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Abstract: A supply chain network perspective for electric power production, supply, trans-

mission, and consumption is developed. The model is sufficiently general to handle the

behavior of the various decision-makers, who operate in a decentralized manner and include

power generators, power suppliers, the transmitters, as well as the consumers associated

with the demand markets. The optimality conditions are derived, along with the equilib-

rium state for the electric power supply chain network. The finite-dimensional variational

inequality formulation of the equilibrium state is derived, whose solution yields the equilib-

rium electric power flows transacted between the tiers of the supply chain network as well

as the nodal prices. The variational inequality formulation is utilized to provide qualita-

tive properties of the equilibrium electric power flow and price patterns and to propose a

computational scheme. The algorithm is then applied to compute the solutions to several

numerical examples.
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1. Introduction

The electric power industry in the United States, as well as abroad, is undergoing a

transformation from a regulated to a competitive industry. Whereas power generation was

once dominated by vertically integrated investor-owned utilities who owned many of the

generation capacity, transmission, and distribution facilities, the electric power industry to-

day is characterized by many new companies that produce and market wholesale and retail

electric power. In the United States, for example, several factors have made these changes

both possible and necessary. First, technological advances have altered the economics of

power production. For example, new gas-fired combined cycle power plants are more effi-

cient and less costly than older coal-fired power plants. In addition, technological advances

in electricity transmission equipment have made possible the economic transmission of power

over long distances so that customers can now be more selective in choosing an electricity

supplier. Secondly, between 1975 and 1985, residential electricity prices and industrial elec-

tricity prices in the US rose 13% and 28% in real terms, respectively (US Energy Information

Administration (2000)).

Furthermore, the effects of the Public Utilities Regulatory Policies Act of 1978, which

encouraged the development of nonutility power producers that used renewable energy to

generate power, demonstrated that traditional vertically integrated electric utilities were

not the only source of reliable power. Moreover, numerous legislative initiatives have been

undertaken by the federal government in order to stimulate the development and strengthen-

ing of competitive wholesale power markets. As a consequence, by December 1, 2003, 1310

companies were eligible to sell wholesale power at market-based rates in the US (statistics

available at http://www.eia.doe.gov).

The dramatic increase in the number of market participants trading over the past few

years, as well as changes to electricity trading patterns have made system reliability more dif-

ficult to maintain. The North American Electric Reliability Council (NERC) reported that,

“[in recent years] the adequacy of the bulk power transmission system has been challenged

to support the movement of power in unprecedented amounts and in unexpected directions”

(North American Electric Reliability Council (1998)). Moreover, a US Department of En-

ergy Task Force noted that “there is a critical need to be sure that reliability is not taken for
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granted as the industry restructures, and thus does not fall through the cracks”(Secretary

of Energy Advisory Board’s (SEAB) Task Force on Electric System Reliability (1998)).

These concerns have helped to stimulate research activity in the area of electric power

supply systems modeling and analysis during the past decade. Several models have been

proposed that allow for more decentralization in the markets (see, e.g., Schweppe et al.

(1988), Hogan (1992), Chao and Peck (1996), and Wu et al. (1996)). Some researchers

have suggested different variations of the models depending on the electric power market

organizational structure (see, for example, Hobbs (2001)). A wide range of models has

been proposed for simulating the interaction of competing generation companies who price

strategically (see Kahn (1998) and Hobbs, Metzler, and Pang (2000)), as well as those

that simulate the exercising of market power on linearized dc networks based on a flexible

representation of interactions of competing generating firms (Day, Hobbs, and Pang (2002)).

Nevertheless, despite all the research and analytical efforts, on August 14, 2003, large

portions of the Midwest, the Northeastern United States, and Ontario, Canada, experienced

an electric power blackout. The blackout left approximately 50 million people without elec-

tricity and affected 61,800 megawatts of electric load (U.S.-Canada Power System Outage

Task Force (2003)). In addition, two significant outages during the month of September

2003 occurred abroad: one in England and one, initiated in Switzerland, that cascaded over

much of Italy. The scale of these recent power outages has shown that the reliability of the

existing power systems is not adequate and that the latest changes in electric power markets

require deep and thorough analysis.

In this paper, we propose what we believe is a novel approach to the modeling and analysis

of electric power markets. In particular, we develop a supply chain network model for electric

power generation, supply, transmission, and consumption, which allows for decentralized

decision-making, and which differs from recent models (see, e.g., Jing-Yuan and Smeers

(1999), Takriti, Krasenbrink, and Wu (2000), Boucher and Smeers (2001), and Daxhelet and

Smeers (2001)) in that, first and foremost, we consider several different types of decision-

makers and model their behavior and interactions explicitly. Moreover, we allow for not

only the computation of electric power flows but also the prices associated with the various

transactions between the tiers of decision-makers in the electric power supply chain network.
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Finally, the functional forms that can be handled in our framework are not limited to linear

and/or separable functions. For additional background on supply chain network modeling,

analysis, and computations, as well as financial engineering, see the annotated bibliography

by Guenes and Pardalos (2003). For an overview of electric power systems, see the book by

Casazza and Delea (2003). For an edited volume on the deregulation of electric utilities, see

Zaccour (1998). For additional background on game theory as it relates to electric power

systems, see the edited volume by Singh (1999).

The supply chain network approach permits one to represent the interactions between

decision-makers in the market for electric power in terms of network connections, flows, and

prices. In addition, we consider noncooperative behavior of decision-makers in the same

tier of the supply chain network (such as, for example, the generators; the suppliers, and

the demand markets) as well as cooperative behavior between tiers. Furthermore, this ap-

proach makes it possible to take advantage of the network topology (which is not limited to

a specific number of generators, suppliers, transmitters, and/or demand markets) for compu-

tational purposes. Finally, it provides a framework from which a variety of extensions can be

constructed to include, among other elements, multicriteria decision-making to incorporate

environmental issues, risk and reliability elements, as well as stochastic components, and, in

addition, the introduction of explicit dynamics and modeling of disequilibrium behavior.

