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Abstract: In this paper, we demonstrate how to capture the robustness of a transportation

network in the case of degradable links represented by decreasing capacities. In particular,

with the use of Bureau of Public Road user link travel cost functions, we propose two

relative total cost indices to assess transportation network robustness in the case of travel

behavior associated with either user-optimization or system-optimization. We derive upper

bounds of the relative total cost index for transportation networks with special structure

and congestion parameters under the user-optimal flow pattern. We also derive an upper

bound for the relative total cost index under the system-optimal flow pattern for general

transportation networks. Numerical examples are presented for illustration purposes.

This research is the first to quantify transportation network robustness in the presence

of degradable links and alternative travel behavior. This research has implication for trans-

portation planning and management, for vulnerability analysis, as well as for security issues.

Key words: transportation networks, urban transportation, freight networks, network ro-

bustness, relative total cost index, system-optimization, user-optimization, Bureau of Public

Roads link cost functions, degradable links, vulnerability analysis
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1. Introduction

In this paper, we propose a novel index for evaluating the robustness of a transportation

network based on the relative total cost of the transportation network in the case of link

degradations captured through a uniform link capacity ratio. The relative total cost index

can be evaluated at either user-optimal (U-O) traffic flows or system-optimal (S-O) traffic

flows. In particular, we consider congested urban transportation networks, which can also

include freight traffic in terms of trucks, in which the user link cost functions are of the

general Bureau of Public Roads (1964) (BPR) form, which is widely used in practice. Such a

functional form contains the practical capacity of a link implicitly. The new index enables the

quantitative assessment of the changes in the relative total cost of a transportation network,

in the case of alternative travel behavior, when the link practical capacities are decreased.

The degradation of transportation networks due to poor maintenance, natural disasters,

deterioration over time, as well as unforeseen attacks now lead to estimates of $94 billion in

the United States in terms of needed repairs for roads alone (cf. American Society of Civil

Engineers, 2005). Poor road conditions in the United States cost US motorists $54 billion in

repairs and operating costs annually. Moreover, due to the constant breakdowns of the US

transportation networks, American commuters now spend 3.5 billion hours a year stuck in

traffic, which translates to a cost of $63.2 billion a year to the economy (cf. American Society

of Civil Engineers, 2005). Even worse, over one-quarter of the nation’s 590,750 bridges were

rated structurally deficient or functionally obsolete (National Bridge Inventory, 2005). At

the same time, a recent report from the Federal Highway Administration (2006) states that

the United States is experiencing a freight capacity crisis that threatens the strength and

productivity of the US economy. According to the American Road & Transportation Builders

Association (see Jeanneret, 2006), nearly 75% of US freight is carried in the US on highways

and bottlenecks are causing truckers 243 million hours of delay annually with an estimated

associated cost of $8 billion. It is noted that the US government is facing a $1.6 trillion

deficit over the five years in terms of infrastructure repairing and reconstruction according

to a recent estimate (Environment News Service, 2008).

Hence, the construction of suitable transportation network indices that can assist in

the evaluation of transportation network robustness is timely and of both theoretical and

practical importance. In the era of an ailing U.S. infrastructure, we believe that to study

transportation network robustness by analyzing capacity degradation is especially relevant

in order to prevent such disasters as the Minneapolis Bridge Collapse (cf. Wald and Chang,

2007).
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Although the rigorous modeling and analysis of transportation networks and the under-

lying behavior of travelers dates to the seminal book of Beckmann, McGuire, and Winsten

(1956), the research into the robustness of transportation networks in the presence of dis-

ruptions is relatively recent. To the best of our knowledge, the papers of Sakakibara et al.

(2004) and of Scott et al. (2006) stand as the first attempts to address the robustness of

transportation networks. Sakakibara et al. (2004) proposed a topological index and con-

sidered a transportation network to be robust if it is “dispersed” in terms of the number

of links connected to each node. Scott et al. (2006), on the other hand, examined trans-

portation network robustness by computing the increase in the total network cost evaluated

at the U-O flow pattern after the removal of each link. In particular, Scott et al. (2006)

sought to identify the critical network links. We believe that, as suggested by the definition

of robustness (see the discussion that follows in this section), it is also relevant to study

transportation network robustness from the point of view of the network performance drop

due to the partial degradation of links caused by disruptions or network infrastructure de-

teriorations. Furthermore, since system-optimization and user-optimization are the central

concepts in the modeling and analysis of transportation networks, it is imperative to study

network robustness from both perspectives. Therefore, the approach proposed in this paper

is unique since it allows for alternative travel behaviors as well as degradations in the network

links, rather than the explicit removal of the links (or nodes).

