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Oligopoly theory dates to Cournot (1838), who investi-
gated competition between two producers, the so-called
duopoly problem, and is credited with being the first to
study noncooperative behavior.

In an oligopoly, it is assumed that there are several firms,
which produce a product and the price of the product
depends on the quantity produced.

Examples of oligopolies include large firms in computer,

automobile, chemical or mineral extraction industries,

among others.
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Nash (1950, 1951) subsequently generalized Cournot’s

concept of an equilibrium for a behavioral model con-

sisting of n agents or players, each acting in his/her

own self-interest, which has come to be called a nonco-

operative game. Specifically, consider m players, each

player i having at his/her disposal a strategy vector

xi = {xi1, . . . , xin} selected from a closed, convex set

Ki ⊂ Rn, with a utility function ui : K 7→ R1, where K =

K1×K2×. . .×Km ⊂ Rmn. The rationality postulate is that

each player i selects a strategy vector xi ∈ Ki that max-

imizes his/her utility level ui(x1, . . . , xi−1, xi, xi+1, . . . , xm)

given the decisions (xj)j 6=i of the other players.
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In this framework one then has:

Definition 1 (Nash Equilibrium)

A Nash equilibrium is a strategy vector

x∗ = (x∗
1, . . . , x

∗
m) ∈ K,

such that

ui(x
∗
i , x̂

∗
i ) ≥ ui(xi, x̂

∗
i ), ∀xi ∈ Ki,∀i, (1)

where x̂∗
i = (x∗

1, . . . , x
∗
i−1, x∗

i+1, . . . , x
∗
m).
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It has been shown (cf. Hartman and Stampacchia (1966)
and Gabay and Moulin (1980)) that Nash equilibria sat-
isfy variational inequalities. In the present context, un-
der the assumption that each ui is continuously differ-
entiable on K and concave with respect to xi, one has

Theorem 1 (Variational Inequality Formulation of
Nash Equilibrium)

Under the previous assumptions, x∗ is a Nash equilibrium
if and only if x∗ ∈ K is a solution of the variational
inequality

〈F (x∗), x − x∗〉 ≥ 0, ∀x ∈ K, (2)

where F (x) ≡ (−∇x1u1(x), . . . ,−∇xmum(x)) is a row vec-

tor and where ∇xiui(x) = (∂ui(x)
∂xi1

, . . . , ∂ui(x)
∂xin

).

Proof: Since ui is a continuously differentiable function
and concave with respect to xi, the equilibrium condi-
tion (1), for a fixed i, is equivalent to the variational
inequality problem

−〈∇xiui(x
∗), xi − x∗

i 〉 ≥ 0, ∀xi ∈ Ki, (3)

which, by summing over all players i, yields (2).
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If the feasible set K is compact, then existence is guar-

anteed under the assumption that each ui is contin-

uously differentiable. Rosen (1965) proved existence

under similar conditions. Karamardian (1969), on the

other hand, relaxed the assumption of compactness of

K and provided a proof of existence and uniqueness of

Nash equilibria under the strong monotonicity condition.

As shown by Gabay and Moulin (1980), the imposition

of a coercivity condition on F (x) will guarantee exis-

tence of a Nash equilibrium x∗ even if the feasible set is

no longer compact. Moreover, if F (x) satisfies the strict

monotonicity condition, uniqueness of x∗ is guaranteed,

provided that the equilibrium exists.
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Classical Oligopoly Problems

We now consider the classical oligopoly problem in which
there are m producers involved in the production of a
homogeneous commodity. The quantity produced by
firm i is denoted by qi, with the production quantities
grouped into a column vector q ∈ Rm. Let fi denote
the cost of producing the commodity by firm i, and let
p denote the demand price associated with the good.
Assume that

fi = fi(qi) (4)

and

p = p(
m∑

i=1

qi). (5)

The profit for firm i, ui, can then be expressed as

ui(q) = p(
m∑

i=1

qi)qi − fi(qi). (6)
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Assuming that the competitive mechanism is one of
noncooperative behavior, in view of Theorem 1, one
can write down immediately:

Theorem 2 (Variational Inequality Formulation of
Classical Cournot-Nash Oligopolistic Market Equi-
librium)

Assume that the profit function ui(q) is concave with
respect to qi, and that ui(q) is continuously differen-
tiable. Then q∗ ∈ Rm

+ is a Nash equilibrium if and only if
it satisfies the variational inequality

m∑
i=1

[
∂fi(q∗i )

∂qi
− ∂p(

∑m
i=1 q∗i )

∂qi
q∗i − p(

m∑
i=1

q∗i )

]
× [qi − q∗i ] ≥ 0,

∀q ∈ Rm
+. (7)
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We now establish the equivalence between the classical
oligopoly model and a network equilibrium model. For
a graphic depiction, see Figure 1.