The paper is organized as follows. In Section 2, we develop the model, describe the various

decision-makers and their behavior, and construct the equilibrium conditions, along with the

variational inequality formulation. The variables are the equilibrium prices, as well as the

equilibrium electricity flows between the tiers of decision-makers. In Section 3, we derive

qualitative properties of the equilibrium pattern, under appropriate assumptions, notably,

the existence and uniqueness of a solution to the governing variational inequality. In Section

4, we propose an algorithm, which is then applied to several illustrative numerical examples

in Section 5. We conclude the paper with Section 6 in which we summarize our results and

suggest directions for future research.
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2. The Supply Chain Network Model for Electric Power

In this Section, we develop an electric power supply chain network model in which the

decision-makers operate in a decentralized manner. In particular, we consider an electric

power network economy in which goods and services are limited to electric energy and trans-

mission services. We consider power generators, power suppliers (including power marketers,

traders, and brokers), transmission service providers, and consumers (demand markets, or

end users). A depiction of the supply chain network for electric power is given in Figure 1.

Power generators are those decision-makers who own and operate electric generating facil-

ities or power plants. They produce electric power, which, is then sold to the power suppliers.

The prices that generators charge for the electricity that they produce is determined by the

competitive wholesale market. There is a total of G power generators, depicted as the top

tier nodes in Figure 1, with a typical power generator denoted by g. Power suppliers, in

turn, bear a function of an intermediary. They buy electric power from power generators

and sell to the consumers at different demand markets. We denote a typical supplier by s

and consider a total of S power suppliers. Suppliers are represented by the second tier of

nodes in the supply chain network in Figure 1.

Note that there is a link from each power generator to each supplier in the network in

Figure 1 which represents that a supplier can buy energy from any generator on the wholesale

market (equivalently, a generator can sell to any/all the suppliers). Note also that the links

between the top tier and the second tier of nodes do not represent the physical connectivity

of two particular nodes. Power suppliers do not physically possess electric power at any

stage of the supplying process; they only hold the rights for the electric power. Hence, the

link connecting a pair of such nodes in the supply chain is a decision-making connectivity

link between that pair of nodes.

In order for electricity to be transmitted from a power generator to the point of consump-

tion a transmission service is required. Hence, power suppliers need to buy the transmission

services from the transmission service providers. Transmission service providers are those

entities that own and operate the electric transmission and distribution systems. These are

the companies that distribute electricity from generators via suppliers to demand markets

(homes and businesses). Because transmission service providers do not make decisions as
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Figure 1: The Electric Power Supply Chain Network

to where the electric power will be acquired and to whom it will be delivered, we do not

include them in the model explicitly as nodes. Instead, their presence in the market is mod-

eled as different modes of transaction (transmission modes) corresponding to distinct links

connecting a given supplier node to a given demand market node in Figure 1. We assume

that power suppliers cover the direct cost of the physical transaction of electric power from

power generators to the demand markets and, therefore, have to make a decision as to from

where to acquire the transmission services (and at what level).

We assume that there are T transmission service providers operating in the supply chain

network, with a typical transmission service provider denoted by t. For the sake of generality,

we assume that every power supplier can transact with every demand market using any of

the transmission service providers or any combination of them. Therefore, there are T links

joining every node in the middle tier of the network with every node at the bottom tier (see

Figure 1).
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Finally, the last type of decision-maker in the model is the consumers or demand markets.

They are depicted as the bottom tier nodes in Figure 1. These are the points of consumption

of electric power. The consumers generate the demand that drives the generation and supply

of the electric power in the entire system. There is a total of K demand markets, with a

typical demand market denoted by k, and distinguished from the others through the use of

appropriate criteria, such as geographic location; the types of consumers; that is, whether

they are businesses or households; etc. We assume a competitive electric power market,

meaning that the demand markets can choose between different electric power suppliers

(power marketers, brokers, etc.).

We also assume that a given power supplier negotiates with the transmission service

providers and makes sure that the necessary electric power is delivered. These assump-

tions fit well into the main idea of the restructuring of the electric power industry that

is now being performed in the US, the European Union, and many other countries (see

http://www.ferc.gov and http://www.europarl.eu.int).

Clearly, in some situations, some of the links in the supply chain network for electric power

in Figure 1 may not exist (due to, for example, various restrictions, regulations, etc.). This

can be handled within our framework by eliminating the corresponding link for the supply

chain network or (see further discussion below) assigning an appropriately high transaction

cost associated with that link.

We now turn to the discussion of the behavior of each type of decision-maker and give

the optimality conditions.

The Behavior of Power Generators and their Optimality Conditions

We first start with the description of the behavior of the power generators. Recall that power

generators are those decision-makers in the network system, who own and operate electric

generating facilities or power plants. They generate electric power and then sell it to the

suppliers. Hence, one of the assumptions of our model is that power generators cannot trade

directly with the demand markets.

Let qg denote the nonnegative amount of electricity in watts produced by electric power

generator g and let qgs denote the nonnegative amount of electricity (also in watts), being
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transacted from power generator g to power supplier s. Note that qgs corresponds to the flow

on the link joining node g with node s in Figure 1. We group the electric power production

outputs for all power generators into the vector q ∈ RG
+. Also, we group all the power flows

associated with all the power generators to the suppliers into the column vector Q1 ∈ RGS
+ .

For power generator g, we assume, as given, a power generating cost function denoted by

fg, such that

fg = fg(q), ∀g. (1)

All the power generating functions are assumed to be convex and continuously differentiable.

Since generators compete for resources we allow for the general form (1). Of course, a special

case is when fg = fg(qg).

Note that we allow each power generating cost function to depend not only on the amount

of energy generated by a particular power generator, but also on the amount of energy

generated by other power generators. This generalization allows one to model competition.

In addition, while the electric power is being transmitted from node g to node s, there

will be some transaction costs associated with the transmission process. Part of these costs

will be covered by a power generator. Let cgs denote power generator g’s transaction cost

function associated with transmitting the electric power to supplier node s. We consider the

general situation in which the transaction cost of a particular power generator is a function

of not only the amount of power transacted by this particular power generator, but also of

the amounts of power transacted by all other power generators (who may, for example, share

the same physical line). Therefore, in order to represent the most general case, we have that

cgs = cgs(Q
1), ∀g, ∀s, (2)

and we assume that these functions are convex and continuously differentiable.

