lipschitz continuous, provided that a solution
exists. The algorithm is the modified projection method
of Korpelevich (1977).

Recall that monotonicity of a function F requires that
F satisfies the following condition:

〈(F (X1) − F (X2))T ,X1 −X2〉 ≥ 0, ∀X1, X2 ∈ K, (38)

whereas Lipschitz continuity of a function F requires
that there exists a positive constant L̄, such that

‖F (X1) − F (X2)‖ ≤ L̄‖X1 −X2‖, ∀X1, X2 ∈ K. (39)
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The statement of the modified projection method is as
follows, where T denotes an iteration counter:

Modified Projection Method

Step 0: Initialization

Set X0 ∈ K. Let T = 1 and let α be a scalar such that
0 < α < 1

L
, where L is the Lipschitz continuity constant

(cf. (39)).

Step 1: Computation

Compute X̄T by solving the variational inequality sub-
problem:

〈(X̄T + αF (XT −1)T −XT −1)T ,X − X̄T 〉 ≥ 0, ∀X ∈ K.
(40)

Step 2: Adaptation

Compute XT by solving the variational inequality sub-
problem:

〈(XT +αF (X̄T )T−XT −1)T ,X−XT 〉 ≥ 0, ∀X ∈ K. (41)

Step 3: Convergence Verification

If max |XT
l −XT −1

l | ≤ ε, for all l, with ε > 0, a prespecified

tolerance, then stop; else, set T =: T + 1, and go to

Step 1.
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I now discuss the modified projection method more fully.
I first recall the definition of the projection of X on the
closed convex set K, with respect to the Euclidean norm,
and denoted by PKX, as

y = PKX = arg minz∈K‖X − z‖. (42)

In particular, note that X̄T generated by the modified
projection method as the solution to the variational in-
equality subproblem (40) is actually the projection of
(XT −1 − αF (XT −1)T) on the closed convex set K. In
other words,

X̄T = PK
[
XT −1 − αF (XT −1)T

]
. (43)
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Similarly, XT generated by the solution to variational
inequality subproblem (41) is the projection of XT −1 −
αF (X̄T )T on K, that is,

XT = PK
[
XT −1 − αF (X̄T )T

]
. (44)

I now give an explicit statement of the modified pro-

jection method for the solution of variational inequality

problem (12) for the fixed demand traffic network equi-

librium model with emission pricing.
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Modified Projection Method for the Solution of
Variational Inequality (12)

Step 0: Initialization

Set (f0, τ0) ∈ K2. Let T = 1 and set α such that 0 < α ≤
1
L̄
, where L̄ is the Lipschitz constant for the problem.

Step 1: Computation

Compute (f̄T , τ̄T ) ∈ K2 by solving the variational in-
equality subproblem:∑

a∈L
(f̄Ta + α(ca(f

T −1) + haτ
T −1) − fT −1

a ) × (fa − f̄Ta )

+(τ̄T + α(Q̄−
∑
a∈L

haf
T −1
a ) − τT −1) × (τ − τ̄T ) ≥ 0,

∀(f, τ) ∈ K2. (45)

Step 2: Adaptation

Compute (fT , τT ) ∈ K2 by solving the variational in-
equality subproblem:∑

a∈L
(fTa + α(ca(f̄

T ) + haτ̄
T ) − fT −1

a ) × (fa − fTa )

+(τT + α(Q̄−
∑
a∈L

haf̄
T
a ) − τT −1) × (τ − τT ) ≥ 0,

∀(f, d) ∈ K2. (46)
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Step 3: Convergence Verification

If | fTa − fT −1
a |≤ ε, for all a ∈ L and | τT − τT −1 |≤ ε, with

ε > 0, a pre-specified tolerance, then stop; otherwise,
set T := T + 1, and go to Step 1.

The decomposed subproblems take on a simple form

which can be computed very efficiently. Note that since

the feasible set K2 is a Cartesian product, where K2 ≡
K̄2×R1

+, the above variational inequality subproblems

can be decomposed across K̄2, which has the network

structure of the problem, and across the nonnegative

orthant.
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In fact, (45) yields the subproblem in K̄2 in link variables
given by:

Minimizef∈K̄2〈f̄T T , f̄T 〉 + 〈gT , fT 〉, (47)

where f̄T is the column vector with component a = f̄Ta , g
is the column vector with component ga = α(ca(fT −1)+
haτT −1) − fT −1

a ).

Observe that this subproblem is a quadratic program-
ming problem or, equivalently, the optimization refor-
mulation of the traffic network equilibrium conditions
in the case of linear and separable user link travel cost
functions.