Let 0 be the origin node and 1 the destination node.
Construct m links connecting 0 to 1. The cost on a link
i is then given by:[

∂fi(qi)

∂qi
− ∂p(

∑m
i=1 qi)

∂qi
qi

]
,

and the inverse demand associated with the origin/des-

tination (O/D) pair (0,1) is given by p(
∑m

i=1 qi). The

flow on link i corresponds to qi and the demand associ-

ated with the O/D pair to
∑m

i=1 qi. Hence, the classical

oligopoly model is isomorphic to a network equilibrium

model with a single O/D pair, m paths corresponding

to the m links, and with elastic demand.
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i=1
qi)
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∂fm(qm)
∂qm
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qi)

∂qm
qm

p(
∑m

i=1 qi)

Network equilibrium representation
of an oligopoly model
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Computation of Classical Oligopoly Problems

First consider a special case of the oligopoly model

described above, characterized by quadratic cost func-

tions, and a linear inverse demand function. The for-

mer model has received attention in the literature (cf.

Gabay and Moulin (1980), and the references therein),

principally because of its stability properties. It is now

demonstrated that a demand market equilibration al-

gorithm can be applied for the explicit computation of

the Cournot-Nash equilibrium pattern. The algorithm is

called the oligopoly equilibration algorithm, OEA. After

its statement, it is applied to compute the solution to a

three-firm example.
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Assume a quadratic production cost function for each
firm, that is,

fi(qi) = aiq
2
i + biqi + ei, (8)

and a linear inverse demand function, that is,

p(
m∑

i=1

qi) = −o

m∑
i=1

qi + r, (9)

where ai, bi, ei, o, r > 0, for all i. Then the expression for
the cost on link i is given by: (2ai + o)qi + bi, for all
i = 1, . . . , m.

The oligopoly equilibration algorithm is now stated.

OEA

Step 0: Sort

Sort the bi’s; i = 1, . . . , m, in nondescending order and
relabel them accordingly. Assume, henceforth, that they
are relabeled. Also, define bm+1 ≡ ∞ and set I := 1. If
b1 ≥ r, stop; set qi = 0; i = 1, . . . , m, and exit; otherwise,
go to Step 1.

Step 1: Computation

Compute

λI =

r
o
+

∑I
i=1

bi

(2ai+o)

1
o
+

∑I
i=1

1
(2ai+o)

. (10)
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Step 2: Evaluation

If bI < λI ≤ bI+1, set j := I; λ := λI, and go to Step 3;
otherwise, set I := I + 1, and go to Step 1.

Step 3: Update

Set

qi =
λ − bi

(2ai + o)
, i = 1, . . . , j

qi = 0, i = j + 1, . . . , m.
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An example is now presented.

Example 1

In this oligopoly example there are three firms. The
data are as follows:

producer cost functions:

f1(q1) = q2
1 + q1 + 1

f2(q2) = .5q2
2 + 4q2 + 2

f3(q3) = q2
3 + .5q3 + 5,

inverse demand function:

p(
3∑

i=1

qi) = −
3∑

i=1

qi + 5.

Step 0 of OEA consists of sorting the bi terms, which
yields: .5 ≤ 1 ≤ 4, with the reordering of the links being:
link 3, link 1, link 2. Set I := 1 and compute:

λ1 =
5 + .5

(2+1)

1 + 1
(2+1)

= 3
7

8
.
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Since .5 < 37
8
6≤ 1, increment I to 2 and compute:

λ2 =
5 + 1

6
+ 1

3

1 + 1
3
+ 1

3

=
51

2

12
3

= 3
3

10
.

