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Abstract: In this paper, we develop an integrated framework for the modeling of reverse

supply chain management of electronic waste, which includes recycling. We describe the

behavior of the various decision-makers, consisting of the sources of electronic waste, the

recyclers, the processors, as well as the consumers associated with the demand markets for

the distinct products. We construct the multitiered e-cycling network equilibrium model,

establish the variational inequality formulation, whose solution yields the material flows as

well as the prices, and provide both qualitative properties of the equilibrium pattern as well

as numerical examples that are solved using the proposed algorithm.
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1. Introduction

Recent legislation both in the United States as well as abroad and, in particular, in

Europe and in Japan, has refocused attention on recycling for the management of wastes

and, specifically, electronic wastes (see e.g. Appelbaum (2002a)). The impetus has come

both from the recognition of the deleterious effects on the environment of dumping electronic

wastes as well as the decreasing capacity of landfills. For example, Massachusetts in 2000

banned cathode-ray tubes (CRTs) from landfills whereas Japan in 2001 enacted a law that

requires retailers and manufacturers to bear some collection and recycling costs of appliances

(Appelbaum (2002b, c)).

Electronic waste recycling and the management thereof differs from household recycling

in two significant ways: 1. electronic waste, unlike household waste, is usually a composition

of several materials, including hazardous ones and 2. it may contain precious materials

as well as materials that can be reused (such as computer components, for example) (cf.

Sodhi and Reimer (2001)). Hence, it may be feasible and even profitable to collect and

process electronic waste that may be obtained from sources that are dispersed in location.

Furthermore, a variety of governmental mandates on recycling of electronic wastes or e-

cycling is forcing decision-makers to explore their options.

Many researchers have studied recycling issues; see, for example, Hoshino, Yura, and

Hitomi (1995), Inderfurth, de Kok, and Flapper (2001), Ron and Penev (1995), Stuart,

Ammons, and Turbini (1999), and Uzsoy and Venkatachalam (1998). Hoshino, Yura, and

Hitomi (1995) dealt with a recycling model that maximizes two measures of performance

– total profit and recycling rate – by using linear programming. Inderfurth, de Kok, and

Flapper (2001), in turn, formulated a stochastic remanufacturing system as a stochastic

dynamic problem, and analyzed the structure of the optimal policy. Ron and Penev (1995)

proposed an approach to determine the degree of disassembly at a single point in time. These

previous studies, however, did not take into account supply chain management issues. For

example, the price of a recycled material, which is in reality endogenously determined through

the interactions between tiers and within tiers, is exogenously determined and fixed in the

above-noted studies. Although Uzsoy and Venkatachalam (1998) considered a recycling

problem in terms of a supply chain, they, nevertheless, limited the formulation to a linear
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programming world.

In this paper, we take a perspective of supply chain analysis and management for the

collection, recycling, and processing of electronic waste, which may be ultimately converted

into products demanded by the consumers. In particular, we propose an integrated reverse

supply chain management framework that allows for the modeling, analysis, and computation

of the material flows as well as the prices associated with the different tiers of the decision-

makers in the multitiered electronic recycling or e-cycling network . Of specific interest is the

synthesis of the behaviors of the various decision-makers involved in the recycling and the

further processing of electronic waste beginning with the top tier of nodes in the network

corresponding to the sources of the electronic waste to the bottom tier that reflects the

demand markets for the recycled/reprocessed electronic products.

The foundations for our analytical framework are derived from recent contributions in

supply chain analysis that focus on multiple tiers of decision-makers, be they manufacturers,

distributors, retailers, and/or consumers, who may compete within a tier but cooperate

between tiers, with the governing concept, assuming individual optimizing behavior, being

that of a network equilibrium (see Nagurney, Dong, and Zhang (2002), Nagurney, et al.

(2002a, b), Nagurney and Dong (2002), and Nagurney and Toyasaki (2003)). In addition,

we build upon our tradition of a network perspective to environmental management as

described in the book on environmental networks by Dhanda, Nagurney, and Ramanujam

(1999).

However, unlike the supply chain network equilibrium models referenced above, the model

developed in this paper assumes fixed amounts of electronic waste held by the various sources.

In addition, the decision-makers, be they the sources of electronic waste, the recyclers, and/or

the processors associated with the respective tier of nodes of the e-cycling network, have the

option of not only transporting (or having transported) the material to the subsequent tier

for recycling (or further processing) and, ultimately, consumption, but also have the option

of shipping the waste to a landfill, with associated costs. Hence, the e-cycling network has

characteristics of financial networks with intermediation (cf. Nagurney and Ke (2001, 2003))

but with specific prices and costs associated with opting out of further “processing.” Notably,

the model developed in this paper differs from the above multitiered supply chain network
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equilibrium models in that it allows for the transformation of the electronic waste into other

products (or byproducts) as the waste “flows” down the e-cycling network.

The concept of an electronics recycling network was proposed by Sodhi and Reimer (2001),

who also developed optimization models for the sources, the recyclers, and the processors.

However, the scope of the integrated problem, in which the behavior of all the involved

decision-makers is captured, along with the flows and prices, as well as the demand-side, was

beyond the methodological tools available (see also Ammons et al. (1999)).

This paper is organized as follows. In Section 2, we develop the e-cycling network model

for reverse supply chain management consisting of multiple tiers of decision-makers. We

describe their optimizing behavior and establish the governing equilibrium conditions. We

then derive the equivalent variational inequality formulation, whose solution yields the ma-

terial flows between the tiers in the network as well as the equilibrium prices of the processed

products.

In Section 3, we provide qualitative properties of the equilibrium pattern and also give

conditions, under suitable assumptions, on the function that enters the variational inequality

formulation in order to be able to establish convergence of the algorithmic scheme in Section

4. In Section 5, we apply the computational algorithm to several numerical examples to

illustrate both the model as well as the algorithm. We summarize our results in Section 6,

present our conclusions, and also suggest directions for future research.
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2 The Multitiered E-Cycling Network Equilibrium Model for Reverse Supply

Chain Management

In this section, we develop the multitiered e-cycling network model for reverse supply

chain management depicted in graphical form in Figure 1. The network consists of four tiers

of nodes. We consider r sources of the electronic waste as represented by the top tier of nodes

in Figure 1; m recyclers of the electronic waste, as depicted by the second tier of nodes; n

processors of the electronic waste obtained from the recyclers and associated with the third

tier of nodes in the network, and o demand markets. We note that the demand markets can

correspond, for example, to precious metal demand markets, refurbished product demand

markets, and, finally, to demand markets for the components extracted from the electronic

wastes. In addition, we let nodes: m + 1, n + 1, and o + 1, denote, respectively, landfills

associated with the option of transporting (or having transported) the associated waste from

the preceding tier of nodes to such a destination.

For simplicity, we assume that the electronic waste associated with the top tier of nodes is

homogeneous, in order to simplify the notation. Hence, one could consider CRTs, for exam-

ple. In the case of multiple distinct types of electronic wastes, one could “layer” the different

types of “commodities” as in the case of transportation and/or spatial price networks (cf.

Nagurney (1999)) over appropriate links in the e-cycling network.

We denote a typical source of the electronic waste, which can include, for example, schools,

universities, businesses, collectors of electronic waste, etc., at the same or at distinct loca-

tions, by h, and we associate such a source with top tier node h in the network. A typical

recycler of the electronic waste, in turn, who may be involved in some value added functions

such as dismantling or refurbishing or simply acting as an intermediary between the sources

and processors, is denoted by i, and is associated with the second tier node i in the network.

A typical processor, on the other hand, is denoted by j and is associated with third tier

node j in the network. Note that some processors may be smelters whereas others may

conduct further dismantling of the electronic material for consumption purposes. Hence,

processors may convert the recycled goods into metals, refurbished products, and/or dis-

assemble the electronic waste into electronic component products such as mother boards,

computer chips, and so on.
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Figure 1: The 4-Tiered E-Cycling Network with Sources, Recyclers, Processors, and Demand
Markets
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The behavior of the e-cycling network decision-makers associated with the four tiers of

the network is now described. We first describe the behavior of the sources of the electronic

waste. We then discuss that of the recyclers and the processors. Finally, we turn to the

consumers at the demand markets. Once the behavior of the various decision-makers is

described, we then establish the governing equilibrium concept.

The Behavior of the Sources of the Electronic Waste

Let Sh denote the volume of the electronic waste possessed by decision-maker h and assume

that this amount is given for all sources h; h = 1, . . . , r. Let qhi denote the nonnegative

amount of the electronic waste that is allocated from source h to i, where the index i ranges

from 1, . . . , m, if i is a recycler. We also let a source have the option of using a landfill for

the electronic waste with node m + 1 in the second tier of nodes representing a landfill. We

group the material flows from the sources to the second tier of nodes into the column vector

Q1 ∈ R
r(m+1)
+ .

Associated with the decisions are costs of transaction, which include, for example, the

cost associated with traveling to the recycling center or landfill, respectively, or paying for

the cost of transportation to the second tiered nodes. We denote the transaction cost faced

by source h and option i by chi where we assume that

chi = chi(qhi), h = 1, . . . , r; i = 1, . . . , m + 1, (1)

that is, the cost associated with transacting depends upon the volume of the transaction.

In addition, we assume that each source pays a price per unit of electronic waste to the

next tier of nodes associated with the recyclers with the value being endogenous to the model

and, which we assume, for the time being, as being given by ρ∗
1hi for source h and receptor

point i for i = 1, . . . , m. In regards to the landfill option, in contrast, we assume that the

price associated with depositing a unit of the electronic waste in the landfill is denoted by

ρ̄1h(m+1) for source h and this price is given and fixed.