Each power generator g faces the conservation of flow constraint given by:

S∑

s=1

qgs = qg, (3)

that is, a power generator g cannot ship out more electric power than he has produced.
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In view of (3) and (1), we may write, without any loss of generality that fg = fg(Q
1), for

all power generators g; g = 1, . . . , G. Note that in our framework, as the production output

reaches the capacity of a given generator then we expect the production cost to become very

large (and, perhaps, even infinite).

Optimization Problem of a Power Generator

We assume that a typical power generator g is a profit-maximizer. Let ρ∗
1gs denote the price

that a power generator g charges a power supplier s per unit of electricity. We later in this

section discuss how this price is arrived at. We allow the power generator to set different

prices for different power suppliers. Hence, the optimization problem of the power generator

g can be expressed as follows:

Maximize
S∑

s=1

ρ∗
1gsqgs − fg(Q

1) −
S∑

s=1

cgs(Q
1) (4)

subject to:

qgs ≥ 0, ∀s. (5)

We assume that the power generators compete in noncooperative manner following the

concepts of Nash (1950, 1951) (see also, e.g., Dafermos and Nagurney (1987)). Hence, each

power generator seeks to determine his optimal strategy, that is, the generated outputs,

given those of the other power generators. The optimality conditions of all power generators

g; g = 1, ..., G, simultaneously, under the above assumptions (see also Bazaraa, Sherali, and

Shetty (1993), Bertsekas and Tsitsiklis (1989), and Nagurney (1999)), can be compactly

expressed as: determine Q1∗ ∈ RGS
+ satisfying

G∑

g=1

S∑

s=1

[
∂fg(Q

1∗)

∂qgs
+

∂cgs(Q
1∗)

∂qgs
− ρ∗

1gs

]
× [qgs − q∗gs] ≥ 0, ∀Q1 ∈ RGS

+ . (6)

Note that (6) is a variational inequality. Moreover, (6) has a very nice economic in-

terpretation. Indeed, at optimality, if there is a positive flow of electric power between a

generator/supplier pair, then the price charged is precisely equal to the sum of the marginal

production cost plus the marginal transaction cost; if that sum exceeds the price, then there

will be no electric power flow (and, thus, no transaction) between that pair.
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The Behavior of Power Suppliers and their Optimality Conditions

We now turn to the description of the behavior of the power suppliers. The term power

supplier refers to power marketers, traders, and brokers, who arrange for the sale and pur-

chase of the output of generators to other suppliers or load-serving entities, or in many cases,

serve as load-serving entities themselves. They play a fundamental role in our model since

they are responsible for acquiring electricity from power generators and delivering it to the

demand markets. Therefore, power suppliers are involved in transactions with both power

generators and the demand markets through transmission service providers.

A power supplier s is faced with certain expenses, which may include, for example, the cost

of licensing and the costs of maintenance. We refer collectively to such costs as an operating

cost and denote it by cs. Let qt
sk denote the amount of electricity being transacted between

power supplier s and demand market k via the link corresponding to the transmission service

provider t. We group all transactions associated with power supplier s and demand market

k into the column vector qsk ∈ RT
+. We then further group all such vectors associated with

all the power suppliers into a column vector Q2 ∈ RSTK
+ . For the sake of generality and to

enhance the modeling of competition, we assume that

cs = cs(Q
1, Q2), ∀s. (7)

We also assume that there is another type of cost that a power supplier may face, namely,

transaction costs. As mentioned earlier, each power supplier is involved in transacting with

both power generators and with the demand markets through transmission service providers.

Therefore, there will be costs associated with each such transaction. These costs may include,

for example, the expenses associated with maintaining the physical lines, if they belong to

the power supplier, or the expenses associated with the transmission service which a power

supplier has to purchase. In order to capture all possible scenarios, we will use a transaction

cost function of a general form. Let ĉgs denote the transaction cost associated with power

supplier s acquiring electric power from power generator g, where we asume that:

ĉgs = ĉgs(Q
1), ∀g, ∀s. (8)

Similarly, let ct
sk denote the transaction cost associated with power supplier s transmitting
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electric power to demand market k via transmission service provider t, where:

ct
sk = ct

sk(Q
2), ∀s, ∀k, ∀t. (9)

We assume that all the above transaction cost functions are convex and continuously

differentiable.

Note that in both (8) and (9), the cost functions are the functions of the total amount

of electric power transmitted between the associated tiers of nodes and there is a perfectly

logical reason for this. As was discussed before, the links in our model do not represent

distinct physical lines, but, rather, they represent the possibility of transmitting electricity

from one decision-maker to another. Therefore, we can very well have a case when different

power generators share the same physical lines while transmitting the power to the same, or

even different, power suppliers (demand markets). Although the actual transmission is being

done from a generator to a demand market, the power supplier is the entity that negotiates

for the transaction and covers the transmission costs. Hence, if a physical link is shared, the

cost of transmission depends on the entire amount of energy that is going through. Our aim

is to capture the most general situation and, hence, we allow the transmission cost functions

to depend on the entire flow pattern between the associated tiers of nodes in the network.

Let ρt
2sk denote the price associated with the transaction from power supplier s to demand

market k via transmission service provider t and let ρt∗
2sk denote the price actually charged

(which we return to later in this section). The total amount of revenue the power supplier

obtains from his transactions is equal to the sum over all the modes of transmission and

all the demand markets of the price times the amount of electric power transacted with the

demand market using the particular transmission mode. Indeed, the total revenue of power

supplier s can mathematically be expressed as follows:

K∑

k=1

T∑

t=1

ρt∗
2skq

t
sk. (10)

Before formulating an optimization problem of a typical power supplier, let us look closer

at the transmission service providers and their role in the electric power supply chain network

system.
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Transmission Service Providers

In order for electricity to be transmitted from a given power generator to the point of

consumption a transmission service is required. Hence, power suppliers purchase the trans-

mission services from the transmission service providers. Transmission service providers are

those entities that own and operate the electric transmission and distribution systems. We

assume that the price of transmission service depends on how far the electricity has to be

transmitted; in other words, it can be different for different destinations (demand markets

or consumers). We also let different transmission service providers have their services priced

differently, which can be a result of a different level of quality of service, reliability of the

service, etc.