We note that Nagurney and Qiang (2007a) (see also the references therein) proposed

earlier a network efficiency measure that allows for the importance identification and rank-

ing of network components and their approach is not limited to the removal of a single

link but, rather, the network efficiency measure can handle the impact of the removal of

subsets of network components, whether nodes or links, or combinations thereof. Further-

more, based on the network efficiency measure of Nagurney and Qiang (2007a), the authors

proposed a transportation network robustness measure to study the network efficiency loss

when facing link capacity degradations under the user-optimization behavior (Nagurney and

Qiang, 2007b). In this paper, however, we extend the above research to study different user

behaviors and from the point of view of total network cost.

In addition, in this paper, our goal is to study transportation robustness with capacity

degradation under different user behaviors, which is different from the goal of research con-

cerning the “price of anarchy” (cf. Roughgarden, 2005, and the references therein). The

price of anarchy is defined as the ratio of the total cost evaluated at the U-O solution and

the total cost evaluated at the S-O solution and the emphasis has been principally in the

context of Internet-based applications. Upper bounds on the price of anarchy have been
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derived for various user link cost functional forms; see Roughgarden (2005) for separable

user link cost functions and Perakis (2007) for asymmetric ones. As discussed above, we are

concerned with transportation network robustness, and, hence, we focus on the widely used

in practice BPR link cost functional form.

System robustness has been studied in both computer science and in engineering. Ac-

cording to the Institute of Electrical and Electronic Engineers (1990), robustness can be

defined as “the degree to which a system or component can function correctly in the pres-

ence of invalid inputs or stressful environmental conditions.” Gribble (2001) defined system

robustness as “the ability of a system to continue to operate correctly across a wide range

of operational conditions, and to fail gracefully outside of that range.” Schillo et al. (2001)

argued that robustness has to be studied “in relation to some definition of performance mea-

sure.” According to Holmgren (2007), “Robustness signifies that the system will retain its

system structure (function) intact (remain unchanged or nearly unchanged) when exposed

to perturbations.” The physics literature on complex networks has also investigated issues of

robustness but it has focused principally on the specific network topologies and the explicit

elimination of nodes in the network (see Albert, Jeong, and Barabási, 2000).

This paper is organized as follows. In Section 2, we briefly recall the well-known U-O

and S-O transportation network models corresponding, respectively, to Wardrop’s first and

second principles of travel behavior (cf. Wardrop, 1952; see also, e.g., Beckmann, McGuire

and Winsten, 1956, Dafermos and Sparrow, 1969, Smith, 1979, Dafermos, 1980, Sheffi, 1985,

and Nagurney, 2000). Recall (cf. Dafermos and Sparrow, 1969) that a flow pattern is said to

be U-O if all used paths, that is, those with positive flow, connecting each origin/destination

pair of nodes in a network have user travel costs that are equal and minimal. A flow pattern

is said to be S-O if it minimizes the total cost in a network, in which case, the Kuhn-Tucker

optimality conditions (cf. Bazaraa, Sherali, and Shetty, 1993) coincide with the statement

that all used paths connecting each origin/destination pair of nodes have marginal total costs

that are equal and minimal. In Section 2, we propose the relative total cost index that can

be used to assess transportation network robustness and which permits either U-O or S-O

travel behavior. For completeness, we also present the relationship between the ratio of the

proposed indices and the price of anarchy.

In Section 3, we derive some theoretical results. In particular, we first prove that for

certain networks of special structure, with links characterized by user link cost functions

of BPR form, and with identical free flow travel terms, the relative total cost index is

identical under the U-O and the S-O flow patterns. We then show that, for the same

network topologies and with user link cost functions also of the BPR form, but linear, that
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the relative total cost index under the U-O flow pattern can be obtained via an explicit

formula. In addition, we derive an upper bound for the relative total cost index under

the U-O flow pattern. Finally, we derive an upper bound for the relative total cost index

for transportation network robustness, under the S-O flow pattern, for any transportation

network in the case of user link cost functions of BPR form.