We assume that each source h seeks to minimize the total cost associated with his man-
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agement of electronic waste with the optimization problem given for source h by:

Minimize
m∑

i=1

ρ∗
1hiqhi + ρ̄1h(m+1)qh(m+1) +

m+1∑

i=1

chi(qhi) (2)

subject to:
m+1∑

i=1

qhi = Sh, (3)

and the nonnegativity assumption that:

qhi ≥ 0, i = 1, . . . , m + 1. (4)

Clearly, from (3) it is apparent that we assume that all the electronic waste must be

disposed of. One could also allow for such wastes to simply lie around or to be “dumped” in

which case the expression in (3) would be an inequality rather than an equality. Also, note

that the price may differ for the various receptor points, which includes the landfill.

Assuming that the transaction cost functions are continuously differentiable and convex

for all the sources, h = 1, . . . , r, the optimality conditions for all sources simultaneously can

be expressed as the following inequality (see Bazaraa, Sherali, and Shetty (1993)): determine

Q1∗ ∈ K, such that:
r∑

h=1

m∑

i=1

[
∂chi(q

∗
hi)

∂qhi
+ ρ∗

1hi

]
× [qhi − q∗hi]

+
r∑

h=1

[
∂ch(m+1)(q

∗
h(m+1))

∂qh(m+1)

+ ρ̄1h(m+1)

]
×

[
qh(m+1) − q∗h(m+1)

]
≥ 0, ∀Q1 ∈ K, (5)

where the feasible set K is defined as K ≡ {Q1 such that (3) and (4) hold for all h}.

Observe that the behavior of the top tier of decision-makers in the e-cycling network is

assumed to be that of cost-minimization in contrast to that of top tier decision-makers in

other supply chain network equilibrium models (cf. Nagurney, Dong, and Zhang (2002) and

Nagurney and Dong (2002)), which is profit-maximization.
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The Behavior of the Recyclers and their Optimality Conditions

The recyclers, in turn, are involved in transactions both with the sources of the electronic

waste as well as with the processors. We assume that the recyclers also have the option of

having the waste transported to a landfill, with the landfill node being denoted by n+1. Let

qij denote the flow of material from recycler i to processor j where j = 1, . . . , n denotes the

respective processor and j = n + 1 denotes the landfill with associated flow into it given by

qi(n+1). We group the material flows from the recyclers (associated with the second tier of

nodes in the e-cycling network in Figure 1) to the third tier of nodes into the column vector

Q2 ∈ R
m(n+1)
+ .

We assume that each recycler receives revenue from selling the electronic waste that he

collects and delivers to the different processors. We let ρ∗
2ij denote the price that recycler i

charges processor j for a unit of the electronic waste (and that the processor is willing to

pay) with this price being also endogenous to the model for all recycler and processor pairs.

In addition, each recycler receives revenue from the sources for handling the electronic waste

where recall that the price ρ∗
1hi denotes the price that source h pays recycler i for a unit of

the waste. On the other hand, recycler i must pay for the use of the landfill with the fixed

price being denoted by ρ̄2i(n+1) for recycler i.

The transaction cost faced by recycler i transacting with receptor point j is denoted by

cij and is assumed to be

cij = cij(qij), i = 1, . . . , m; j = 1, . . . , n + 1, (6)

that is, the cost of transacting between recycler i and option j (from the perspective of

recycler i) is a function of the volume of the transaction.

Since a recycler also transacts with the sources of electronic waste, we assume a transac-

tion cost between each recycler i and source h pair, denoted by ĉhi, and assume that

ĉhi = ĉhi(qhi), h = 1, . . . , r; i = 1, . . . , m + 1, (7)

that is, this transaction cost is also a function of the volume of flow between the two decision-

makers. This transaction cost is from the perspective of the recycler.
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In addition, a recycler i is faced with what we term a recycling cost, which includes

the storage cost and the cost to make, for example, the separated subassemblies which can

then be sent to different processors (see also Sodhi and Reimer (2001)). The cost to recycle

electronic waste at recycler i is denote by ci and is assumed to be of the form

ci = ci(Q
2), i = 1, . . . , m. (8)

In other words, the recycling cost may be recycler-specific and depends on all the material

flows from recyclers to the processors and the landfill.

We are now ready to construct the optimization problem faced by a particular recycler.

In particular, assuming that a recycler is concerned with profit maximization, we have

that recycler i’s optimization problem can be formulated as:

Maximize
n∑

j=1

ρ∗
2ijqij +

r∑

h=1

ρ∗
1hiqhi − ρ̄2i(n+1)qi(n+1) −

n+1∑

j=1

cij(qij) −
r∑

h=1

ĉhi(qhi) − ci(Q
2) (9)

subject to:
n+1∑

j=1

αijqij ≤
r∑

h=1

qhi (10)

and the nonnegativity assumption that:

qhi ≥ 0, h = 1, . . . , r; qij ≥ 0, j = 1, . . . , n + 1. (11)

Constraint (10) reflects the conversion of the input material flows into the recycled outputs

with αij assumed to be positive for all i and j. Note that the flows out of a recycling node i

may be distinct from the input flows. Hence, unlike other multitiered supply chain network

equilibrium models developed to-date, here we allow for the transformation of the material

flows as they flow down the e-cycling network. Furthermore, note that (10) captures the

transformation of the product at a recycler into its component parts for further processing

by the processors. If, for example, all the αijs are precisely equal to 1 then the ratio of input

flows to output flows is equal to 1.

We assume that recyclers compete in a noncooperative way. Also, we assume that the

recycling cost functions and the transaction cost functions are continuously differentiable and
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convex. Given the equilibrium concept of Nash (1950, 1951), the optimality conditions for all

recyclers simultaneously can be expressed as the following inequality: determine (q∗hi, q
∗
ij, γ

∗
i )

all greater than or equal to zero for all h = 1, . . . , r; i = 1, . . . , m; j = 1, . . . , n+1, such that

m∑

i=1

r∑

h=1

[
∂ĉhi(q

∗
hi)

∂qhi

− ρ∗
1hi − γ∗

i

]
× [qhi − q∗hi]

+
m∑

i=1

n∑

j=1

[
∂ci(Q

2∗)

∂qij

+
∂cij(q

∗
ij)

∂qij

− ρ∗
2ij + αijγ

∗
i

]
×

[
qij − q∗ij

]

+
m∑

i=1

[
∂ci(Q

2∗)

∂qi(n+1)

+
∂ci(n+1)(q

∗
i(n+1))

∂qi(n+1)

+ ρ̄2i(n+1) + αi(n+1)γ
∗
i

]
×

[
qi(n+1) − q∗i(n+1)

]

+
m∑

i=1




r∑

h=1

q∗hi −
n+1∑

j=1

αijq
∗
ij


 × [γi − γ∗

i ] ≥ 0,

∀ (qhi, qij, γi) ≥ 0, h = 1, . . . , r; i = 1, . . . , m; j = 1, . . . , n + 1. (12)

Note that γi is the Lagrange multiplier associated with constraint (10) for recycler i. We

group these Lagrange multipliers for all the recyclers into the column vector γ ∈ Rm
+ . Such

a Lagrange multiplier also has an interpretation as a shadow price. For example, it is worth

noting that from the last term in inequality (12), we observe that if γ∗
i > 0, then the total

amount of the product shipped to recycler i, that is,
∑r

h=1 q∗hi is precisely equal to the flow

out, that is,
∑n+1

j=1 αijq
∗
ij. Hence, in a sense, we get a correlation between the αijs and the

shadow price γ∗
i . On the other hand, if γ∗

i = 0, then there may be an excess supply of

the product at that recycler. This situation will be illustrated subsequently in numerical

examples in Section 5.

Note that both inequalities (5) and (12) are variational inequalities (cf. Nagurney (1999)

and the references therein).

The Behavior of the Processors and their Optimality Conditions

A processor, in turn, receives items or the components of electronic products from the

recyclers. The work of processors is to recover metals, to produce refurbished products,

and/or to dispose the residuals of the process in the landfill.
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Let qjk denote the amount of “product” k that is allocated from processor j to demand

market k, with the index k ranging from 1, . . . , o to denote a particular demand market for

a product and with k = o + 1 denoting a landfill. We group the material flows from the

processors to the demand markets and the landfill as denoted by the bottom tiered nodes of

the e-cycling network in Figure 1 into the column vector Q3 ∈ R
n(o+1)
+ .

We assume that each processor j charges a price for product k which is associated with

demand market (and node) k and is denoted by ρ∗
3jk for k = 1, . . . , o. This price is endogenous

to the model and also reflects the price that the consumers at demand market k are willing

to pay for that particular product which is obtained from processor j.

In addition, recall that a processor j pays recycler i a price ρ∗
2ij per unit of the recycled

product. Finally, since each processor has also an option of using the landfill we let ρ̄3j(n+1)

denote the fixed price per unit of waste associated with processor j placed in landfill n + 1.

Associated with the decisions made by the third tier of decision-makers, the processors,

are also costs of transaction, which can include, for example, transporting the products to

the demand markets and/or to the landfill.

We denote the transaction cost faced by processor j and option k by cjk where we assume

that

cjk = cjk(qjk), j = 1, . . . , n; k = 1, . . . , o + 1, (13)

that is, the cost associated with transacting depends upon the volume of the transaction.

We also assume that a processor j encumbers a transaction cost associated with deal-

ing with each recycler. The transaction cost between recycler i and processor j from the

perspective of processor j is denoted by

ĉij = ĉij(qij), i = 1, . . . , m; j = 1, . . . , n. (14)

We assume that each processor has to bear the costs to process electronic wastes. The

per unit processing cost that processor j bears is denoted by cj(Q
3) for all j = 1, . . . , n.