In practice, an electric supply network is operated by an Independent System Opera-

tor (ISO) who operates as a disinterested, but efficient entity and does not own network

or generation assets. His main objectives are: to provide independent, open and fair ac-

cess to transmission systems; to facilitate market-based, wholesale electricity rates; and to

ensure the effective management and operation of the bulk power system in each region

(http://www.isone.org). Therefore, the ISO does not control the electricity rates. Never-

theless, he makes sure that the prices of the transmission services are reasonable and not

discriminatory. We model this aspect by having transmission service providers be price-

takers meaning that the price of their services is determined and cannot be changed by

a transmission service provider himself. Hence, the price of transmission services is fixed.

However, it is not constant, since it depends on the amount of electric power transmitted,

the distance, etc., and may be calculated for each transmission line separately depending on

the criteria listed above. Consequently, as was stated earlier, a transmission service provider

does not serve as an explicit decision-maker in the complex network system.

Optimization Problem of a Power Supplier

Assuming that a typical power supplier s is a profit-maximizer, we can express the optimiza-

tion problem of power supplier s as follows:

Maximize
K∑

k=1

T∑

t=1

ρt∗
2skq

t
sk − cs(Q

1, Q2) −
G∑

g=1

ρ∗
1gsqgs −

G∑

g=1

ĉgs(Q
1) −

K∑

k=1

T∑

t=1

ct
sk(Q

2) (11)
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subject to:
K∑

k=1

T∑

t=1

qt
sk ≤

G∑

g=1

qgs (12)

qgs ≥ 0, ∀g (13)

qt
sk ≥ 0, ∀k, ∀t. (14)

The objective function (11) represents the profit of power supplier s with the first term

denoting the revenue and the subsequent terms the various costs and payouts to the gener-

ators. Inequality (12) is a conservation of flow inequality which states that a power supplier

s cannot provide more electricity than he obtains from the power generators.

We assume that the power suppliers also compete in a noncooperative manner (as we

assumed for the power generators). Hence, each power supplier seeks to determine his optimal

strategy, that is, the input (accepted) and output flows, given those of the other power

suppliers. The optimality conditions of all power suppliers s; s = 1, ..., S, simultaneously,

under the above assumptions (see also Dafermos and Nagurney (1987) and Nagurney, Dong,

and Zhang (2002)), can be compactly expressed as: determine (Q1∗, Q2∗, γ∗) ∈ R
S(G+KT+1)
+

satisfying
S∑

s=1

K∑

k=1

T∑

t=1

[
∂cs(Q

1∗, Q2∗)

∂qt
sk

+
∂ct

sk(Q
2∗)

∂qt
sk

− ρt∗
2sk + γ∗

s

]
× [qt

sk − qt∗
sk]

+
S∑

s=1

G∑

g=1

[
∂cs(Q

1∗, Q2∗)

∂qgs
+

∂ĉgs(Q
1∗)

∂qgs
+ ρ∗

1gs − γ∗
s

]
× [qgs − q∗gs]

+
S∑

s=1




G∑

g=1

q∗gs −
K∑

k=1

T∑

t=1

qt∗
sk


 × [γs − γ∗

s ] ≥ 0, ∀(Q1, Q2, γ) ∈ R
S(G+KT+1)
+ , (15)

where γ∗
s is the optimal Lagrange multiplier associated with constraint (12), and γ is the

corresponding S-dimensional vector of Lagrange multipliers.

Note that γ∗
s serves as a “market-clearing” price in that, if positive, the electric power

flow transacted out of supplier s must be equal to that amount accepted by the supplier

from all the power generators. Also, note that from (15) we can infer that if there is a

positive flow q∗gs, then γ∗
s is precisely equal to the marginal operating cost of supplier s plus
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the marginal cost associated with this transaction plus the price per unit of electric power

paid by supplier s to generator g.

Equilibrium Conditions for the Demand Markets

We now turn to the description of the equilibrium conditions for the demand markets. Let ρ3k

denote the price per unit of electric power associated with the demand market k. Note here

that we allow the final price of electric power to be different at different demand markets. We

assume that the demand for electric power at each demand market k is elastic and depends

not only on the price at the corresponding demand market but may, in general, also depend

on the entire vector of the final prices in the supply chain network economy, that is,

dk = dk(ρ3), (16)

where ρ3 = (ρ31, . . . , ρ3k, . . . , ρ3K)T . This level of generality also allows one to facilitate the

modeling of competition on the consumption side.

Let ĉt
sk denote the unit transaction cost associated with obtaining the electric power

at demand market k from supplier s via transmission mode t, where we assume that this

transaction cost is continuous and of the general form:

ĉt
sk = ĉt

sk(Q
2), ∀s, ∀k, ∀t. (17)

The equilibrium conditions associated with the transactions between power suppliers and

demand markets take the following form: We say that a vector (Q2∗, ρ∗
3) ∈ R

K(ST+1)
+ is an

equilibrium vector if for each s, k, t:

ρt∗
2sk + ĉt

sk(Q
2∗)

{
= ρ∗

3k, if qt∗
sk > 0,

≥ ρ∗
3k, if qt∗

sk = 0.
(18)

and

dk(ρ
∗
3)

{
=

∑S
s=1

∑T
t=1 qt∗

sk, if ρ∗
3k > 0,

≤ ∑S
s=1

∑T
t=1 qt∗

sk, if ρ∗
3k = 0.

(19)

Conditions (18) state that consumers at demand market k will purchase the electric power

from power supplier s, if the price charged by the power supplier plus the transaction cost
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does not exceed the price that the consumers are willing to pay for the electric power. Note

that, according to (18), if the transaction costs are identically equal to zero, then the price

faced by the consumers for the electric power is the price charged by the power supplier.

Condition (19), on the other hand, states that, if the price the consumers are willing to pay

for the electric power at a demand market is positive, then the amount of the electric power

transacted by the power suppliers with the consumers at the demand market is precisely

equal to the demand. Conditions (18) and (19) are in concert with the ones in Nagurney,

Dong, and Zhang (2002), and reflect, spatial price equilibrium (see also, e.g., Nagurney

(1999)).