In Section 4, we provide several numerical examples, including the Sioux-Falls network

example, and we relate them to the derived theoretical results, where applicable. In Section

5, we present a summary of the results along with our conclusions.
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2. The Relative Total Cost Index for Assessing Transportation Network Robust-

ness Under Distinct Travel Behaviors

In this Section, we present the relative total cost index for assessing transportation net-

work robustness under distinct travel behaviors and in the presence of degradable network

links. The user link cost functions are assumed to be of the BPR functional form in which

the practical link capacity is incorporated.

We consider a network G with the set of directed links L with nL elements and the set

of origin/destination (O/D) pairs W with nW elements. We denote the set of acyclic paths

joining O/D pair w by Pw. The set of (acyclic) paths for all O/D pairs is denoted by P and

there are nP paths in the network. Links are denoted by a, b, etc; paths by p, q, etc., and

O/D pairs by w1, w2, etc.

We assume that the demand dw is known for all O/D pairs w ∈ W . We denote the

nonnegative flow on path p by xp and the flow on link a by fa and we group the path flows

into the vector x ∈ RnP
+ and the link flows into the vector f ∈ RnL

+ .

The following conservation of flow equations must hold:

∑

p∈Pw

xp = dw, ∀w ∈ W, (1)

which means that the sum of path flows on paths connecting each O/D pair must be equal

to the demand for that O/D pair.

The link flows are related to the path flows, in turn, through the following conservation

of flow equations:

fa =
∑

p∈P

xpδap, ∀a ∈ L, (2)

where δap = 1, if link a is contained in path p, and δap = 0, otherwise. Hence, the flow on a

link is equal to the sum of the flows on paths that contain that link.

The user (travel) cost on a link a is denoted by ca where

ca = ca(fa), ∀a ∈ L. (3)

We assume that the link cost functions are continuous and monotonically increasing.

The user (travel) cost on a path p is denoted by Cp. The user costs on paths are related

to user costs on links through the following equations:

Cp =
∑

a∈L

caδap, ∀p ∈ P, (4)

6



that is, the user cost on a path is equal to the sum of user costs on links that make up the

path. In engineering practice (see Sheffi, 1985), the travel time on a link is used as a proxy

for the travel cost.

In view of (1) – (4), we may write

Cp = Cp(x), ∀p ∈ P. (5)

In this paper, we will consider user link cost functions known as BPR functions, given by

ca(fa) = t0a[1 + k(
fa

ua

)β], ∀a ∈ L, (6)

where fa is the flow on link a; ua is the “practical” capacity on link a, which also has the

interpretation of the level-of-service flow rate; t0a is the free-flow travel time or cost on link

a; k and β are the model parameters and both take on positive values (Bureau of Public

Roads, 1964, and Sheffi, 1985). Often in applications k = .15 and β = 4.

The total cost on a link a, denoted by ĉa, is given by:

ĉa = ĉa(fa) = ca(fa)× fa = t0a[1 + k(
fa

ua

)β]× fa, ∀a ∈ L. (7)

The total cost on a network, denoted by TC, is, hence, given by:

TC =
∑

a∈L

ĉa(fa), (8)

where the link flows f must lie in the feasible setK: K ≡ {f ∈ RnL
+ |x ∈ RnP

+ satisfying (1), (2)}.

2.1 The User-Optimal Traffic Flow Pattern

A U-O solution is defined as follows. A path flow pattern x∗ ∈ K1, where K1 ≡ {x|x ∈
RnP

+ and (1) holds}, is said to be a U-O traffic flow pattern, if the following conditions hold

for each O/D pair w ∈ W and each path p ∈ Pw:

Cp(x
∗)

{
= λw, if x∗p > 0,
≥ λw, if x∗p = 0.