Since 1 < 3 3
10

≤ 4, stop; j = 2, λ = 3 3
10

. Update the
production outputs as follows:

q1 =
23

30
, q2 = 0, q3 =

14

15
;

3∑
i=1

qi = 1
7

10
.
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We now turn to the computation of Cournot-Nash equi-
libria in the case where the production cost functions (4)
are not limited to being quadratic, and the inverse de-
mand function (cf. (5)) is not limited to being linear.
In particular, an oligopoly iterative scheme is presented
for the solution of variational inequality (7) governing
the Cournot-Nash model. It is then shown that the
scheme induces the projection method and the relax-
ation method; each of these methods, in turn, decom-
poses the problem into very simple subproblems.

The Iterative Scheme

Construct a smooth function g(q, y) : Rm
+ × Rm

+ 7→ Rm

with the following properties:

(i). g(q, q) = −∇Tu(q), ∀q ∈ Rm
+.

(ii). For every q ∈ Rm
+, y ∈ Rm

+, the m×m matrix ∇qg(q, y)
is positive definite.
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Any smooth function g(q, y) with the above properties
generates the following algorithm:

Step 0: Initialization

Start with q0 ∈ Rm
+. Set k := 1.

Step 1: Construction and Computation

Compute qk by solving the variational inequality sub-
problem:

〈g(qk, qk−1)
T
, q − qk〉 ≥ 0, ∀q ∈ Rm

+. (11)

Step 2: Convergence Verification

If |qk − qk−1| ≤ ε, with ε > 0, a prespecified tolerance,
then stop; otherwise, set k := k + 1, and go to Step 1.

The above algorithm generates a well-defined sequence

{qk}, such that if {qk} converges, say qk → q∗, as k →
∞, then q∗ is an equilibrium quantity vector, that is, a

solution of variational inequality (7).
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Projection Method

The projection method then corresponds to the choice

g(q, y) = −∇Tu(q) +
1

ρ
G(q − y), (12)

where ρ is a positive scalar and G is a fixed, symmetric
positive definite matrix. It is easy to verify that condi-
tions (i) and (ii) are satisfied. Note that in the applica-
tion of the projection method to the Cournot oligopoly
model, each subproblem (11) can be solved exactly at
iteration k as follows:

qk
i = max{0,

ρ∂ui(qk−1)
∂qi

+ Giiq
k−1
i

Gii
}, for i = 1, . . . , m,

(13)
where Gii is the i-th diagonal element of G. In particular,
if one selects G = I, then (11) simplifies even further
to:

qk
i = max{0, ρ

∂ui(qk−1)

∂qi
+ qk−1

i }, for i = 1, . . . , m.

(14)

17



Relaxation Method

The relaxation/diagonalization method, on the other
hand, corresponds to the selection

gi(q, y) = −∂ui

∂qi
(y1, . . . , yi−1, qi, yi+1, . . . , ym), for i = 1, . . . , m.

(15)

In this case, properties (i) and (ii) are also satisfied.

Note that in the realization of the relaxation method at
each step k one must solve

max
qi≥0

ui(qi, q̂
k−1
i ) (16)

for each i, where q̂k−1
i ≡{qk−1

1 , . . . , qk−1
i−1 , qk−1

i+1 , . . . , qk−1
m }.

Specifically, this subproblem can be solved by the fol-
lowing rule:

qk
i = max{0, q̄i}, (17)

where q̄i is the solution of the one-variable nonlinear
equation

f ′
i(qi)−p′(qi+

m∑
j=1,j 6=i

qk−1
j )qi−p(qi+

m∑
j=1,j 6=i

qk−1
j ) = 0. (18)

Note that the solution of (18) which is needed for (17)

would usually be solved iteratively, unlike (13) which is

an analytical expression for the determination of each

qk
i .
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First, some theoretical results are presented and then a
numerical example is given.

We now state the convergence conditions for the general
iterative scheme over an unbounded feasible set.

Theorem 3 (Convergence of General
Iterative Scheme)

Assume that there exists a constant θ > 0, such that

‖g−1

2
q (q1, y1)∇yg(q

2, y2)g
−1

2
q (q3, y3)‖ ≤ θ < 1 (19)

for all (q1, q2, q3),(y1, y2, y3)∈ Rm
+, and that the infimum

over K × K of the minimum eigenvalue of ∇xg(x, y) is

positive. Then the sequence {qk} obtained by solving

variational inequality (7) converges.
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The following example is taken from Murphy, Sherali,
and Soyster (1982) and solved now using both the pro-
jection method and the relaxation method.