We assume that each processor seeks to maximize the profit associated with his manage-

ment of electronic wastes with the optimization problem given for processor j being given
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by:

Maximize
o∑

k=1

ρ∗
3jkqjk − cj(Q

3) − ρ̄3j(o+1)qj(o+1) −
m∑

i=1

ρ∗
2ijqij −

o+1∑

k=1

cjk(qjk) −
m∑

i=1

ĉij(qij) (15)

subject to:
o+1∑

k=1

βjkqjk ≤
m∑

i=1

qij (16)

and the nonnegativity assumptions:

qij ≥ 0, i = 1, . . . , m; qjk ≥ 0, k = 1, . . . , o + 1. (17)

We assume that the processors also compete in a noncooperative way, given the action of

the other processors. Also, we assume that the processing cost functions and the transaction

cost functions for each processor are continuously differentiable and convex. Hence, the

optimality conditions for all processors simultaneously can be expressed as the following

inequality: determine (q∗ij, q
∗
jk, η

∗
j ) all greater than or equal to zero for i = 1, . . . , m; j =

1, . . . , n; k = 1, . . . , o + 1, such that

n∑

j=1

m∑

i=1

[
∂ĉij(q

∗
ij)

∂qij
+ ρ∗

2ij − η∗
j

]
×

[
qij − q∗ij

]

+
n∑

j=1

o∑

k=1

[
∂cj(Q

3∗)

∂qjk

+
∂cjk(q

∗
jk)

∂qjk

+ βjkη
∗
j − ρ∗

3jk

]
×

[
qjk − q∗jk

]

+
n∑

j=1

[
∂cj(Q

3∗)

∂qj(o+1)

+
∂cj(o+1)(q

∗
j(o+1))

∂qj(o+1)

+ βj(o+1)η
∗
j + ρ̄3j(o+1)

]
×

[
qj(o+1) − q∗j(o+1)

]

+
n∑

j=1

[
m∑

i=1

q∗ij −
o+1∑

k=1

βjkq
∗
jk

]
×

[
ηj − η∗

j

]
≥ 0,

∀(qij, qjk, ηj) ≥ 0, i = 1, . . . , m; j = 1, . . . , n; k = 1, . . . , o + 1. (18)

Constraint (16) guarantees that the conversion of recycled material into processed prod-

ucts satisfies the material flow with the conversion parameters βjk being positive for all j

and k. Note that ηj is the Lagrange multiplier associated with constraint (16) for processor

j and also has an interpretation as a shadow price. We group these Lagrange multipliers
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into the n-dimensional column vector η ∈ Rn
+. Also, observe from the last term in inequality

(18) that if the shadow price η∗
j > 0, then the total volume of flow into processor j given by

∑m
i=1 q∗ij is precisely equal to

∑o+1
k=1 βjkq

∗
jk. Here, we also get an interpretation of a correlation

between the βjks and the shadow price η∗
j . On the other hand, if there is excess supply at

the processor then the shadow price at the processor will be zero.

Observe that inequality (18) is a variational inequality as are the inequalities (5) and

(12), which formulate the optimality conditions, respectively, for the sources of electronic

wastes and the recyclers.

The Demand Markets and the Equilibrium Conditions

We now turn to the bottom tier of nodes in the e-cycling network. We assume that the

consumers associated with the products at the demand markets incur a transaction cost

with the transaction cost associated with processor j and demand market k (from the per-

spective of the consumers) being denoted by ĉjk for the pair (j, k). Here we assume that this

transaction cost is of the form

ĉjk = ĉjk(qjk), j = 1, . . . , n; k = 1, . . . , o, (19)

that is, we allow the transaction cost between a processor and demand market pair to depend

on the volume of shipment/transaction between the processor and the demand market pair.

We assume here, for the sake of generality, that the demands associated with the demand

markets can depend upon, in general, the entire vector of demand market prices, that is,

that dk = dk(ρ4), for k = 1, . . . , o, where ρ4 is the o-dimensional column vector of demand

market prices with k-th component given by ρ4k.

The equilibrium conditions for consumers at demand market k, take the form: For all

processors: j; j = 1, . . . , n, in equilibrium, we must have that:

ρ∗
3jk + ĉjk(q

∗
jk)

{
= ρ∗

4k, if q∗jk > 0
≥ ρ∗

4k, if q∗jk = 0,
(20)

dk(ρ
∗
4)





=
n∑

j=1

q∗jk, if ρ∗
4k > 0

≤
n∑

j=1

q∗jk, if ρ∗
4k = 0.

(21)
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Conditions (20) state that consumers at demand market k will purchase product k from

processor j, if the price charged by the processor for the product plus the transaction cost

(from the perspective of the consumers) does not exceed the price that the consumers are

willing to pay for the recycled/reprocessed product. Condition (21), on the other hand,

states that, if the price the consumers are willing to pay for the product at a demand market

is positive, then the quantity consumed at the demand market is precisely equal to the

demand. Otherwise, the availability of product k may exceed its demand.

These conditions correspond to the well-known spatial price equilibrium conditions (cf.

Samuelson (1952), Takayama and Judge (1971), Nagurney (1999), and the references therein)

and have also been utilized in a variety of supply chain network equilibrium problems (see,

e.g., Nagurney, Dong, and Zhang, (2002), Nagurney et al. (2002a,b), and Nagurney and

Dong (2002)). Clearly, (see e.g., Nagurney and Dong (2002)) conditions (20) and (21) must

hold for all demand markets k; k = 1, . . . , o, and can be formulated as a variational inequality

problem, given by: determine (q∗jk, ρ
∗
4k) greater than or equal to zero for j = 1, . . . , n; k =

1, . . . , o, such that

n∑

j=1

o∑

k=1

[
ρ∗

3jk + ĉjk(q
∗
jk) − ρ∗

4k

]
×

[
qjk − q∗jk

]
+

o∑

k=1




n∑

j=1

q∗jk − dk(ρ
∗
4)


 × [ρ4k − ρ∗

4k] ≥ 0,

∀(qjk, ρ4k) ≥ 0, j = 1, . . . , n; k = 1, . . . , o. (22)

The Equilibrium Conditions of the Multitiered E-Cycling Network for Reverse

Supply Chain Management

In equilibrium, the shipments of the electronic wastes the sources transport to the recyclers

must be equal to the shipments that the recyclers accept. Moreover, the amounts of the

recycled electronic wastes that the recyclers transport to the processors must be equal to

the amounts that the processors accept. Furthermore, the equilibrium material flow and

price pattern must satisfy the sum of the optimality conditions (5), (12), (18), and the

equilibrium conditions (22) in order to formalize the agreements between the tiers of the

e-cycling network (see also Nagurney et al. (2002a, b)).

We now make the above statement formal.
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Definition 1: An E-Cycling Network Equilibrium

The equilibrium state of the e-cycling network is one where the material flows between the

tiers of the e-cycling network coincide and the material flows and prices satisfy the sum of

the optimality conditions (5), (12), (18), and the equilibrium conditions (22).

We now establish the following:

Theorem 1: Variational Inequality Formulation

The equilibrium conditions governing the e-cycling network model for reverse supply chain

management are equivalent to the solution of the variational inequality problem given by:

determine (Q1∗, Q2∗, γ∗, Q3∗, η∗, ρ∗
4) ∈ K satisfying

r∑

h=1

m∑

i=1

[
∂chi(q

∗
hi)

∂qhi
+

∂ĉhi(q
∗
hi)

∂qhi
− γ∗

i

]
× [qhi − q∗hi]

+
r∑

h=1

[
∂ch(m+1)(q

∗
h(m+1))

∂qh(m+1)
+ ρ̄1h(m+1)

]
×

[
qh(m+1) − q∗h(m+1)

]

+
m∑

i=1

n∑

j=1

[
∂ci(Q

2∗)

∂qij

+
∂cij(q

∗
ij)

∂qij

+
∂ĉij(q

∗
ij)

∂qij

+ αijγ
∗
i − η∗

j

]
×

[
qij − q∗ij

]

+
m∑

i=1

[
∂ci(Q

2∗)

∂qi(n+1)

+
∂ci(n+1)(q

∗
i(n+1))

∂qi(n+1)

+ ρ̄2i(n+1) + αi(n+1)γ
∗
i

]
×

[
qi(n+1) − q∗i(n+1)

]

+
m∑

i=1




r∑

h=1

q∗hi −
n+1∑

j=1

αijq
∗
ij


 × [γi − γ∗

i ]

+
n∑

j=1

o∑

k=1

[
∂cj(Q

3∗)

∂qjk
+

∂cjk(q
∗
jk)

∂qjk
+ ĉjk(q

∗
jk) + βjkη

∗
j − ρ∗

4k

]
×

[
qjk − q∗jk

]

+
m∑

j=1

[
∂cj(Q

3∗)

∂qj(o+1)

+
∂cj(o+1)(q

∗
j(o+1))

∂qj(o+1)

+ βj(o+1)η
∗
j + ρ̄3j(o+1)

]
×

[
qj(o+1) − q∗j(o+1)

]

+
n∑

j=1

[
m∑

i=1

q∗ij −
o+1∑

k=1

βjkq
∗
jk

]
×

[
ηj − η∗

j

]

+
o∑

k=1




n∑

j=1

q∗jk − dk(ρ
∗
4)


 × [ρ4k − ρ∗

4k] ≥ 0, ∀(Q1∗, Q2∗, γ∗, Q3∗, η∗, ρ∗
4) ∈ K, (23)

16



where K ≡ {Q1, Q2, γ, Q3, η, ρ4)|(Q1, Q2, γ, Q3, η, ρ4) ≥ 0, and Q1 satisfies (3) for all h}.

Proof: We first establish that the equilibrium conditions imply variational inequality (23).

Indeed, the summation of inequalities (5), (12), (18), and (22) yields, after algebraic simpli-

fication, the variational inequality (23).

We now establish the converse, that is, that a solution to variational inequality (23)

satisfies the sum of conditions (5), (12), (18), and (22) and is, hence, an equilibrium according

to Definition 1.