(9)

The interpretation of conditions (9) is that all used paths connecting an O/D pair w have

equal and minimal user travel costs (with the minimal path costs equal to the equilibrium

travel disutility, denoted by λw). These conditions are also referred to as the user-optimized

conditions (cf. Dafermos and Sparrow, 1969). In this classical transportation network equi-

librium problem, in which the cost on each link (cf. (3)) depends solely on the flow on that
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link, the U-O (equivalently, transportation network equilibrium) conditions (9) can be refor-

mulated as the solution to an appropriately constructed optimization problem, as established

in Beckmann, McGuire, and Winsten (1956). Indeed, the equilibrium link flow (and path

flow pattern) can be obtained via the solution of the following optimization problem:

Minimizef∈K
∑

a∈L

∫ fa

0
ca(y)dy. (10)

For additional background on this model, along with its impacts, see Boyce, Mahmassani,

and Nagurney (2005). In particular, we know that if the user link cost functions are strictly

monotone (cf. Nagurney, 1999) then the U-O link flow pattern is unique.

2.2 The System-Optimal Traffic Flow Pattern

We now turn to the system-optimization problem in which a central controller seeks to

minimize the total cost in a transportation network system expressed as (see (8)):

Minimizef∈K
∑

a∈L

ĉa(fa). (11)

Under the assumption of increasing user link cost functions, the optimality conditions,

which correspond to the Kuhn-Tucker conditions (see Bazaraa, Sherali, and Shetty, 1993),

are: for each path p ∈ Pw, and every O/D pair w, x is a S-O path flow pattern if x satisfies:

Ĉ ′
p(x)

{
= µw, if xp > 0,
≥ µw, if xp = 0,

(12)

where Ĉ ′
p(x) denotes the marginal of the total cost on path p, given by:

Ĉ ′
p(x) =

∑

a∈L

∂ĉa(fa)

∂fa

δap, ∀p ∈ P. (13)

Note that in the case of system-optimization, all used paths connecting an O/D pair have

equal and minimal marginal total costs.

2.3 Relative Total Cost Index for Assessing the Robustness of a Transportation

Network

We now propose an index based on the relative total cost that assesses the robustness of

a transportation network based on the two behavioral solution concepts, namely, the total

cost evaluated under the user-optimizing flow pattern, denoted by TCU−O, and the system-

optimizing flow pattern, denoted-by TCS−O, respectively. In particular, TCU−O denotes the
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total cost on the network as given by expression (8), where the vector f is the solution to the

user-optimizing (or transportation network equilibrium) conditions (9). On the other hand,

TCS−O is the total cost on the network as given also by expression (8), but now evaluated

at the flow pattern given by the solution to the S-O problem (11). We believe that the total

cost is an appropriate measure since it represents the total cost to society associated with

travel on transportation networks. Moreover, as the links degrade and the practical capacity

of links decreases the total cost is expected to increase and, hence, the relative total cost of

a transportation network reflects the robustness of the transportation network.

The relative total cost index for a transportation network G with the vector of demands

d, the vector of user link cost functions c, and the vector of link capacities u is defined as the

relative total cost increase under a given uniform capacity retention ratio γ (γ ∈ (0, 1]) so

that the new capacities (cf. (7)) are given by γu. Let c denote the vector of BPR user link

cost functions and let d denote the vector of O/D pair travel demands. The mathematical

definition of the index under the user-optimizing flow pattern, denoted by Iγ
U−O, is then:

Iγ
U−O = IU−O(G, c, d, γ, u) =

TCγ
U−O − TCU−O

TCU−O

× 100%, (14a)

where TCU−O and TCγ
U−O are the total network costs evaluated under the user-optimizing

flow pattern with the original capacities and the remaining capacities (i.e., γu), respectively.

The mathematical definition of the index under the system-optimizing flow pattern is:

Iγ
S−O = IS−O(G, c, d, γ, u) =

TCγ
S−O − TCS−O

TCS−O

× 100%, (14b)

where TCS−O and TCγ
S−O are the total network costs evaluated at the system-optimizing

flow pattern with the original capacities and the remaining capacities (i.e., γu), respectively.

For example, if γ = .9 this means that the total user link cost functions given by (7) now

have the link capacities given by .9ua for a ∈ L; if γ = .7 then the link capacities become

.7ua for all links a ∈ L, and so on.