Note that the satisfaction of (18) and (19) is equivalent to the solution of the variational

inequality given by: determine (Q2∗, ρ∗
3) ∈ R

K(ST+1)
+ , such that

S∑

s=1

K∑

k=1

T∑

t=1

[
ρt∗

2sk + ĉt
sk(Q

2∗) − ρ∗
3k

]
× [qt

sk − qt∗
sk] +

K∑

k=1

[
S∑

s=1

T∑

t=1

qt∗
sk − dk(ρ

∗
3)

]
× [ρ3k − ρ∗

3k] ≥ 0,

∀(Q2, ρ3) ∈ R
K(ST+1)
+ . (20)

The Equilibrium Conditions for the Power Supply Chain Network

In equilibrium, the amounts of electricity transacted between the power generators and

the power suppliers must coincide with those that the power suppliers actually accept. In

addition, the amounts of the electricity that are obtained by the consumers must be equal

to the amounts that the power suppliers actually provide. Hence, although there may be

competition between decision-makers at the same tier of nodes of the power supply chain

network there must be, in a sense, cooperation between decision-makers associated with pairs

of nodes (through positive flows on the links joining them). Thus, in equilibrium, the prices

and product flows must satisfy the sum of the optimality conditions (6) and (15), and the

equilibrium conditions (20). We make these relationships rigorous through the subsequent

definition and variational inequality derivation.

Definition 1: Electric Power Supply Chain Network Equilibrium

The equilibrium state of the electric power supply chain network is one where the electric

15



power flows between the tiers of the network coincide and the electric power flows and prices

satisfy the sum of conditions (6), (15), and (20).

We now state and prove:

Theorem 1: Variational Inequality Formulation of the Electric Power Supply

Chain Network Equilibrium

The equilibrium conditions governing the power supply chain network according to Defi-

nition 1 are equivalent to the solution of the variational inequality given by: determine

(Q1∗, Q2∗, γ∗, ρ∗
3) ∈ K satisfying:

G∑

g=1

S∑

s=1

[
∂fg(Q

1∗)

∂qgs
+

∂cgs(Q
1∗)

∂qgs
+

∂cs(Q
1∗, Q2∗)

∂qgs
+

∂ĉgs(Q
1∗)

∂qgs
− γ∗

s

]
× [qgs − q∗gs]

+
S∑

s=1

K∑

k=1

T∑

t=1

[
∂cs(Q

1∗, Q2∗)

∂qt
sk

+
∂ct

sk(Q
2∗)

∂qt
sk

+ ĉt
sk(Q

2∗) + γ∗
s − ρ∗

3k

]
× [qt

sk − qt∗
sk]

+
S∑

s=1




G∑

g=1

q∗gs −
K∑

k=1

T∑

t=1

qt∗
sk


 × [γs − γ∗

s ] +
K∑

k=1

[
S∑

s=1

T∑

t=1

qt∗
sk − dk(ρ

∗
3)

]
× [ρ3k − ρ∗

3k] ≥ 0,

∀(Q1, Q2, γ, ρ3) ∈ K, (21)

where K ≡ {(Q1, Q2, γ, ρ3)|(Q1, Q2, γ, ρ3) ∈ RGS+TSK+S+K
+ }.

Proof: We first establish that the equilibrium conditions imply variational inequality (21).

Indeed, summation of inequalities (6), (15), and (20), after algebraic simplifications, yields

variational inequality (21).

We now establish the converse, that is, that a solution to variational inequality (21)

satisfies the sum of conditions (6), (15), and (20), and is, hence, an equilibrium.

Consider inequality (21). Add term ρ∗
1gs − ρ∗

1gs to the term in the first set of brackets

(preceding the first multiplication sign). Similarly, add term ρt∗
2sk − ρt∗

2sk to the term in the

second set of brackets (preceding the second multiplication sign). The addition of such terms

does not change (21) since the value of these terms is zero and yields:

G∑

g=1

S∑

s=1

[
∂fg(Q

1∗)

∂qgs
+

∂cgs(Q
1∗)

∂qgs
+

∂cs(Q
1∗, Q2∗)

∂qgs
+

∂ĉgs(Q
1∗)

∂qgs
− γ∗

s + ρ∗
1gs − ρ∗

1gs

]
× [qgs − q∗gs]
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+
S∑

s=1

K∑

k=1

T∑

t=1

[
∂cs(Q

1∗, Q2∗)

∂qt
sk

+
∂ct

sk(Q
2∗)

∂qt
sk

+ ĉt
sk(Q

2∗) + γ∗
s − ρ∗

3k + ρt∗
2sk − ρt∗

2sk

]
× [qt

sk − qt∗
sk]

+
S∑

s=1




G∑

g=1

q∗gs −
K∑

k=1

T∑

t=1

qt∗
sk


 × [γs − γ∗

s ] +
K∑

k=1

[
S∑

s=1

T∑

t=1

qt∗
sk − dk(ρ

∗
3)

]
× [ρ3k − ρ∗

3k] ≥ 0,

∀(Q1, Q2, γ, ρ3) ∈ K, (22)

which can be rewritten as:

G∑

g=1

S∑

s=1

[
∂fg(Q

1∗)

∂qgs
+

∂cgs(Q
1∗)

∂qgs
− ρ∗

1gs

]
× [qgs − q∗gs]

+
S∑

s=1

K∑

k=1

T∑

t=1

[
∂cs(Q

1∗, Q2∗)

∂qt
sk

+
∂ct

sk(Q
2∗)

∂qt
sk

− ρt∗
2sk + γ∗

s

]
× [qt

sk − qt∗
sk]

+
S∑

s=1

G∑

g=1

[
∂cs(Q

1∗, Q2∗)

∂qgs

+
∂ĉgs(Q

1∗)

∂qgs

+ ρ∗
1gs − γ∗

s

]
× [qgs − q∗gs]

+
S∑

s=1




G∑

g=1

q∗gs −
K∑

k=1

T∑

t=1

qt∗
sk


 × [γs − γ∗

s ]

+
S∑

s=1

K∑

k=1

T∑

t=1

[
ρt∗

2sk + ĉt
sk(Q

2∗) − ρ∗
3k

]
× [qt

sk − qt∗
sk] +

K∑

k=1

[
S∑

s=1

T∑

t=1

qt∗
sk − dk(ρ

∗
3)

]
× [ρ3k − ρ∗

3k] ≥ 0,

∀(Q1, Q2, γ, ρ3) ∈ K. (23)

Inequality (23) is a sum of equilibrium conditions (6), (15), and (20). Therefore, the

electric power flow and price pattern is an equilibrium according to Definition 1. 2