To inequality (23), add the term, −ρ∗
1hi + ρ∗

1hi, to the the term in the first set of brackets

preceding the first multiplication sign. Similarly, add the term, −ρ∗
2ij + ρ∗

2ij, to the term in

brackets preceding the third multiplication sign. Finally, add the term, −ρ∗
3jk + ρ∗

3jk, to the

term preceding the sixth multiplication sign in (23). As the result of the above, inequality

(23) becomes:

r∑

h=1

m∑

i=1

[
−ρ∗

1hi + ρ∗
1hi +

∂chi(q
∗
hi)

∂qhi
+

∂ĉhi(q
∗
hi)

∂qhi
− γ∗

i

]
× [qhi − q∗hi]

+
r∑

h=1

[
∂ch(m+1)(q

∗
h(m+1))

∂qh(m+1)

+ ρ̄1h(m+1)

]
×

[
qh(m+1) − q∗h(m+1)

]

+
m∑

i=1

n∑

j=1

[
−ρ∗

2ij + ρ∗
2ij +

∂ci(Q
2∗)

∂qij

+
∂cij(q

∗
ij)

∂qij

+
∂ĉij(q

∗
ij)

∂qij

+ αijγ
∗
i − η∗

j

]
×

[
qij − q∗ij

]

+
m∑

i=1

[
∂ci(Q

2∗)

∂qi(n+1)

+
∂ci(n+1)(q

∗
i(n+1))

∂qi(n+1)

+ ρ̄2i(n+1) + αi(n+1)γ
∗
i

]
×

[
qi(n+1) − q∗i(n+1)

]

+
m∑

i=1




r∑

h=1

q∗hi −
n+1∑

j=1

αijq
∗
ij


 × [γi − γ∗

i ]

+
n∑

j=1

o∑

k=1

[
−ρ∗

3jk + ρ∗
3jk +

∂cj(Q
3∗)

∂qjk

+
∂cjk(q

∗
jk)

∂qjk

+ ĉjk(q
∗
jk) + βjkη

∗
j − ρ∗

4k

]
×

[
qjk − q∗jk

]

+
m∑

j=1

[
∂cj(Q

3∗)

∂qj(o+1)

+
∂cj(o+1)(q

∗
j(o+1))

∂qj(o+1)

+ βj(o+1)η
∗
j + ρ̄3j(o+1)

]
×

[
qj(o+1) − q∗j(o+1)

]

+
n∑

j=1

[
m∑

i=1

q∗ij −
o+1∑

k=1

βjkq
∗
jk

]
×

[
ηj − η∗

j

]

17



+
o∑

k=1




n∑

j=1

q∗jk − dk(ρ
∗
4)


 × [ρ4k − ρ∗

4k] ≥ 0, ∀(Q1, Q2, γ, Q3, η, ρ4) ∈ K, (24a)

which, in turn, can be rewritten as:

r∑

h=1

m∑

i=1

[
∂chi(q

∗
hi)

∂qhi
+ ρ∗

1hi

]
× [qhi − q∗hi]

+
r∑

h=1

[
∂ch(m+1)(q

∗
h(m+1))

∂qh(m+1)

+ ρ̄1h(m+1)

]
×

[
qh(m+1) − q∗h(m+1)

]

+
m∑

i=1

n∑

j=1

[
∂ci(Q

2∗)

∂qij
+

∂cij(q
∗
ij)

∂qij
− ρ∗

2ij + αijγ
∗
i

]
×

[
qij − q∗ij

]

+
m∑

i=1

[
∂ci(Q

2∗)

∂qi(n+1)
+

∂ci(n+1)(q
∗
i(n+1))

∂qi(n+1)
+ ρ̄2i(n+1) + αi(n+1)γ

∗
i

]
×

[
qi(n+1) − q∗i(n+1)

]

+
r∑

h=1

m∑

i=1

[
∂ĉhi(q

∗
hi)

∂qhi
− ρ∗

1hi − γ∗
i

]
× [qhi − q∗hi] +

m∑

i=1




r∑

h=1

q∗hi −
n+1∑

j=1

αijq
∗
ij


 × [γi − γ∗

i ]

+
m∑

i=1

n∑

j=1

[
∂ĉij(q

∗
ij)

∂qij
+ ρ∗

2ij − η∗
j

]
×

[
qij − q∗ij

]

+
n∑

j=1

o∑

k=1

[
∂cj(Q

3∗)

∂qjk

+
∂cjk(q

∗
jk)

∂qjk

+ βjkη
∗
j − ρ∗

3jk

]
×

[
qjk − q∗jk

]

+
m∑

j=1

[
∂cj(Q

3∗)

∂qj(o+1)

+
∂cj(o+1)(q

∗
j(o+1))

∂qj(o+1)

+ βj(o+1)η
∗
j + ρ̄3j(o+1)

]
×

[
qj(o+1) − q∗j(o+1)

]

+
n∑

j=1

[
m∑

i=1

q∗ij −
o+1∑

k=1

βjkq
∗
jk

]
×

[
ηj − η∗

j

]

+
n∑

j=1

o∑

k=1

[
ρ∗

3jk + ĉjk(q
∗
jk) − ρ∗

4k

]
×

[
qjk − q∗jk

]

+
o∑

k=1




n∑

j=1

q∗jk − dk(ρ
∗
4)


 × [ρ4k − ρ∗

4k] ≥ 0, ∀(Q1∗, Q2∗, γ∗, Q3∗, η∗, ρ∗
4) ∈ K. (24b)

But inequality (24b) is equivalent to the price and material flow pattern satisfying the

sum of the conditions (5), (12), (18), and (22), which is precisely the definition of an e-cycling

network equilibrium according to Definition 1. The proof is complete. 2
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For easy reference in the subsequent sections, variational inequality problem (23) can be

rewritten in standard variational inequality form (cf. Nagurney (1999)) as follows: determine

X∗ ∈ K, such that

〈F (X∗)T , X − X∗〉 ≥ 0, ∀X ∈ K, (25)

where X ≡ (Q1, Q2, γ, Q3, η, ρ4) and

F (X) ≡ (Fhi, Fij, Fi, Fjk, Fĵ, Fk̂)h=1,...,r;i=1,...,m+1;j=1,...,n+1;k=1,...,o+1;ĵ=1,...,n;k̂=1,...,o,

with the specific components of F (X) being given by the respective functional terms pre-

ceding the multiplication signs in (23). The term 〈·, ·〉 denotes the inner product in N -

dimensional Euclidean space.

In Section 4, we describe a computational procedure which can be applied to determine

the equilibrium material flows: (Q1∗, Q2∗, Q3∗) as well as the equilibrium prices: (γ∗, η∗, ρ∗
4).

Recall that, as discussed earlier, the equilibrium prices associated with the sources of elec-

tronic waste, the recyclers, and the processors are endogenous to the model but can be

recovered as follows, once the solution to the variational inequality (23) (for the particular

problem) has been obtained.

We now discuss how to recover the prices ρ∗
1hi, for h = 1, . . . , r and i = 1, . . . , m from the

solution of variational inequality (23). Note that from (12) we have that for such a q∗hi > 0,

then ρ∗
1hi =

∂ĉhi(q
∗
hi

)

∂qhi
− γ∗

i .

The prices ρ∗
2ij, in turn, can be obtained for an i, j with i = 1, . . . , m; j = 1, . . . , n such

that q∗ij > 0 by setting (cf. (12)) ρ∗
2ij =

[
∂cj(Q

2∗)

∂qij
+

∂cij(q
∗
ij)

∂qij
+ αijγ

∗
i

]
, or, equivalently (cf.

(18)), to η∗
j −

[
∂ĉij(q∗ij)

∂qij

]
.

Finally, the prices ρ∗
3jk for j = 1, . . . , n and k = 1, . . . , o with q∗jk > 0 can be obtained by

setting (cf. (22)) ρ∗
3jk = ρ∗

4k − ĉjk(q
∗
jk).

In this section, we have proposed an equilibrium framework for the formulation of e-

cycling network problems for the purpose of reverse supply chain management since we

believe that the concept of equilibrium provides a valuable benchmark against which exist-

ing material flows between tiers and the prices at different tiers of the e-cycling network can
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be compared. Moreover, the equilibrium concept provides a generalization of an optimiza-

tion one and allows for not only the capture of cooperation between tiers of decision-makers

but also the possibility of competition within a tier. Of course, depending upon the partic-

ular application under study, the e-cycling network depicted in Figure 1 may be simplified

accordingly.
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3. Qualitative Properties

In this section, we provide some qualitative properties of the function F that enters

variational inequality (25), which are needed to establish convergence of the algorithmic

scheme in Section 4. In addition, we derive some theoretical properties of the solution of

(25).

We note that the material flows in the e-cycling network are bounded since we assume a

fixed (and finite) amount of electronic wastes at each of the sources. The prices, however, do

not lie in a compact set. Hence, according to the standard theory of variational inequalities

(cf. Nagurney (1999)) one could impose either a coercivity condition on the demand functions

or a boundedness condition to guarantee the existence of the demand prices.

We now establish qualitative properties of the function F (X) that enters the variational

inequality problem (cf. (25)), as well as uniqueness of the equilibrium pattern.