Hence, this problem can be solved in numerous ways.
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In addition, (45) yields a subproblem in the marginal
cost of emission abatement variable, which can be solved
explicitly and exactly in closed form as follows: Set

τ̄T = max{0,−α(Q̄−
∑
a∈L

haf
T −1
a ) + τT −1}. (48)

The solution of the induced subproblems in (46) can be
solved in an analogous fashion.

I now state the convergence result for the algorithm for
the fixed demand emission pricing model.

It is presented without proof since the proof is similar
to the convergence proofs of the modified projection
method given in other lectures.

Theorem 3 (Convergence)

If the user link travel cost functions c are assumed to

be monotone and have bounded first-order derivatives,

then the modified projection method described above

converges to the solution of the variational inequality

(12).
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I now show the realization of the modified projection
method for the solution of the variational inequality in
link loads for the elastic demand emission pricing policy
model.

Modified Projection Method for the Solution of
Variational Inequality (32)

Step 0: Initialization

Set (f0, d0, τ0) ∈ K4. Let T = 1 and set α such that
0 < α ≤ 1

L̄
, where L̄ is the Lipschitz constant for the

problem.

Step 1: Computation

Compute (f̄T , d̄T , τ̄T ) ∈ K4 by solving the variational in-
equality subproblem:∑

a∈L
(f̄Ta + α(ca(f

T −1) + haτ
T −1) − fT −1

a ) × (fa − f̄Ta )

+
∑
w∈W

(d̄Tw − αλw(d
T −1) − dT −1

w ) × (dw − d̄Tw)

+(τ̄T + α(
∑
a∈L

Q̄−
∑
a∈L

haf
T −1
a ) − τT −1) × (τ − τ̄T ) ≥ 0,

∀(f, d, τ) ∈ K4. (49)

57



Step 2: Adaptation

Compute (fT , dT , τT ) ∈ K4 by solving the variational in-
equality subproblem:∑

a∈L
(fTa + α(ca(f̄

T ) + haτ̄
T ) − fT −1

a ) × (fa − fTa )

+
∑
w∈W

(dTw − αλw(d̄
T ) − dT −1

w ) × (dw − dTw)

+(τT + α(
∑
a∈L

Q̄−
∑
a∈L

haf̄
T
a ) − τT −1) × (τ − τT ) ≥ 0,

∀(f, d, τ) ∈ K4. (50)

Step 3: Convergence Verification

If |fTa − fT −1
a | ≤ ε, for all a ∈ L, |dTw − dT −1

w | ≤ ε, for all

w ∈ W , and |τT − τT −1| ≤ ε, with ε > 0, a pre-specified

tolerance, then stop; otherwise, set T := T +1, and go

to Step 1.
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The decomposed subproblems (48) and (49) can be
computed very efficiently.

Note that since the feasible set K4 is again a Cartesian
product, where K4 ≡ K̄4×R1

+, the above projections can

be decomposed across K̄4, which has the network struc-
ture of the problem, and across the nonnegative orthant.

Hence, (49), for example, yields the subproblem in K4

in link and demand variables given by:

Minimize(f,d)∈K̄2〈f̄T T , f̄T 〉+ 〈gT , fT 〉+ 〈d̄T T , d̄T 〉−rT , (51)

where f̄T is the column vector with component a = f̄Ta ,
g is the column vector with component

ga = α(ca(f
T −1) + haτ

T −1) − fT −1
a

,

d̄T

is the column vector with component w = d̄Tw, and r is

the column vector with component w = αλw(dT −1) +

dT −1
w .
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This subproblem is a quadratic programming problem
or, equivalently, the optimization reformulation of the
traffic network equilibrium conditions in the case of lin-
ear and separable user link travel cost and travel disu-
tility functions. Hence, this problem can be also solved
in numerous ways (see, e.g., Dhanda, Nagurney, and
Ramanujam 1999).

In addition, one can reformulate the elastic demand
problem as a fixed demand problem over an appropri-
ately constructed abstract network (see Gartner 1980)
and, therefore, one can apply then the equilibration al-
gorithm of Dafermos and Sparrow (1969).

Furthermore, (49) yields a subproblem in the marginal

cost of emission abatement, which can be solved using

the expression (5.48) above.
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Convergence for the algorithm is given in the following
theorem, which is also presented without proof since the
proof is similar to other proofs of convergence given in
this lecture series.

Theorem 4 (Convergence)

If the user link travel cost functions c and the travel

disutility functions −λ are assumed to be monotone and

have bounded first-order derivatives, then the modified

projection method described above converges to the so-

lution of the variational inequality (32).
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Numerical Examples

Several numerical examples are now presented.