From the above definition(s), a transportation network, under a given capacity reten-

tion/deterioration ratio γ (and either S-O or U-O travel behavior) is considered to be robust

if the index Iγ is low. This means that the relative total cost does not change much and,

hence, the transportation network may be viewed as being more robust than if the relative

total cost is small.
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Remark

It is worth noting the relationship between the price of anarchy (cf. Roughgarden, 2005,

and the references therein), which is denoted by ρ, and is defined as:

ρ =
TCU−O

TCS−O

(15)

and the ratio of the two proposed robustness indices. Observe that ρ captures the relation-

ship between total costs across distinct behavioral principles whereas the indices (14a) and

(14b) are focused on the degradation of network performance within U-O or S-O behavior.

Nevertheless, we have the following relationship between the ratio of the two indices and the

price of anarchy:
Iγ
S−O

Iγ
U−O

=
[TCγ

S−O − TCS−O]

[TCγ
U−O − TCU−O]

× ρ. (16)

The term preceding the price of anarchy in (16) may be less than 1, greater than 1, or

equal to 1, depending upon the network and data.

10



3. Theoretical Results

In this Section, we derive some theoretical results. In particular, we first prove that

for certain networks of special structure, and with links characterized by user link cost

functions of BPR form, and with identical free flow travel terms, the relative total cost index

is identical under the U-O and the S-O flow patterns. We then show that for the same

network topologies and with user link cost functions also of BPR form, but linear, that the

relative total cost index under the U-O flow pattern can be obtained via an explicit formula.

In addition, we derive an upper bound for the relative total cost index under the U-O flow

pattern. Finally, we derive an upper bound for the relative total cost index for transportation

network robustness, under the S-O flow pattern, for any transportation network in the case

of user link cost functions of BPR form.

¹¸

º·
1

¹¸

º·
2

R

µ
...

a
b

c

n

Figure 1: Networks for Theorems 1 and 2

Theorem 1

Consider a network consisting of two nodes 1 and 2 as in Fig. 1, which are connected by n

parallel links. If the free-flow term, t0a, ∀a ∈ L, is the same for all links a ∈ L in the BPR

link cost function (cf. (6)), the S-O flow pattern coincides with the U-O flow pattern and,

therefore, IU−O = IS−O.

Proof: Since the free-flow term t0a, ∀a ∈ L, is the same for all the links, let us denote it as

t0. First, we show that any U-O flow pattern is also a S-O flow pattern. The reverse can be

established in a similar manner. We distinguish between two cases.

Case 1: not all links are used

If not all links are used then we know that there is at least one link with zero flow.

Select any two links a, b ∈ L such that f ∗a > 0 and f ∗b = 0 under the U-O condition. We

must have that ca(f
∗
a ) = λw ≤ cb(f

∗
b ), where λw is the equilibrium travel disutility for the
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O/D pair w = (1, 2) (cf. (9)). Hence, we have the following relationships:

t0a[1 + (
f ∗a
ua

)β] ≤ t0b [1 + (
f ∗b
ub

)β] ⇐⇒ t0[1 + (
f ∗a
ua

)β] ≤ t0[1 + (
f ∗b
ub

)β] ⇐⇒ (
f ∗a
ua

)β ≤ (
f ∗b
ub

)β

⇐⇒ t0 + t0(β + 1)(
f ∗a
ua

)β ≤ t0 + t0(β + 1)(
f ∗b
ub

)β ⇐⇒ t0a + t0a(β + 1)(
f ∗a
ua

)β ≤ t0b + t0b(β + 1)(
f ∗b
ub

)β

(17)

where the last inequality is exactly the S-O condition (cf. (12)). Therefore, f ∗a and f ∗b are

also the S-O link flow patterns. Since links a and b were chosen arbitrarily, we can conclude

that a U-O flow pattern is also a S-O flow pattern.