The variational inequality problem (21) can be rewritten in standard variational inequality

form (cf. Nagurney (1999)) as follows: determine X∗ ∈ K satisfying

〈F (X∗)T , X − X∗〉 ≥ 0, ∀X ∈ K, (24)

where X ≡ (Q1, Q2, γ, ρ3), and F (X) ≡ (Fgs, F
t
sk, Fs, Fk)g=1,...,G;s=1,...,S;t=1,...,T ;k=1,...,K, with

the specific components of F given by the functional terms preceding the multiplication signs

in (21), respectively. 〈·, ·〉 denotes the inner product in N -dimensional Euclidian space where

here N = GS + SKT + S + K.
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We now describe how to recover the prices associated with the first two tiers of nodes

in the power supply chain network. Clearly, the components of the vector ρ∗
3 are obtained

directly from the solution to variational inequality (21). In order to recover the second tier

prices ρ∗
2 associated with the power suppliers one can (after solving variational inequality

(21) for the particular numerical problem) either (cf. (18)) set ρt∗
2sk = ρ∗

3k − ĉt
sk(Q

2∗) for any

s, t, k such that qt∗
sk > 0, or (cf. (15)) set ρt∗

2sk = ∂cs(Q1∗,Q2∗)
∂qt

sk
+

∂ct
sk(Q2∗)

∂qt
sk

+ γ∗
s for any s, t, k such

that qt∗
sk > 0.

Similarly, from (6) we can infer that the top tier prices comprising the vector ρ∗
1 can be

recovered (once the variational inequality (21) is solved with particular data) in the following

way: for any g, s such that q∗gs > 0, set ρ∗
1gs = ∂fg(Q1∗)

∂qgs
+ ∂cgs(Q1∗)

∂qgs
or, equivalently, from (15):

set ρ∗
1gs = γ∗

s −
∂cs(Q1∗,Q2∗)

∂qgs
− ∂ĉgs(Q1∗)

∂qgs
.

Theorem 2

The solution to the variational inequality (22) satisfies variational inequalities (6), (15), and

(20) (separately) under the condition that vectors ρ∗
1 and ρ∗

2 are derived using the procedure

described above.

Proof: Suppose that (Q1∗, Q2∗, γ∗, ρ∗
3) ∈ K is a solution to variational inequality (21).

Variational inequality (21) has to hold for all (Q1, Q2, γ, ρ3) ∈ K. Using the procedure for

deriving vectors ρ∗
1 and ρ∗

2 one can get (23) from (21). Now, consider expression (23) from

the proof of Theorem 1. If one lets γs = γ∗
s , ρ3k = ρ∗

3k, and qt
sk = qt∗

sk for all s, k, and t in

(23), one obtains the following expression:

G∑

g=1

S∑

s=1

[
∂fg(Q

1∗)

∂qgs

+
∂cgs(Q

1∗)

∂qgs

− ρ∗
1gs

]
× [qgs − q∗gs] ≥ 0, ∀Q1 ∈ RGS

+ ,

which is exactly variational inequality (6) and, therefore, a solution to (21) also satisfies (6).

Similarly, if one lets ρ3k = ρ∗
3k for all k, qt

sk = qt∗
sk for all s, k, and t in the fourth functional

term (preceding the fourth multiplication sign), and also lets qgs = q∗gs in the first functional

term (preceding the first multiplication sign) in (24), one obtains the following expression:

S∑

s=1

K∑

k=1

T∑

t=1

[
∂cs(Q

1∗, Q2∗)

∂qt
sk

+
∂ct

sk(Q
2∗)

∂qt
sk

− ρt∗
2sk + γ∗

s

]
× [qt

sk − qt∗
sk]
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+
S∑

s=1

G∑

g=1

[
∂cs(Q

1∗, Q2∗)

∂qgs
+

∂ĉgs(Q
1∗)

∂qgs
+ ρ∗

1gs − γ∗
s

]
× [qgs − q∗gs]

+
S∑

s=1




G∑

g=1

q∗gs −
K∑

k=1

T∑

t=1

qt∗
sk


 × [γs − γ∗

s ] ≥ 0, ∀(Q1, Q2, γ) ∈ R
S(G+KT+1)
+ ,

which is exactly variational inequality (15) and, therefore, a solution to (21) also satisfies

(15).

Finally, if one lets γs = γ∗
s , qgs = q∗gs for all g and s, and also qt

sk = qt∗
sk for all s, k, and t

and substitutes these into the second functional term (preceding the second multiplication

sign) in (23), one obtains the following expression:

S∑

s=1

K∑

k=1

T∑

t=1

[
ρt∗

2sk + ĉt
sk(Q

2∗) − ρ∗
3k

]
× [qt

sk − qt∗
sk] +

K∑

k=1

[
S∑

s=1

T∑

t=1

qt∗
sk − dk(ρ

∗
3)

]
× [ρ3k − ρ∗

3k] ≥ 0,

∀(Q2, ρ3) ∈ R
K(ST+1)
+ ,

which is exactly variational inequality (20) and, hence, a solution to (21) also satisfies (20).

We have, thus, established that a solution to variational inequality (21) also satisfies (6),

(15), and (20) separately under the pricing mechanism described above. 2
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3. Qualitative Properties

In this Section, we provide some qualitative properties of the solution to variational

inequality (24). In particular, we derive existence and uniqueness results.

Since the feasible set is not compact we cannot derive existence simply from the assump-

tion of continuity of the functions. We can, however, impose a rather weak condition to

guarantee existence of a solution pattern. Let

Kb = {(Q1, Q2, γ, ρ3)|0 ≤ Q1 ≤ b1; 0 ≤ Q2 ≤ b2; 0 ≤ γ ≤ b3; 0 ≤ ρ3 ≤ b4}, (25)

where b = (b1, b2, b3, b4) ≥ 0 and Q1 ≤ b1, Q2 ≤ b2, γ ≤ b3, and ρ3 ≤ b4 means qgs ≤ b1,

qt
sk ≤ b2, γs ≤ b3, and ρ3k ≤ b4 for all g, s, k, and t. Then Kb is a bounded, closed, convex

subset of RGS+SKT+S+K
+ . Therefore, the following variational inequality:

〈F (Xb)T , X − Xb〉 ≥ 0, ∀X ∈ Kb, (26)

admits at least one solution Xb ∈ Kb, from the standard theory of variational inequalities,

since Kb is compact and F is continuous. Following Kinderlehrer and Stampacchia (1980)

(see also Nagurney (1999)), we then have the following theorems:

Theorem 3: Existence

Variational inequality (24) (equivalently (21)) admits a solution if and only if there exists a

vector b > 0, such that variational inequality (26) admits a solution in Kb with

Q1b < b1, Q2b < b2, γb < b3, ρb
3 < b4.