Theorem 2: Monotonicity

Assume that the recycling cost functions ci; i = 1, ..., m, and the processing cost functions

cj; j = 1, ..., n are convex functions; the transaction cost functions chi; h = 1, ..., r; i =

1, ..., m + 1, cij; i = 1, ..., m, j = 1, ..., n + 1, cjk; j = 1, ..., n;k = 1, ..., o, and ĉhi; h =

1, ..., r; i = 1, . . . , m functions are convex, and that the ĉij; i = 1, . . . , m; j = 1, . . . , n, ĉjk;

j = 1, ..., n; k = 1, ..., o+1 functions are monotone increasing, whereas the demand functions

dk; k = 1, ..., o functions are monotone decreasing functions of the prices, for all h, i, j, and

k. Then the vector function F (X) that enters the variational inequality (25) is monotone,

that is,

〈(F (X ′) − F (X ′′))T , X ′ − X ′′〉 ≥ 0, ∀X ′, X ′′ ∈ K. (26)

Proof: From the definition of F (X), the left-hand side of inequality (26) is:

r∑

h=1

m∑

i=1

[
∂chi(q

′
hi)

∂qhi
+

∂ĉhi(q
′
hi)

∂qhi
− γ

′

i − (
∂chi(q

′′
hi)

∂qhi
+

∂ĉhi(q
′′
hi)

∂qhi
− γ

′′

i )

]
×

[
q
′

hi − q
′′

hi

]
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r∑

h=1


∂ch(m+1)(q

′

h(m+1))

∂qh(m+1)

+ ρ̄1h(m+1) − (
∂ch(m+1)(q

′′

h(m+1))

∂qh(m+1)

+ ρ̄1h(m+1))


 ×

[
q
′

h(m+1) − q
′′

h(m+1)

]

+
m∑

i=1

n∑

j=1

[
∂ci(Q

2′)

∂qij

+
∂cij(q

′
ij)

∂qij

+
∂ĉij(q

′
ij)

∂qij

+ αijγ
′

i − η
′

j

−(
∂ci(Q

2′′)

∂qij
+

∂cij(q
′′
ij)

∂qij
+

∂ĉij(q
′′
ij)

∂qij
+ αijγ

′′

i − η
′′

j )

]
×

[
q
′

ij − q
′′

ij

]

+
m∑

i=1


∂ci(Q

2′)

∂qi(n+1)

+
∂ci(n+1)(q

′

i(n+1))

∂qi(n+1)

+ ρ̄2i(n+1) + αi(n+1)γ
′

i

−(
∂ci(Q

2′′)

∂qi(n+1)

+
∂ci(n+1)(q

′′

i(n+1))

∂qi(n+1)

+ ρ̄2i(n+1) + αi(n+1)γ
′′

i )

]
×

[
q
′

i(n+1) − q
′′

i(n+1)

]

+
m∑

i=1




r∑

h=1

q
′

hi −
n+1∑

j=1

αijq
′

ij − (
r∑

h=1

q
′′

hi −
n+1∑

j=1

αijq
′′

ij)


 ×

[
γ

′

i − γ
′′

i

]

+
n∑

j=1

o∑

k=1

[
∂cj(Q

3′)

∂qjk
+

∂cjk(q
′
jk)

∂qjk
+ ĉjk(q

′
jk) + βjkη

′

j − ρ
′

4k

−(
∂cj(Q

3′′)

∂qjk

+
∂cjk(q

′′
jk)

∂qjk

+ ĉjk(q
′′
jk) + βjkη

′′

j − ρ
′′

4k)

]
×

[
q
′

jk − q
′′

jk

]

+
m∑

j=1


∂cj(Q

3′)

∂qj(o+1)

+
∂cj(o+1)(q

′

j(o+1))

∂qj(o+1)

+ βj(o+1)η
′

j + ρ̄3j(o+1)

−(
∂cj(Q

3′′)

∂qj(o+1)
+

∂cj(o+1)(q
′′

j(o+1))

∂qj(o+1)
+ βj(o+1)η

′′

j + ρ̄3j(o+1))

]
×

[
q
′

j(o+1) − q
′′

j(o+1)

]

+
n∑

j=1

[
m∑

i=1

q
′

ij −
o+1∑

k=1

βjkq
′

jk − (
m∑

i=1

q
′′

ij −
o+1∑

k=1

βjkq
′′

jk)

]
×

[
η

′

j − η
′′

j

]

+
o∑

k=1




n∑

j=1

q
′

jk − dk(ρ
′

4) − (
n∑

j=1

q
′′

jk − dk(ρ
′′

4))


 ×

[
ρ

′

4k − ρ
′′

4k

]
. (27)

After simplifying (27), we obtain

r∑

h=1

m∑

i=1

[
∂chi(q

′
hi)

∂qhi

+
∂ĉhi(q

′
hi)

∂qhi

− (
∂chi(q

′′
hi)

∂qhi

+
∂ĉhi(q

′′
hi)

∂qhi

)

]
×

[
q
′

hi − q
′′

hi

]
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+
r∑

h=1


∂ch(m+1)(q

′

h(m+1))

∂qh(m+1)

−
∂ch(m+1)(q

′′

h(m+1))

∂qh(m+1)


 ×

[
q
′

h(m+1) − q
′′

h(m+1)

]

+
m∑

i=1

n∑

j=1

[
∂ci(Q

2′)

∂qij
+

∂cij(q
′
ij)

∂qij
+

∂ĉij(q
′
ij)

∂qij
− (

∂ci(Q
2′′)

∂qij
+

∂cij(q
′′
ij)

∂qij
+

∂ĉij(q
′′
ij)

∂qij
)

]
×

[
q
′

ij − q
′′

ij

]

+
m∑

i=1


∂ci(Q

2′)

∂qi(n+1)

+
∂ci(n+1)(q

′

i(n+1))

∂qi(n+1)

− (
∂ci(Q

2′′)

∂qi(n+1)

+
∂ci(n+1)(q

′′

i(n+1))

∂qi(n+1)

)

]
×

[
q
′

i(n+1) − q
′′

i(n+1)

]

+
n∑

j=1

o∑

k=1

[
∂cj(Q

3′)

∂qjk
+

∂cjk(q
′
jk)

∂qjk
+ ĉjk(q

′
k) − (

∂cj(Q
3′′)

∂qjk
+

∂cjk(q
′′
jk)

∂qjk
+ ĉjk(q

′′
jk))

]
×

[
q
′

jk − q
′′

jk

]

+
m∑

j=1


∂cj(Q

3′)

∂qj(o+1)

+
∂cj(o+1)(q

′

j(o+1))

∂qj(o+1)

− (
∂cj(Q

3′′)

∂qj(o+1)

+
∂cj(o+1)(q

′′

j(o+1))

∂qj(o+1)

)

]
×

[
q
′

j(o+1) − q
′′

j(o+1)

]

+
o∑

k=1

[
−dk(ρ

′

4) + dk(ρ
′′

4))
]
×

[
ρ

′

4k − ρ
′′

4k

]
. (28)

Since the ci, cj, chi, cij, cjk, and ĉhi functions are assumed to be convex, the second

derivatives of those functions are positive semidefinite (see also Bazaraa, Sherali, and Shetty

(1993)). Thus, these functions are monotone (see Nagurney (1999) Theorem 1.7). In addi-

tion, since ĉij and ĉjk are monotone increasing functions, they are also monotone. Hence,

the Fhi, Fij, and Fjk are monotone. Finally, since -dk are monotone increasing functions,

we have that the Fi, Fj, and Fk are also monotone. Hence, we can conclude that the left

hand-side of (28) is greater than or equal to zero. 2

Theorem 3: Strict Monotonicity

Assume all the conditions of Theorem 2. In addition, suppose that one of the families

of convex functions ci; i = 1, ..., m; cj; j = 1, ..., n; chi; h = 1, ..., r; i = 1, ..., m + 1; cij;

i = 1, ..., m; j = 1, ..., n+1; cjk; j = 1, ..., n; k = 1, ..., o+1, and ĉhi; h = 1, ..., r; i = 1, . . . , m,

is a family of strictly convex functions. Suppose also that ĉij; i = 1, . . . , m; j = 1, . . . , n,

ĉjk; j = 1, ..., n; k = 1, ..., o, and -dk; k = 1, ..., o are strictly monotone. Then, the vector

function F (X) that enters the variational inequality (25) is strictly monotone for any X ′, X ′′

such that X ′ 6= X ′′, that is,

〈(F (X ′) − F (X ′′))T , X ′ − X ′′〉 > 0, ∀X ′, X ′′ ∈ K, X ′ 6= X ′′. (29)
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Theorem 4: Uniqueness

Assuming the conditions of Theorem 3, there must be a unique shipment pattern (Q1∗, Q2∗, Q3∗),

and a unique price vector ρ∗
4 satisfying the equilibrium conditions of the multitiered e-cycling

network. In other words, if the variational inequality (25) admits a solution, then that is the

only solution in (Q1∗, Q2∗, Q3∗, ρ∗
4).

Proof: Under the strict monotonicity result of Theorem 3, uniqueness follows from the

standard variational inequality theory (cf. Kinderlehrer and Stampacchia (1980)). 2

Theorem 5: Lipschitz Continuity

The function that enters the variational inequality problem (25) is Lipschitz continuous, that

is,

‖F (X ′) − F (X ′′)‖ ≤ L‖X ′ − X ′′‖, ∀X ′, X ′′ ∈ K, where L > 0, (30)

under the following conditions: (i). Each ci; i = 1, ..., m, cj; j = 1, ..., n has a bounded

second-order derivative; (ii). The chi, cij, cjk, and ĉhi functions have bounded second-order

derivatives, for all h, i, j, and k; (iii). The ĉij, ĉjk and -dk functions have bounded first-order

derivatives for all i, j, and k.

Proof: The result is directed by applying a mid-value theorem from calculus to the vector

function F (X) that enters the variational inequality problem (25). 2

We emphasize that the conditions that guarantee monotonicity of the function F are not

unreasonable since, for example, convex functions include linear functions, as a special case,

and such functions have been used in e-cycling applications by, amongst others, Sodhi and

Reimer (2001). Moreover, it is commonly assumed that demand functions are monotonically

decreasing functions of the prices. Finally, assuming that the transaction cost functions,

from the perspective of the consumers, are monotone increasing functions of the volumes of

the flow has been assumed in many spatial price equilibrium problems (see, e.g., Nagurney

(1999)).
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4. The Algorithm

In this section, we propose the algorithm to compute the variational inequality (25). The

algorithm we use is the modified projection method of Korpelevich (1977). This algorithm

requires only monotonicity of F (X) and with Lipschitz continuity condition holding. The

statement of algorithm in the context of our model is as follows, where τ denotes an iteration

counter:

Step 0: Initialization Step

Set (Q10, Q20, γ0, Q30, η0, ρ0
4) ∈ K. Let τ = 1 and set δ such that 0 < δ ≤ 1

L
, where L is the

Lipschitz constant for the problem (cf. (30)).