Example 2

The oligopoly consists of five firms, each with a pro-
duction cost function of the form

fi(qi) = ciqi +
βi

(βi + 1)
Ki

− 1

βi qi

(βi+1)

βi , (20)

with the parameters given in the Table. The demand
price function is given by

p(
5∑

i=1

qi) = 5000
1

1.1(
5∑

i=1

qi)

− 1

1.1

. (21)

20



Parameters for the five-firm oligopoly example

Firm i ci Ki βi

1 10 5 1.2
2 8 5 1.1
3 6 5 1.0
4 4 5 .9
5 2 5 .8
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Both the projection method and the relaxation method
were implemented in FORTRAN, compiled using the
FORTVS compiler, optimization level 3. The conver-
gence criterion was |qk

i − qk−1
i | ≤ .001, for all i, for both

methods. A bisecting search method was used to solve
the single variable problem (17) for each firm i, in the
relaxation method. The matrix G was set to the iden-
titiy matrix I for the projection method with ρ = .9.
The system used was an IBM 3090/600J at the Cor-
nell Theory Center. Both algorithms were initialized at
q0 = (10,10,10,10,10).

The projection method required 33 iterations but only

.0013 CPU seconds for convergence, whereas the re-

laxation method required only 23 iterations, but .0142

CPU seconds for convergence. Both methods converged

to q∗=(36.93,41.81,43.70,42.65,39.17), reported to the

same number of decimal places.
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A Spatial Oligopoly Model

Now a generalized version of the classical oligopoly model
is presented. Assume that there are m firms and n de-
mand markets that are generally spatially separated. As-
sume that the homogeneous commodity is produced by
the m firms and is consumed at the n markets. As be-
fore, let qi denote the nonnegative commodity output
produced by firm i and now let dj denote the demand
for the commodity at demand market j. Let Tij de-
note the nonnegative commodity shipment from supply
market i to demand market j. Group the production
outputs into a column vector q ∈ Rm

+, the demands into
a column vector d ∈ Rn

+, and the commodity shipments
into a column vector T ∈ Rmn

+ .

The following conservation of flow equations must hold:

qi =
n∑

j=1

Tij, ∀i (22)

dj =
m∑

i=1

Tij, ∀j (23)

where Tij ≥ 0, ∀i, j.
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As previously, associate with each firm i a production
cost fi, but allow now for the more general situation
where the production cost of a firm i may depend upon
the entire production pattern, that is,

fi = fi(q). (24)

Similarly, allow the demand price for the commodity at
a demand market to depend, in general, upon the entire
consumption pattern, that is,

pj = pj(d). (25)

Let tij denote the transaction cost, which includes the
transportation cost, associated with trading (shipping)
the commodity between firm i and demand market j.
Here we permit the transaction cost to depend, in gen-
eral, upon the entire shipment pattern, that is,

tij = tij(T). (26)

The profit ui of firm i is then

ui =
n∑

j=1

pjTij − fi −
n∑

j=1

tijTij. (27)

In view of (22) and (23), one may write

u = u(T). (28)
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Now consider the usual oligopolistic market mechanism,
in which the m firms supply the commodity in a nonco-
operative fashion, each one trying to maximize its own
profit. We seek to determine a nonnegative commodity
distribution pattern T for which the m firms will be in a
state of equilibrium as defined below.

Definition 2 (Spatial Cournot-Nash Equilibrium)

A commodity shipment distribution T ∗ ∈ Rmn
+ is said to

constitute a Cournot-Nash equilibrium if for each firm
i; i = 1, . . . , m,

ui(T
∗
i , T̂ ∗

i ) ≥ ui(Ti, T̂
∗
i ), ∀Ti ∈ Rn

+, (29)

where

Ti ≡ {Ti1, . . . , Tin} and T̂ ∗
i ≡ (T ∗

1 , . . . , T ∗
i−1, T

∗
i+1, . . . , T

∗
m).
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The variational inequality formulation of the Cournot-
Nash equilibrium is given in the following theorem.