Theorem 4: Uniqueness

Assume that conditions of Theorem 3 hold, that is, variational inequality (26) and, hence,

variational inequality (24) admits at least one solution. Suppose that function F (X) that

enters variational inequality (24) is strictly monotone on K, that is,

〈(F (X ′) − F (X ′′))T , X ′ − X ′′〉 > 0, ∀X ′, X ′′ ∈ K, X ′ 6= X ′′. (27)

Then the solution to variational inequality (24) is unique.
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4. The Algorithm

In this Section, an algorithm is presented that can be applied to solve any variational

inequality problem in standard form (see (24)), that is: determine X∗ ∈ K, satisfying:

〈F (X∗)T , X − X∗〉 ≥ 0, ∀X ∈ K. (28)

The algorithm is guaranteed to converge provided that the function F (X) that enters the

variational inequality is monotone and Lipschitz continuous (and that a solution exists). The

algorithm is the modified projection method of Korpelevich (1977) and it has been applied

to solve a plethora of network equilibrium problems (see Nagurney and Dong (2002)).

We first provide a definition of a Lipschitz continuous function:

Definition 2: Lipschitz Continuity

A function F (X) is Lipschitz continuous, if there exists a constant L > 0 such that:

‖F (X ′) − F (X ′′)‖ ≤ L‖X ′ − X ′′‖, ∀X ′, X ′′ ∈ K, with L > 0. (29)

The statement of the modified projection method is as follows, where T denotes an

iteration counter:

Modified Projection Method

Step 0: Initialization

Set X0 ∈ K. Let T = 1 and let a be a scalar such that 0 < a ≤ 1
L
, where L is the Lipschitz

continuity constant (cf. (29)).

Step 1: Computation

Compute X̄T by solving the variational inequality subproblem:

〈X̄T + aF (XT −1)T − XT −1, X − X̄T 〉 ≥ 0, ∀X ∈ K. (30)
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Step 2: Adaptation

Compute XT by solving the variational inequality subproblem:

〈XT + aF (X̄T )T − XT −1, X − XT 〉 ≥ 0, ∀X ∈ K. (31)

Step 3: Convergence Verification

If max |XT
l − XT −1

l | ≤ ε, for all l, with ε > 0, a prespecified tolerance, then stop; else, set

T =: T + 1, and go to Step 1.

The following theorem states the convergence result for the modified projection method

and is due to Korpelevich (1977).

Theorem 5: Convergence

Assume that the function that enters the variational inequality (21) (or (24)) has at least

one solution and is monotone, that is,

〈(F (X ′) − F (X ′′))T , X ′ − X ′′〉 ≥ 0, ∀X ′, X ′′ ∈ K

and Lipschitz continuous. Then the modified projection method described above converges to

the solution of the variational inequality (21) or (24).

The realization of the modified projection method in the context of the electric power

supply chain network model takes on a very elegant form for computational purposes. In

particular, the feasible set K is a Cartesian product, consisting of only nonnegativity con-

straints on the variables which allows for the network structure to be exploited. Hence, the

induced quadratic programming problems in (30) and (31) can be solved explicitly and in

closed form using explicit formulae for the power flows between the tiers of the supply chain

network, the demand market prices, and the optimal Lagrange multipliers.

Conditions for F to be monotone and Lipschitz continuous can be obtained from the

results in Nagurney, Dong, and Zhang (2002).
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Figure 2: Electric Power Supply Chain Network for the Numerical Examples

5. Numerical Examples

In this Section, we apply the modified projection method to several numerical examples.

The modified projection method was implemented in FORTRAN and the computer system

used was a Sun system located at the University of Massachusetts at Amherst.

The convergence criterion utilized was that the absolute value of the flows (Q1, Q2) and

the prices (γ, ρ3)between two successive iterations differed by no more than 10−4. For the

examples, a was set to .05 in the algorithm, except where noted otherwise. The numerical

examples had the network structure depicted in Figure 2 and consisted of three power gen-

erators, two power suppliers, and three demand markets, with a single transmission service

provider available to each power supplier.

The modified projection method was initialized by setting all variables equal to zero.
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Example 1

The power generating cost functions for the power generators were given by:

f1(q) = 2.5q2
1 + q1q2 + 2q1, f2(q) = 2.5q2

2 + q1q2 + 2q2, f3(q) = .5q2
3 + .5q1q3 + 2q3.

The transaction cost functions faced by the power generators and associated with trans-

acting with the power suppliers were given by:

c11(Q
1) = .5q2

11+3.5q11, c12(Q
1) = .5q2

12+3.5q12, c21(Q
1) = .5q2

21+3.5q21, c22(Q
1) = .5q2

22+3.5q22,

c31(Q
1) = .5q2

31 + 2q31, c32(Q
1) = .5q2

32 + 2q32.

The operating costs of the power generators, in turn, were given by:

c1(Q
1, Q2) = .5(

2∑

i=1

qi1)
2, c2(Q

1, Q2) = .5(
2∑

i=1

qi2)
2.

The demand functions at the demand markets were:

d1(ρ3) = −2ρ31 − 1.5ρ32 + 1100, d2(ρ3) = −2ρ32 − 1.5ρ31 + 1100,

d3(ρ3) = −2ρ33 − 1.5ρ31 + 1200,

and the transaction costs between the power suppliers and the consumers at the demand

markets were given by:

ĉ1
11(Q

2) = q1
11 + 5, ĉ1

12(Q
2) = q1

12 + 5, ĉ1
13(Q

2) = q1
13 + 5,

ĉ1
21(Q

2) = q1
21 + 5, ĉ1

22(Q
2) = q1

22 + 5, ĉ1
23(Q

2) = q1
23 + 5.