Step 1: Computation

Compute (Q̃1τ , Q̃2τ , γ̃τ , Q̃3τ , η̃τ , ρ̃τ
4) ∈ K by solving the variational inequality problem:

r∑

h=1

m∑

i=1

[
q̃τ
hi + δ(

∂chi(q
τ−1
hi )

∂qhi
+

∂ĉhi(q
τ−1
hi )

∂qhi
− γτ−1

i ) − qτ−1
hi

]
× [qhi − q̃τ

hi]

+
r∑

h=1


q̃τ

h(m+1) + δ(
∂ch(m+1)(q

τ−1
h(m+1))

∂qh(m+1)
+ ρ̄1h(m+1)) − qτ−1

h(m+1)


 ×

[
qh(m+1) − q̃τ

h(m+1)

]

+
m∑

i=1

n∑

j=1

[
q̃τ
ij + δ(

∂ci(Q
2τ−1)

∂qij
+

∂cij(q
τ−1
ij )

∂qij
+

∂ĉij(q
τ−1
ij )

∂qij
+ αijγ

τ−1
i − ητ−1

j ) − qτ−1
ij

]
×

[
qij − q̃τ

ij

]

+
m∑

i=1


q̃τ

i(n+1) + δ(
∂ci(Q

2τ−1)

∂qi(n+1)

+
∂ci(n+1)(q

τ−1
i(n+1))

∂qi(n+1)

+ αi(n+1)γ
τ−1
i + ρ̄2i(n+1)) − qτ−1

i(n+1)




×
[
qi(n+1) − q̃τ

i(n+1)

]
+

m∑

i=1


γ̃i

τ + δ(
r∑

h=1

qτ−1
hi −

n+1∑

j=1

αijq
τ−1
ij ) − γτ−1

i


 × [γi − γ̃τ

i ]

+
n∑

j=1

o∑

k=1

[
q̃τ
jk + δ(

∂cj(Q
3τ−1)

∂qjk

+
∂cjk(q

τ−1
jk )

∂qjk

+ ĉjk(q
3τ−1
jk ) + βjkη

τ−1
j − ρτ−1

4k ) − qτ−1
jk

]
×

[
qjk − q̃τ

jk

]

+
n∑

j=1


q̃τ

j(o+1) + δ(
∂cj(Q

3τ−1)

∂qj(o+1)

+
∂cj(o+1)(q

τ−1
j(o+1))

∂qj(o+1)

+ βj(o+1)η
τ−1
j + ρ̄3j(o+1)) − qτ−1

j(o+1)



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×
[
qj(o+1) − q̃τ

j(o+1)

]
+

n∑

j=1

[
η̃τ

j + δ(
m∑

i=1

qτ−1
ij −

o+1∑

k=1

βjkq
τ−1
jk ) − ητ−1

j

]
×

[
ηj − η̃τ

j

]

+
o∑

k=1


ρ̃τ

4k + δ(
n∑

j=1

qτ−1
jk − dk(ρ

τ
4)) − ρτ−1

4k


 × [ρ4k − ρ̃τ

4k] ≥ 0,

∀(Q1, Q2, γ, Q3, η, ρ4) ∈ K. (31)

Step 2: Adaptation

Compute (Q1τ , Q2τ , γτ , Q3τ , ητ , ρτ
4) ∈ K by solving the variational inequality problem:

r∑

h=1

m∑

i=1

[
qτ
hi + δ(

∂chi(q̃
τ−1
hi )

∂qhi
+

∂ĉhi(q̃
τ−1
hi )

∂qhi
− γ̃τ−1

i ) − qτ−1
hi

]
× [qhi − qτ

hi]

+
r∑

h=1


qτ

h(m+1) + δ(
∂ch(m+1)(q̃

τ−1
h(m+1))

∂qh(m+1)

+ ρ̄1h(m+1)) − qτ−1
h(m+1)


 ×

[
qh(m+1) − qτ

h(m+1)

]

+
m∑

i=1

n∑

j=1

[
qτ
ij + δ(

∂ci(Q̃
2τ−1)

∂qij
+

∂cij(q̃
τ−1
ij )

∂qij
+ αijγ̃

τ−1
i +

∂ĉij(q̃
τ−1
ij )

∂qij
− η̃τ−1

j ) − qτ−1
ij

]
×

[
qij − qτ

ij

]

+
m∑

i=1


qτ

i(n+1) + δ(
∂ci(Q̃

2τ−1)

∂qi(n+1)

+
∂ci(n+1)(q̃

τ−1
i(n+1))

∂qi(n+1)

+ αijγ̃
τ−1
i + ρ̄2i(n+1)) − qτ−1

i(n+1)




×
[
qi(n+1) − qτ

i(n+1)

]
+

m∑

i=1


γi

τ + δ(
r∑

h=1

q̃τ−1
hi −

n+1∑

j=1

αij q̃
τ−1
ij ) − γτ−1

i


 × [γi − γτ

i ]

+
n∑

j=1

o∑

k=1

[
qτ
jk + δ(

∂cj(Q̃
3τ−1)

∂qjk
+

∂cjk(q̃
τ−1
jk )

∂qjk
+ βjkη̃

τ−1
j + ĉjk(q̃jk

τ−1) − ρ̃τ−1
4k ) − qτ−1

jk

]
×

[
qjk − qτ

jk

]

+
n∑

j=1


qτ

j(o+1) + δ(
∂cj(Q̃

3τ−1)

∂qj(o+1)

+
∂cj(o+1)(q̃

τ−1
j(o+1))

∂qj(o+1)

+ βj(o+1)η̃
τ−1
j + ρ̄3j(o+1)) − qτ−1

j(o+1)




×
[
qj(o+1) − qτ

j(o+1)

]
+

n∑

j=1

[
ητ

j + δ(
m∑

i=1

q̃τ−1
ij −

o+1∑

k=1

βjkq̃
τ−1
jk ) − ητ−1

j

]
×

[
ηj − ητ

j

]

+
o∑

k=1


ρτ

4k + δ(
n∑

j=1

q̃τ−1
jk − dk(ρ̃

τ
4)) − ρτ−1

4k


 × [ρ4k − ρτ

4k] ≥ 0,

∀(Q1, Q2, γ, Q3, η, ρ4) ∈ K. (32)
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Step 3: Convergence Verification

If |qτ
hi−qτ−1

hi | ≤ ε, |qτ
ij −qτ−1

ij | ≤ ε, |qτ
i(n+1)−qτ−1

i(n+1)| ≤ ε, |qτ
jk−qτ−1

jk | ≤ ε, |qτ
j(o+1)−qτ−1

j(o+1)| ≤ ε,

|γτ
i − γτ−1

i | ≤ ε, |ητ
j − ητ−1

j | ≤ ε, and |ρτ
4k − ρτ−1

4k | ≤ ε for all h = 1, · · · , r; i = 1, · · · , m + 1;

j = 1, · · · , n; k = 1, · · · , o with ε > 0, a pre-specified tolerance, then stop; otherwise, set

τ := τ + 1, and go to Step 1.

We now state the convergence result for the modified projection method for this model.

Theorem 6: Lipschitz Continuity

Assume that the function that enters the variational inequality (25) satisfies the conditions

in Theorem 2 and in Theorem 5 and that a solution exists. Then the modified projection

method descrived above converges to the solution of the variational inequality (25).

Proof: According to Korpelevich (1977), the modified projection method converges to the

solution of the variational inequality problem of the form (25), provided that the function

F (X) is monotone and Lipschitz continuous and that a solution exists. Monotonicity follows

from Theorem 2. Lipschitz continuous follows from Theorem 5. 2

We now, for completeness, discuss the simplicity of the above computational procedure in

the context of the model. Notably, the algorithm takes advantage of the network structure of

the problem and allows for the explicit and exact computation of the material flows (except

for the top tiered ones) as well as the prices. The top-tiered material flows are computed

explicitly but not with specific formulae, since these flows must lie in the feasible set K,

whereas the others, through our formulation, are only subject to nonnegativity constraints.

Indeed, the q̃τ
hi; i = 1, . . . , m, at a given iteration τ , and satisfying (31) for a fixed source of

electronic waste h, are simply the solution to the following quadratic programming problem:

Minimize
m+1∑

i=1

q̃2
hi + h̃hi, (33)

subject to constraints (3) and (4), where h̃hi denotes the fixed term following the plus sign

in the first term in (31) for i = 1, . . . , m and h̃h(m+1) denotes the corresponding term in
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the second line in (31). In Section 5, we discuss further the solution of this problem in the

context of numerical examples.

For definiteness, we now demonstrate how the remainder of the material flows and prices

satisfying (31) can be computed exactly and in closed form; similar expressions can be derived

for the flows and prices satisfying (32).

Computation of the Material Flows

The precise formulae for the computation of the material flows following (31) are now given.

Computation of Material Flows from Recyclers to the Processors and Landfill

In particular, compute, at iteration τ , the q̃τ
ijs according to:

q̃τ
ij = max{0, qτ−1

ij − δ(
∂ci(Q

2τ−1)

∂qij
+

∂cij(q
τ−1
ij )

∂qij
+αijγ

τ−1
i +

∂ĉij(q
τ−1
ij )

∂qij
− ητ−1

j )}, ∀i, j, (34)

and the q̃τ
i(n+1)s according to:

q̃τ
i(n+1) = max{0, qτ−1

i(n+1)−δ(
∂ci(Q

2τ−1)

∂qi(n+1)
+

∂ci(n+1)(q
τ−1
i(n+1))

∂qi(n+1)
+αi(n+1)γ

τ−1
i +ρ̄2i(n+1))}, ∀i. (35)

Computation of Material Flows from Processors to Demand Markets and Landfill

Compute, at iteration τ , the q̃τ
jks according to:

q̃τ
jk = max{0, qτ−1

jk − δ(
∂cj(Q

3τ−1)

∂qjk
+

∂cjk(q
τ−1
jk )

∂qjk
+βjkη

τ−1
j + ĉjk(q

τ−1
jk )− ρτ−1

4k )}, ∀j, k, (36)

and the q̃τ
j(o+1)s according to:

q̃τ
j(o+1) = max{0, qτ−1

j(o+1) − δ(
∂cj(Q

3τ−1)

∂qj(o+1)

+
∂cj(o+1)(q

τ−1
j(o+1))

∂qj(o+1)

+ βj(o+1)η
τ−1
j + ρ̄3j(o+1))}, ∀j, k.