Theorem 4 (Variational Inequality Formulation of
Cournot-Nash Equilibrium)

Assume that for each firm i the profit function ui(T)
is concave with respect to the variables {Ti1, . . . , Tin},
and continuously differentiable. Then T ∗ ∈ Rmn

+ is a
Cournot-Nash equilibrium if and only if it satisfies the
variational inequality

−
m∑

i=1

n∑
j=1

∂ui(T ∗)
∂Tij

× (Tij − T ∗
ij) ≥ 0, ∀T ∈ Rmn

+ . (30)

Upon using (22) and (23), (30) takes the form:

m∑
i=1

∂fi(q∗)
∂qi

× (qi − q∗i ) +
m∑

i=1

n∑
j=1

tij(T
∗) × (Tij − T ∗

ij)

−
n∑

j=1

pj(d
∗) × (dj − d∗

j)

−
m∑

i=1

n∑
j=1

n∑
l=1

[
∂pl(d∗)

∂dj
− ∂til(T ∗)

∂Tij

]
T ∗

il(Tij − T ∗
ij) ≥ 0,

∀(q, T, d) ∈ K, (31)

where K ≡ {(q, T, d)|T ≥ 0,and (22)and (23)hold}.
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Note that, in the special case, where there is only a sin-
gle demand market and the transaction costs are identi-
cally equal to zero, variational inequality (31) collapses
to variational inequality (7).

The underlying network structure of the model is de-

picted in Figure 2 with the cost on link (i, j) given by

tij(T) +
∑n

l=1

[
∂pl(d)

∂dj
− ∂til(T )

∂Tij

]
Til.
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Network structure of the spatial oligopoly problem
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Relationship Between Spatial Oligopolies and
Spatial Price Equilibrium Problems

Consider now a spatial oligopoly model of the type just
discussed but endowed with the following structure.

The m firms are grouped into J groups: S1, . . . , SJ, called
supply markets with ma firms in supply market Sa, that
is,

∑J
a=1 ma = m and ∪J

a=1Sa = {1,2, . . . , m}. The firms
in supply market Sa ship to demand market j a shipment
Qaj of the commodity given by

Qaj =
∑
i∈Sa

Tij, a = 1, . . . , J; j = 1, . . . , n. (32)

The total production sa of all firms in Sa is

sa =
n∑

j=1

Qaj =
∑
i∈Sa

qi =
n∑

j=1

∑
i∈Sa

Tij. (33)
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Assume that the supply markets represent geographic
locations and thus all firms belonging to the same supply
market face identical production and transaction costs.
This is expressed through the following assumptions:

(a). All firms in supply market Sa have the same pro-
duction cost ga, that is,

fi = ga, if i ∈ Sa. (34)

(b). All firms in supply market Sa face the same trans-
action cost caj to the demand market j, that is,

tij = caj, if i ∈ Sa. (35)

(c). The production cost of any firm in supply market
Sa is determined solely by the production pattern, that
is,

g = g(s) (36)

where g and s are vectors in Rm with components ga and
sa and g is a known smooth function.

(d). The transaction cost of any firm in a supply market
Sa to the demand market j is determined solely by the
shipment distribution

c = c(Q), (37)

where c and Q are J × n matrices with components caj

and Qaj and c is a known smooth function.
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Finally, the demand price at any demand market may
depend, as in the general model, upon the commodity
demand pattern, namely,

p = p(d), (38)

where p and d are vectors in Rn with components pj and
dj and p is a known smooth function.

In the present case if i ∈ Sa, we have by virtue of (34),
(36), and (33),

∂fi

∂qi
=

∑
b

∂ga

∂sb

∂sb

∂qi
=

∂ga

∂sa
, .39)

and, due to (35), (37), and (32),

∂tij

∂Til

=
∑
b,γ

∂caj

∂Qbγ

∂Qbγ

∂Til

=
∂caj

∂Qal

. (40)

Using (39), (33), (35), (32), and (40), we may now
write variational inequality (31) in the form:∑

a

∂ga(s∗)
∂sa

(sa − s∗a) +
∑
aj

caj(Q
∗) × (Qaj − Q∗

aj)

−
∑

j

pj(d
∗) × (dj − d∗

j)

−
∑
a,j,l

[
∂pj(d∗)

∂dl

− ∂caj(Q∗)
∂Qal

] ∑
i∈Sa

T ∗
ij(Til − T ∗

il) ≥ 0. (41)
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Let T ∗ be any solution of variational inequality (30).
Construct any T̃ ∈ Rmn

+ such that for any j = 1, . . . , n,

a = 1, . . . , J the set T̃ij with i ∈ Sa is any permutation of
the set T ∗

ij with i ∈ Sa. Then it follows from (41) that T̃

is also a solution of variational inequality (30). Hence,
(30) admits a unique solution, so that T ∗ = T̃ , T ∗ must
be symmetric, that is,

T ∗
ij =

1

ma
Q∗

aj, a = 1, . . . , J; j = 1, . . . , n; i ∈ Sa. (42)

32



The connection between oligopolistic equilibrium and
spatial price equilibrium is now established.