Case 2: all links are used

If all the links are used, under the U-O condition, we must have that

λw = t0a[1 + (
f ∗a
ua

)β] = t0b [1 + (
f ∗b
ub

)β] = · · · = t0n[1 + (
f ∗n
un

)β]

⇐⇒ λw = t0[1 + (
f ∗a
ua

)β] = t0[1 + (
f ∗b
ub

)β] = · · · = t0[1 + (
f ∗n
un

)β]

⇐⇒ (
f ∗a
ua

)β = (
f ∗b
ub

)β = · · · = (
f ∗n
un

)β

⇐⇒ t0 + t0(β + 1)(
f ∗a
ua

)β = t0 + t0(β + 1)(
f ∗b
ub

)β = · · · = t0 + t0(β + 1)(
f ∗n
un

)β

⇐⇒ t0a + t0a(β + 1)(
f ∗a
ua

)β = t0b + t0b(β + 1)(
f ∗b
ub

)β = · · · = t0n + t0n(β + 1)(
f ∗n
un

)β (18)

where the last line of (18) shows that f ∗a , f ∗b , · · ·, f ∗n are also S-O link flows (cf. (12)).

By combining the results of Case 1 and Case 2 and from the definitions of TCU−O, TCγ
U−O,

TCS−O, and TCγ
S−O, we then have that

TCU−O = TCS−O and TCγ
U−O = TCγ

S−O. (19)

From the definitions of Iγ
U−O (cf. (14a)) and Iγ

S−O (cf. (14b)), we conclude that Iγ
U−O =

Iγ
S−O, which completes the proof. 2

Theorem 2

Consider a network consisting of two nodes 1 and 2 as in Fig. 1, which are connected by

n parallel links. Assume that the associated BPR link cost functions (cf. (6)) have β = 1.

Furthermore, assume that there are positive flows on all the links at both the original and

12



the partially degraded capacity levels given, respectively, by u and γu. Then the relative total

cost index under the U-O flow pattern is given by the explicit formula:

Iγ
U−O = (

γU + kdw

γU + kγdw

− 1)× 100%, (20)

where dw is the given demand for O/D pair w = (1, 2) and U ≡ ua +ub + · · ·+un. Moreover,

the network robustness Iγ
U−O is bounded from above by 1−γ

γ
× 100%.

Proof: Clearly, since there is only a single O/D pair, we have that:

TCγ
U−O

TCU−O

=
dw × λγ

w

dw × λw

=
λγ

w

λw

, (21)

where λγ
w denotes the incurred equilibrium travel disutility for travelers between O/D pair

w under the capacity retention ratio γ.

Due to the special structure of the network as well as the assumption that there are

positive flows on all the links before and after the capacity reduction, by referring to the

transportation network equilibrium conditions (9), we can write λw and λγ
w explicitly as

follows:

λw = t0a(1 + k
f ∗a
ua

) = t0b(1 + k
f ∗b
ub

) = . . . = t0n(1 + k
f ∗n
un

), (22)

where f ∗a , f ∗b . . . f ∗n are the equilibrium link flows under the link capacities: ua, ub,. . . ,un,

respectively, and

λγ
w = t0a(1 + k

f ∗∗a

γua

) = t0b(1 + k
f ∗∗b

γub

) = . . . = t0n(1 + k
f ∗∗n

γun

), (23)

where f ∗∗a , f ∗∗b ,. . . ,f ∗∗n are the equilibrium link flows under the link capacities: γua, γub,. . . ,γun,

respectively.

Hence, we have that

TCγ
U−O

TCU−O

=
λγ

w

λw

=
t0a(1 + k f∗∗a

γua
)

t0a(1 + k f∗a
ua

)

=
t0b(1 + k

f∗∗b

γub
)

t0b(1 + k
f∗

b

ub
)

= · · · = t0n(1 + k f∗∗n

γun
)

t0n(1 + k f∗n
un

)
, (24)

which yields

TCγ
U−O

TCU−O

=
(1 + k f∗∗a

γua
) + (1 + k

f∗∗b

γub
) + · · ·+ (1 + k f∗∗n

γun
)

(1 + k f∗a
ua

) + (1 + k
f∗

b

ub
) + · · ·+ (1 + k f∗n

un
)

. (25)

After some simplification and from the fact that f ∗a +f ∗b +. . .+f ∗n = f ∗∗a +f ∗∗b +. . .+f ∗∗n = dw,

we obtain
TCγ

U−O

TCU−O

=
γU + kdw

γU + kγdw

. (26a)
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From the definition of Iγ
U−O, we have that

Iγ
U−O = (

TCγ
U−O

TCU−O

− 1)× 100% = (
γU + kdw

γU + kγdw

− 1)× 100%, (26b)

which is exactly the form of (20).