(37)
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Computation of the Prices

The prices, in turn, can also be computed (cf. (31)) as follows:

Computation of the Shadow Prices at the Recyclers

At iteration τ , compute the γ̃τ
i s according to:

γ̃τ
i = max{0, γτ−1

i − δ(
r∑

h=1

qτ−1
hi −

n+1∑

j=1

αijq
τ−1
ij )}, ∀i. (38)

Computation of the Shadow Prices at the Processors

Similarly, we can compute the η̃τ
j s according to:

η̃τ
j = max{0, ητ−1

j − δ(
m∑

i=1

qτ−1
ij −

o+1∑

k=1

βjkq
τ−1
jk )}, ∀j. (39)

Computation of the Demand Market Prices at the Demand Markets

Finally, we can compute at iteration τ the ρ̃τ
4ks according to:

ρ̃τ
4k = max{0, ρτ−1

4k − δ(
n∑

j=1

qτ−1
jk − dk(ρ

τ−1
4 ))}, ∀k. (40)

In the next section, we apply the modified projection method to three sets of examples to

compute the equilibrium material flows between tiers as well as the demand market prices

and shadow prices.
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Figure 2: E-Cycling Network for the Numerical Examples

5. Numerical Examples and Discussion

In this section, we present numerical examples which are solved using the modified pro-

jection method of the preceding section, along with a discussion.

The modified projection method outlined in Section 4 was implemented in FORTRAN

and the computer system used was a Sun system located at the University of Massachusetts

at Amherst. The convergence criterion utilized was that the absolute value of the material

flows and prices between two successive iterations differed by no more than 10−4. The

structure of the e-cycling network for all the examples is depicted in Figure 2. In particular,

there were two sources of electronic waste, two recyclers, two processors, and two demand

markets, with the option of using a landfill available to the sources of electronic waste, to

the recyclers, as well as to the processors.

For all the numerical examples, we set the parameter δ in the modified projection method

(cf. Section 4) equal to .1. Clearly, according to Step 0 of the algorithm, the contraction

parameter δ should lie in the range 0 < δ ≤ 1
L

and although 1
L

can be computed it is
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not always straightforward, so we recommend a “small” δ. Of course, based on increasing

experience with particular examples, one may try to increase this parameter, which will

typically result in fewer iterations.

The material flows and prices were initialized as follows for all the examples: the (Q20, Q30)

and the (γ0, η0, ρ0
4) were all set to zero. The Q10, in turn, to ensure that constraint (3) was

satisfied for all h, was set to qhi = Sh

m
, for i = 1, . . . , m and qh(m+1) = 0 for each h = 1, . . . , r.

In all the examples, we had r = 2, m = 2, n = 2, and o = 2.

We solved three sets of examples, with three examples in each set and numbered as

Example 1.1, Example 1.2, Example 1.3, and so on, through Example 3.3.

It is important to emphasize the simplicity of the computational procedure in the form

of the modified projection method which takes advantage of the network structure of the

problem. In particular, in view of the feasible set, which, except for the first tier of material

flows, consists of the nonnegative orthant, the materials flows and the prices are computed

using explicit simple formulas (as discussed in Section 4). The material flows from the

sources, in turn, which must satisfy constraint (3), are computed in our implementation

using the exact equilibriation algorithm of Dafermos and Sparrow (1969) which has also

been utilized in the context of multitiered financial network problems with intermediation

(see, e.g., Nagurney and Ke (2001, 2003)).

The data (both input and output) are reported for each of the examples below.

Set 1

In the first set of examples, the common input data are given in Table 1.
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Table 1: Common Input Data for Set 1 Examples

Volumes of electronic waste S1 = S2 = 20
Transaction cost functions between
sources and recyclers (cf. (1)) chi = .5q2

hi + 3.5, h = 1, 2; i = 1, 2
Transaction cost functions between
sources and the landfill (cf. (1)) ch3 = .5q2

h3 + 2, h = 1, 2
Second-tier landfill fixed prices ρ̄1h3 = 1, h = 1, 2
Transaction cost functions between
recyclers and processors (cf. (6)) cij = .5q2

ij + 5, i = 1, 2; j = 1, 2

Transaction cost functions between
recyclers and the landfill (cf. (6)) ci3 = .5q2

i3 + 3, i = 1, 2
Third-tier landfill fixed prices ρ̄2i3 = 1, i = 1, 2
Transaction cost functions between
recyclers and sources (cf. (7)) ĉhi = 1.5q2

hi + 3, h = 1, 2; i = 1, 2
Recycling cost functions (cf. (8)) ci =

∑3
j=1 qij, i = 1, 2

Processing cost functions (cf. after (14)) cj = 2
∑3

k=1 qjk, j = 1, 2
Transaction cost functions between
the processors and the demand markets (cf. (13)) cjk = .5q2

jk + 1, j = 1, 2; k = 1, 2

Transaction cost functions between
processors and demand market pair
(from the perspective of the consumers
at the demand markets) (cf. (19)) ĉjk = qjk + 1, j = 1, 2; k = 1, 2
Fourth-tier landfill fixed prices ρ̄3j3 = 1, j = 1, 2
Demand functions (cf. after (19)) d1 = −2ρ41 − 1.5ρ42 + 1000

d2 = −2ρ42 − 1.5ρ41 + 1000
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Example 1.1

Example 1.1 had the input data as described in Table 1 and, although stylized, serves as a

baseline from which we can conduct other simulations. In Example 1.1, we assumed that (cf.

(10) and (16)) the αijs and the βjks were all equal to 1. Thus, the ratio of output material

flows to input flows was equal to 1 for both the recyclers and the processors.

The modified projection method converged in 321 iterations and yielded the equilibrium

solution reported in the second column Table 2.

Hence, as expected, the solution in material flows and prices was symmetric in that the

data for the particular tiered nodes (and corresponding links) was identical. Note that the

prices increase as the material flows propagate through the e-cycling network.

Example 1.2

Example 1.2 was constructed from Example 1.1 as follows. The data were identical to the

data in Example 1 except now the αijs were no longer identically equal to 1 but, rather, we

had that αij = .5 for i = 1, 2; j = 1, 2, 3. This means that as the electronic material arrives

at the recyclers it is then converted (in a proportionate manner) into recycled materials for

further processing. Hence, in this example, in contrast to Example 1.1, the ratio of output

material flows to input material flows was 2 at each recycler but 1 at each processor.

The modified projection method converged in 850 iterations and yielded the equilibrium

pattern given in the third column in Table 2. Note that in this example, as in Example

1.1, none of the material flows were sent to the landfills. Also, note that since there is more

material flow at each processor, the shadow price at each processor is lower than the shadow

price at each processor in Example 1.1.

Example 1.3

Example 1.3, which is the final example in this set, was constructed from Example 1.2 and

had the identical data except that now the parameters associated with the flows leaving the

processor nodes were no longer equal to one but, instead, we had that βjk = .25 for j = 1, 2

and k = 1, 2, 3. Hence, the ratio of material output flows to input flows at the recyclers
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remained 1 but now the ratio of output flows to input flows at the processors was 2 for each

processor (as compared to Example 1.2).

The modified projection method converged in 241 iterations and yielded the equilibrium

material flows and prices reported in the fourth column in Table 2.

Note that now, in contrast to the two preceding examples, there is a positive flow of

electronic waste material from the sources of electronic waste to the landfill. This is due, in

part, to the production requirements for the recycled and processed waste. Also, in referring

back to variational inequality (23) we note that since the q∗ijs in Example 1.2 and Example

1.3 did not significantly differ, hence, the corresponding (cf. (25)) Fij terms also did not

differ significantly. We can thus infer that the αijγ
∗
i − η∗

j s would have to be approximately

equal in both of these examples, which, indeed, they are, with a value of approximately

-26. In particular, for Example 1.2, we have that αijγ
∗
i − η∗

j =.5(372.47) − 212.24 for all i, j

whereas for Example 1.3, we have that αijγ
∗
i − η∗

j =.5(40.67) − 45.40.
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Table 2: Equilibrium Solutions to Set 1 Examples (Baseline Set)

Set 1 Examples
Equilibrium Solution Example 1.1 Example 1.2 Example 1.3

αij = 1, βjk = 1, αij = .5, βjk = 1, αij = .5, βjk = .25,
∀i, j, k ∀i, j, k ∀i, j, k

Material Flows from Sources to Second Tier (Recyclers and Landfill)
q∗hi, h = 1, 2; i = 1, 2 10.00 10.00 9.53
q∗h3, h = 1, 2 0.00 0.00 .95
Material Flows from Recyclers to Third Tier (Processors and Landfill)
q∗ij, i = 1, 2; j = 1, 2 10.00 20.00 19.06
q∗i3, i = 1, 2 0.00 0.00 0.00
Material Flows from Processors to Bottom Tier (Demand Markets and Landfill)
q∗jk, j = 1, 2; k = 1, 2 10.00 20.00 76.26
q∗j3, j = 1, 2 0.00 0.00 0.00

Shadow Prices at the Recyclers
γ∗

i , i = 1, 2 231.97 372.47 40.67
Shadow Prices at the Processors
η∗

j , j = 1, 2 247.97 212.24 45.40

Demand Market Prices at the Demand Markets
ρ∗

4k, k = 1, 2 279.99 274.28 242.14
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Set 2

We now describe the examples in the second set. The equilibrium solutions for all examples

in this set are given in Table 3.