Fix the number of supply and demand markets at J and
n, respectively, as well as the function g in (36), the
function c in (37), and the function p in (38), and con-
struct a sequence of oligopolistic models of the type
described in this section with ma → ∞, for a = 1, . . . , J.
Construct the corresponding sequence of symmetric
oligopolistic equilibria T ∗

(k) which induces sequences (s∗(k), Q
∗
(k), d

∗
(k))

of supply, shipment, and demand patterns.

Theorem 5

Any convergent subsequence of the sequence

(s∗(k), d
∗
(k), Q

∗
(k)) converges to (s∗, d∗, Q∗) which satisfies

the spatial price variational inequality with πa = ∂ga

∂sa
(and

ρj ≡ pj, for all j). Thus, (s∗, d∗, Q∗) is a spatial price

equilibrium with demand price functions p, transaction

cost functions c, and supply price functions π(s) with

πa = ∂ga

∂sa
, the marginal cost.
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Sensitivity Analysis

We now discuss sensitivity analysis in the framework of
Nash equilibria. The results are readily adaptable to the
oligopoly models. First, consider the comparison of two
equilibria. We begin with the following lemma.

Lemma 1

Let u and u∗ denote two utility functions, and let x and
x∗ denote, respectively, their associated Nash equilib-
rium strategy vectors. Assume that ui and u∗

i are con-
cave with respect to xi ∈ Ki and x∗

i ∈ Ki, for each i, and
continuously differentiable. Then

〈∇u∗(x∗) −∇u(x), x∗ − x〉 ≥ 0. (45)

Moreover, when −∇u is strictly monotone, then

〈∇u∗(x∗) −∇u(x∗), x∗ − x〉 ≥ 0, (46)

with equality holding only when x = x∗.
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Proof: Since x and x∗ are both Nash equilibrium vec-
tors, by Theorem 1 they must satisfy, respectively, the
variational inequalities:

〈∇u(x), y − x〉 ≤ 0, ∀y ∈ K, (47)

〈∇u∗(x∗), y − x∗〉 ≤ 0, ∀y ∈ K. (48)

Letting y = x∗ in (47), and y = x in (48), and summing
the resulting inequalities, yields (45).

From (45) one has that

〈∇u∗(x∗) −∇u(x) + ∇u(x∗) −∇u(x∗), x∗ − x〉 ≥ 0. (49)

When −∇u(x) is strictly monotone, (49) yields

〈∇u∗(x∗)−∇u(x∗), x∗−x〉 ≥ −〈∇u(x∗)−∇u(x), x∗−x〉 ≥ 0,
(50)

and, consequently, (46) follows with equality holding

only when x = x∗.
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We now present another result.

Theorem 6

Let u and u∗ denote two utility functions, and x and
x∗ the corresponding Nash equilibrium strategy vectors.
Assume that ∇u satisfies the strong monotonicity as-
sumption

〈∇u(x) −∇u(y), x − y〉 ≤ −α‖x − y‖2, ∀x, y ∈ K, (51)

where α > 0. Then

‖x∗ − x‖ ≤ 1

α
‖∇u∗(x∗) −∇u(x∗)‖. (52)

Proof: From Lemma 1 one has that (45) holds and
from (45) one has that

〈∇u∗(x∗) −∇u(x) + ∇u(x∗) −∇u(x∗), x∗ − x〉 ≥ 0. (53)

But from the strong monotonicity condition (51), (53)
yields

〈∇u∗(x∗) −∇u(x∗), x∗ − x〉 ≥ −〈∇u(x∗) −∇u(x), x∗ − x〉

≥ α‖x∗ − x‖2. (54)

By virtue of the Schwartz inequality, (54) yields

α‖x∗ − x‖2 ≤ ‖∇u∗(x∗) −∇u(x∗)‖‖x∗ − x‖ (55)

from which (52) follows and the proof is complete.
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Below are references cited in the lecture as well as ad-
ditional supplementary ones.
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