I consider the solution of the fixed demand emission
pricing policy model and apply the modified projection
method for solving the governing variational inequality
given by (12). The modified projection method was im-
plemented in FORTRAN and the system utilized was
the IBM SP2 located at the Computer Science Depart-
ment at the University of Massachusetts at Amherst for
the numerical work.

For the solution of the standard traffic network equi-

librium problem encountered in both the computation

and adaptation steps (cf. (45) and (46)) I utilized the

equilibration method (cf. Dafermos and Sparrow 1969.

The convergence criterion used was: |xTp −xT −1
p | ≤ ε, for

all p ∈ P ; |τT − τT −1| ≤ ε.
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The modified projection method was initialized by set-
ting the flow on a path equal to the travel demand for
the O/D pair that the path belongs to divided by the
number of paths. All other variables were initialized to
zero.

Example 4: Variant of Example 1

The first numerical example was identical to Example 1
except for the following change: I relaxed the environ-
mental quality standard from Q̄ = 1 to Q̄ = 1.5. Note
that Q̄ = 1.5 is still lower than the total number of
emissions emitted, which was equal to 2.1, if there is no
emission pricing policy system in place. I set α = 0.4 in
the modified projection method.

An application of the modified projection method yielded
the following solution:

f∗a = 5.79, f∗b = 3.40, f∗c = 0.81.

This equilibrium link load pattern was induced by the
equilibrium path flow pattern:

x∗p1
= 5.79, x∗p2

= 3.40, x∗p3
= 0.81.
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The generalized user travel costs on the paths were:
C̄p1 = C̄p2 = C̄p3 = 21.62.

The equilibrium marginal cost of emission abatement
was:

τ ∗ = 51.79.

The environmental standard was met since the total
emissions:∑

a∈L haf
∗
a = Q̄ = 1.5.

Clearly, both equilibrium conditions (8) and (9) are satis-

fied by the computed flow and marginal cost of emission

abatement pattern.
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Example 5

I then considered the transportation network depicted
in the Figure consisting of ten nodes, thirteen links and
two O/D pairs: w1 = (1,8) and w2 = (2,10) with travel
demands dw1 = 5 and dw2 = 5.

The user link travel cost functions were:

c1(f) = .00005f4
1 + 5f1 + 2f2 + 5, c2(f) = .00003f4

2 + 4f2 + f1 + 2,

c3(f) = .00005f4
3 + 3f3 + f4 + 3, c4(f) = .00003f4

4 + 6f4 + 3f5 + 4,

c5(f) = 4f5 + f12 + 8, c6(f) = .00007f4
6 + 7f6 + 4f12 + 6,

c7(f) = 8f7 + 2f13 + 7, c8(f) = .00001f4
8 + 7f8 + 3f12 + 6,

c9(f) = 8f9 + 3f11 + 5, c10(f) = .00003f4
10 + 6f10 + f1 + 3,

c11(f) = .00004f4
11+4f11+f2+4, c12(f) = .00002f4

12+6f12+f1+5,

c13(f) = .00003f4
12 + 9f13 + 2f4 + 3.

The paths were:

For O/D pair w1:

p1 = (1,2,7), p2 = (1,6,11), p3 = (5,10,11)

and for O/D pair w2:

p4 = (2,3,4,9), p5 = (2,3,8,13), p6 = (2,7,12),

p7 = (6,11,12,13).
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The parameter α in the modified projection method was
set to 0.1, whereas ε was set to .0001.

The emission parameters were: ha = 0.5 × a, ∀a ∈ L,
and the environmental quality standard Q̄ = 91.

The modified projection method yielded the equilibrium
link load pattern given by:

f∗1 = 3.88, f∗2 = 7.36, f∗3 = 5.00, f∗4 = 3.51,

f∗5 = 1.12, f∗6 = 1.52, f∗7 = 2.36, f∗8 = 1.49,

f∗9 = 3.51, f∗10 = 1.12, f∗11 = 2.64, f∗12 = 0.00,

∗
13 = 1.49,

with an equilibrium path flow pattern:

For O/D pair w1:

x∗p1
= 2.36, x∗p2

= 1.52, x∗p3
= 1.12,

and for O/D pair w2:

x∗p4
= 3.51, x∗p5

= 1.49, x∗p6
= 0.00, x∗p7

= 0.00,

and with generalized user travel costs:

For O/D pair w1:

C̄p1 = C̄p2 = C̄p3 = 140.43,

For O/D pair w2:

C̄p4 = C̄p5 = 193.14, C̄p6 = 203.16, C̄p7 = 203.16.

The equilibrium marginal cost of emission abatement

was τ ∗ = 7.41.
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The total emissions generated were precisely equal to

the environmental quality standard Q̄ = 91. The equi-

librium conditions (8) and (9) were also met by the

computed flow and marginal cost of emission abatement

pattern.
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