All other transaction costs were assumed to be equal to zero.

The modified projection method converged in 232 iterations and yielded the following

equilibrium pattern:

q∗11 = q∗12 = q∗21 = q∗22 = 14.2762; q∗31 = q∗32 = 57.6051,
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q1∗
11 = q1∗

12 = q1∗
21 = q1∗

22 = 20.3861; q1∗
31 = q1∗

32 = 45.3861.

The vector γ∗ had components:

γ∗
1 = γ∗

2 = 277.2487,

and the demand prices at the demand markets were:

ρ∗
31 = ρ∗

32 = 302.6367; ρ∗
33 = 327.6367.

It is easy to verify that the optimality/equilibrium conditions were satisfied with good

accuracy.

Example 2

We then constructed the following variant of Example 1. We kept the data identical to that

in Example 1 except that we that we changed the first demand function so that:

d1(ρ3) = −2ρ33 − 1.5ρ31 + 1500.

The modified projection method converged in 398 iterations, yielding the following new

equilibrium pattern:

q∗11 = q∗12 = q∗21 = q∗22 = 19.5994; q∗31 = q∗32 = 78.8967,

q1∗
11 = q1∗

21 = 118.0985,

and all other q1∗
sks= 0.0000. The vector γ∗ had components:

γ∗
1 = γ∗

2 = 378.3891,

and the demand prices at the demand markets were:

ρ∗
31 = 501.4873, ρ∗

32 = 173.8850, ρ∗
33 = 223.8850.

It is easy to verify that the optimality/equilibrium conditions were satisfied with good

accuracy.
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Note that with the increased demand at demand market 1 as evidenced through the new

demand function, the demand price at that market increased. This was the only demand

market that had positive electric power flowing into it; the other two demand markets had

zero electric power consumed.

Example 3

We then modified Example 2 as follows: The data were identical to that in Example 2

except that we changed the coefficient preceding the first term in the power generating

function associated with the first power generator so that rather than having the term 2.5q2
1

in f1(q) there was now the term 5q2
1. We also changed a to .03 since the modified projection

method did not converge with a = .05. Note that a must lie in a certain range, which is

data-dependent, for convergence.

The modified projection method converged in 633 iterations, yielding the following new

equilibrium pattern:

q∗11 = q∗12 = 10.3716, q∗21 = q∗22 = 21.8956, q∗31 = q∗32 = 84.2407.

q1∗
11 = q1∗

21 = 116.5115,

with all other q1∗
sks= 0.0000.

The vector γ∗ had components:

γ∗
1 = γ∗

2 = 383.6027,

and the demand prices at the demand markets were:

ρ∗
31 = 505.1135, ρ∗

32 = 171.1657, ρ∗
33 = 221.1657.

As expected, since the power generating cost function associated with the first power

generator increased, the power that he generated decreased; the power generated by the two

other power generators, on the other hand, increased. Again, as in Example 2, there was no

demand (at the computed equilibrium prices) at the second and third demand markets.
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Example 4

The fourth, and final example, was constructed as follows from Example 3. The data were all

as in Example 3, but we now assumed that the demand functions were separable; hence, from

each of the three demand market functions for electric power in Example 3, we eliminated

the term not corresponding to the price at the specific market. In other words, the demand

at demand market 1 only depended upon the price at demand market 1; the demand at

demand market 2 only depended upon the demand at demand market 2; and the same held

for the third demand market.

The modified projection method now converged in 325 iterations and yielded the following

equilibrium electric power flow and price pattern:

q∗11 = q∗12 = 14.1801, q∗21 = q∗22 = 29.9358, q∗31 = q∗32 = 114.9917,

q1∗
11 = q1∗

21 = 111.3682, q1∗
12 = q1∗

22 = 11.3683, q1∗
13 = q1∗

23 = 36.3682.

The vector γ∗ had components:

γ∗
1 = γ∗

2 = 522.2619,

whereas the equilibrium demand prices at the demand markets were now:

ρ∗
31 = 638.6319, ρ∗

32 = 538.6319, ρ∗
33 = 563.6319.

Observe that since now there were no cross-terms in the demand functions, the electric

power flows transacted between the suppliers and the demand markets were all positive. Of

course, the incurred demands at both the second and third demand markets also increased.

In addition, all the equilibrium flows from the power generators to the suppliers increased

since there was increased demands at all the demand markets for electric power.

These numerical examples, although stylized, demonstrate the types of simulations that

can be carried out. Indeed, one can easily investigate the effects on the equilibrium power

flows and prices of such changes as: changes to the demand functions, to the power generating

cost functions, as well as to the other cost functions. In addition, one can easily add or

27



remove various decision-makers by changing the supply chain network structure (with the

corresponding addition/removal of appropriate nodes and links) to investigate the effects of

such market structure changes.

6. Conclusions and Future Research

In this paper, we proposed a theoretically rigorous framework for the modeling, qualita-

tive analysis, and computation of solutions to electric power market flows and prices in an

equilibrium context based on a supply chain network approach. The theoretical analysis was

based on finite-dimensional variational inequality theory.

We modeled the behavior of the decision-makers, derived the optimality conditions as well

as the governing equilibrium conditions which reflect competition among decision-makers (in

a game-theoretic framework) at the same tier of nodes but cooperation between tiers of nodes.

The framework allows for the handling of as many power generators, power suppliers, trans-

mission service providers, and demand markets, as mandated by the specific application.

Moreover, the underlying functions associated with electric power generation, transmission,

as well as consumption can be nonlinear and non-separable. The formulation of the equi-

librium conditions was shown to be equivalent to a finite-dimensional variational inequality

problem. The variational inequality problem was then utilized to obtain qualitative proper-

ties of the equilibrium flow and price pattern as well as to propose a computational procedure

for the numerical determination of the equilibrium electric power prices and flows.

In addition, we illustrated both the model and computational procedure through several

numerical examples in which the electric power flows as well as the prices at equilibrium

were computed.

As mentioned in the Introduction, there are many ways in which this basic foundational

framework can be extended, notably, through the incorporation of multicriteria decision-

making associated with the decision-makers (with, for example, such criteria as environmen-

tal impacts, reliability, risk, etc.), the introduction of stochastic components, as well as the

introduction of dynamics to study the disequilibrium electric power flows and prices.
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