Example 2.1

The first example in the second set, Example 2.1, was constructed as follows. The data were

identical to that in Example 1.1, but now we decreased the demand for the products at the

demand markets so that the new demand functions were:

d1 = −2ρ41 − 1.5ρ42 + 100, d2 = −2ρ42 − 1.5ρ41 + 100.

The modified projection method converged in 117 iterations and yielded the solution

given in column 2 of Table 3. Hence, due to the decreased demand for the recycled/processed

products, there was a sizeable amount of electronic waste transported to the landfill from

the sources of electronic waste.

Note that now, unlike the situation in Example 1.1, in which the demand at each of the

demand markets was 20. The demand for each of the products was now only 7.

Example 2.2

The second example in Set 2, Example 2.2, was constructed from Example 2.1 and had the

same data except (as we did for Example 1.2) that we now set the αijs equal to .5 for i = 1, 2

and j = 1, 2, 3. Hence, as in Example 1.2, the ratio of output material flows to input material

flows at each recycler was 2. The modified projection method converged in 86 iterations and

yielded the equilibrium solution given in column 3 of Table 3. Observe that now, due to

the decreased demand for the products (unlike in Example 1.2), a sizeable amount of the

electronic waste from the sources is now deposited in the landfill. The demand for the final

products is 9 for both demand markets. Note also that the shadow prices associated with

the recyclers are now equal to zero and this is due to the fact (see also discussion following

(12)) that constraint (10) holds as a strict inequality for both recyclers. In other words,

there is an excess supply of the product at each recycler.
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Table 3: Equilibrium Solutions to Set 2 Examples (with Demands Functions Dis-
tinct from Set 1’s Examples)

Set 2 Examples
Equilibrium Solution Example 2.1 Example 2.2 Example 2.3

αij = 1, βjk = 1, αij = .5, βjk = 1, αij = .5, βjk = .25,
∀i, j, k ∀i, j, k ∀i, j, k

Material Flows from Sources to Second Tier (Recyclers and Landfill)
q∗hi, h = 1, 2; i = 1, 2 3.50 2.75 2.75
q∗h3, h = 1, 2 13.00 14.50 14.50
Material Flows from Recyclers to Third Tier (Processors and Landfill)
q∗ij, i = 1, 2; j = 1, 2 3.50 4.50 1.72
q∗i3, i = 1, 2 0.00 0.00 0.00
Material Flows from Processors to Bottom Tier (Demand Markets and Landfill)
q∗jk, j = 1, 2; k = 1, 2 3.50 4.50 6.90
q∗j3, j = 1, 2 0.00 0.00 0.00

Shadow Prices at the Recyclers
γ∗

i , i = 1, 2 4.52 0.00 0.00
Shadow Prices at the Processors
η∗

j , j = 1, 2 14.03 10.49 7.71

Demand Market Prices at the Demand Markets
ρ∗

4k, k = 1, 2 26.56 26.00 24.63

Example 2.3

The third and final example in Set 2, Example 2.3, had data identical to that in Example

2.2 except now (as we did for Example 1.3) we altered the βjks so that βjk = .25 for j = 1, 2

and k = 1, 2, 3.

The modified projection method converged in 112 iterations and yielded the equilibrium

solution given in column 4 of Table 3. Observe that, as was the case in Example 2.2, the

shadow prices associated with the two recyclers are again zero.
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Set 3

In the third set of examples, we also solved three problems using the modified projection

method. The input data for these examples is described for each particular case below. The

computed solutions are given in Table 4.

Example 3.1

In the first example in Set 3, Example 3.1, we used data identical to that of Example 2.1,

except that the demand functions were as follows:

d1 = −2ρ41 − 1.5ρ42 + 150, d2 = −2ρ42 − 1.5ρ41 + 100.

Hence, unlike the preceding examples, the demand functions associated with the recy-

cled/processed products were now distinct.

The modified projection method converged in 235 iterations and yielded the equilibrium

solution reported in column 2 of Table 4. Due to lower demand (relative to that in Example

1.1), electronic waste was shipped to the landfill from both sources of waste.

Example 3.2

Example 3.2 had data identical to that in Example 3.1, except that now we increased the

fixed unit prices associated with the sources using the landfill. In particular, we now set

ρ̄h3 = 10 for h = 1, 2. Hence, we increased these prices tenfold relative to their values in

Example 3.1.

The modified projection method required 215 iterations for convergence and yielded the

equilibrium material flow and price pattern reported in column 3 of Table 4. Thus, with the

increased unit prices associated with the use of the landfill by the sources, less electronic

waste was transported to the landfills (but not significantly less since the demand functions

have not changed).

Example 3.3

In the final example in our numerical experiments, Example 3.3, we used the data of Example
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Table 4: Equilibrium Solutions to Set 3 Examples (Demand Functions Distinct at
each Market)

Set 3 Examples
Equilibrium Solution Example 3.1 Example 3.2 Example 3.3

αij = 1, βjk = 1, αij = 1, βjk = 1, αij = .5, βjk = .25,
∀i, j, k ∀i, j, k ∀i, j, k

Material Flows from Sources to Second Tier (Recyclers and Landfill)
q∗hi, h = 1, 2, i = 1, 2 5.36 5.87 4.25
q∗h3, h = 1, 2 9.29 8.27 11.50
Material Flows from Recyclers to Third Tier (Processors and Landfill)
q∗ij, i = 1, 2; j = 1, 2 5.36 5.87 2.21
q∗i3, i = 1, 2 0.00 0.00 0.00
Material Flows from Processors to Bottom Tier (Demand Markets and Landfill)
q∗jk, j = 1, 2; k = 1, 2 10.73 11.75 q∗j1 = 16.00; j = 1, 2

q∗j2 = 1.72, j = 1, 2
q∗j3, j = 1, 2 0.00 0.00 0.00

Shadow Prices at the Recyclers
γ∗

i , i = 1, 2 15.64 9.71 0.00
Shadow Prices at the Processors
η∗

j , j = 1, 2 27.00 21.58 8.20

Demand Market Prices at the Demand Markets
ρ∗

4k, k = 1, 2 4.11 5.87 9.22

3.2, but as we had done in Examples 1.3 and 2.3, we set αijs =.5 for i = 1, 2; j = 1, 2, 3 and

βjks=.25 for j = 1, 2 and k = 1, 2, 3.

The modified projection method converged in 110 iterations with the equilibrium pattern

given in column 4 of Table 4. Observe that the shadow prices at both the recyclers are

zero for this example and this is due to the fact that there remains an excess supply of the

product at both of the recyclers. In other words, constraint (10) holds as a strict inequality

in each case.

Also, note that there was an increase in the use of the landfill at the second tier level

relative to that encountered in Example 3.2 with the change in the αijs and βjk and this
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is due to the fact that with the new values for these parameters there was an increase in

material flow from both the second tier and the third tier relative to the flows in Example 3.2

and with no alteration in the demand functions the excess was transported to the landfill.

These numerical results illustrate the variety of problems that can be solved using the

integrated e-cycling framework developed here based on the theory of variational inequal-

ities. In particular, one can evaluate, numerically, the effects of numerous changes to the

data of a specific example, in terms of changes in the demand functions, fixed prices, pro-

duction/recycling coefficients, transaction cost functions, etc. Of course, the examples are

stylized but, nevertheless, show the spectrum of problems that can be solved and the robust-

ness of the computational procedure. Moreover, the results and the analysis also emphasize

the elegance of the variational inequality formulation (23) from which we were able to obtain

additional illumination of the obtained equilibrium patterns. It would be very interesting

to further the research through the use of the variational inequality formulation to obtain

other sensitivity analysis results as has been done for other network equilibrium problems

(see, e.g., Nagurney (1999)). Finally, it would be worthwhile to investigate theoretically how

the parameter δ in the modified projection method can be effectively determined a priori to

allow for, if possible, the determination of an expected number of iterations for convergence

for different ranges of numerical data.
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6. Summary and Conclusions

In this paper, we proposed a framework for the formulation, analysis, and computation

of solutions to reverse supply chain network problems of electronic waste management and

recycling. We formulated the multitiered e-cycling network model consisting of sources of

electronic waste, recyclers, processors, and consumers associated with the demand mar-

kets for the distinct products. We derived the decision-makers’ optimality conditions and

provided the governing equilibrium conditions, along with the variational inequality formu-

lation. The compact variational inequality formulation allows one to formulate the complex

reverse supply chain network of electronic waste management and recycling to obtain the

endogenous equilibrium prices and material flows between tiers. In addition, we provided

qualitative properties of the equilibrium electronic waste material flow and price pattern. Fi-

nally, we provided numerical results for a spectrum of problems which were solved utilizing

the proposed algorithmic scheme for which convergence was also established.

The model presented in this paper can be applied to address a variety of recycling issues

associated with recent recycling policy instruments, such as the home appliances recycling law

in Japan, or the electronic equipment waste directive in the European Union (cf. Applebaum

(2002a, b, c)). The model can also be further extended in several directions. For example, in

practice, recyclers need to confront the uncertainty in terms of both the quantities (as well as

the quality) of electronic waste that they actually obtain. Moreover, they must adjust their

decisions through some form of dynamic process (although our proposed algorithm may be

interpreted as a type of adjustment process with an iteration corresponding to a time period).

In view of this situation, we can extend the framework presented in this research to a reverse

supply chain network model with random supply of electronic wastes associated with the

sources (as well as random demands associated with the products at the bottom tier of the

network).

Another extension of the research in this paper is to integrate the production and the

distribution systems of electronic products. Since many of the recycling policy instruments

require that the manufacturers recycle electronic wastes, it is conceivable that the recycling

activities in the reverse supply chain network system must be closely related with those

in the classical supply chain network. Finally, we emphasize the importance of empirical
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research. We leave such work for future research.
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