To show the upper bound of Iγ
U−O, we can rearrange (26b) to get the following form:

Iγ
U−O = [

γ + k dw

U

γ(1 + k dw

U
)
− 1]× 100%. (27)

Since γ ∈ (0, 1], we have the following:

Iγ
U−O ≤ [

1 + k dw

U

γ(1 + k dw

U
)
− 1]× 100% =

1− γ

γ
× 100%, (28)

which completes the proof.2

Now we relax the assumptions in Theorem 2 in that:

1. we do not require the network to be fully loaded before and after the capacity reduction;

2. we do not assume that β = 1; and

3. we do not assume that the network has any special structure.

We now derive a general upper bound for Iγ
S−O in the following theorem under the above

relaxed assumptions.

Theorem 3

The upper bound for Iγ
S−O for a transportation network with BPR link cost functions is

1−γβ

γβ × 100%.

Proof: From the definition of TCS−O, we have that

TCS−O =
∑

a∈L

t0a[1 + k(
f̂a

ua

)β]× f̂a, (29)

where f̂a, ∀a ∈ L, is the S-O link flow pattern under the original link capacities u.

Since γ ∈ (0, 1] and we assume that t0a > 0, ∀a ∈ L,

1

γβ
TCS−O ≥

∑

a∈L

t0a[1 + k(
f̂a

γua

)β]× f̂a. (30)

14



Furthermore, denote the S-O link flow pattern under the capacity retention ratio γ as

f̃a, ∀a ∈ L. Then, from the definition of TCγ
S−O, we obtain

∑

a∈L

t0a[1 + k(
f̂a

γua

)β]× f̂a ≥
∑

a∈L

t0a[1 + k(
f̃a

γua

)β]× f̃a = TCγ
S−O. (31)

By combining (30) and (31), we obtain

1

γβ
TCS−O ≥ TCγ

S−O ⇐⇒
TCγ

S−O

TCS−O

≤ 1

γβ
. (32)

Hence,

Iγ
S−O ≤

1− γβ

γβ
× 100%. (33)

We have, thus, established the Theorem. 2
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4. Numerical Examples

In this Section we present several numerical examples for which the relative total cost

index is computed in the case of alternative travel behaviors.

We utilized the projection method (cf. Dafermos, 1980, and Nagurney, 1999) with the

embedded Dafermos and Sparrow (1969) equilibration algorithm (see also, e.g., Nagurney,

1984) to compute the U-O and S-O solutions, respectively. Then, based on the computed

respective solutions, we determined the network total cost according to (8) and the relative

total cost indices under the user-optimizing and system-optimizing flow patterns according

to (14a) and (14b). The computational schemes were implemented in MATLAB. In the

case of the large-scale Example 3, we also implemented the column generation algorithm (cf.

Leventhal, Nemhauser, and Trotter, 1973) to generate paths, as needed.

Example 1

Consider the following simple transportation network as shown in Figure 2. There are two

O/D pairs, namely, w1=(1,3) and w2=(1,4). The demands for the two O/D pairs are:

dw1 = 10 and dw2=20. The paths connecting O/D pair w1 are: p1 = (a, b) and p2 = d. The

paths connecting O/D pair w2 are: p3 = (a, c) and p4 = e. The capacities for links a, b, c, d,

and e are: 100, 50, 60, 10, and 20, respectively. Let t0 and k (cf. (6)) be identical for all the

links and equal to 10 and 1, respectively. The BPR link cost functions for the links in Fig.

2 are, hence, given by:

ca(fa) = 10[1 + (
fa

100
)β], cb(fb) = 10[1 + (

fb

50
)β],

cc(fc) = 10[1 + (
fc

60
)β], cd(fd) = 10[1 + (

fd

10
)β], ce(fe) = 10[1 + (

fe

20
)β].

n1

n2

n3 n4

?

¡
¡

¡
¡¡ª

@
@

@
@@R

??

a

b c

d e

Figure 2: Example 1 Network

Fig. 3 presents the relative total cost index for Example 1 under the U-O flow pattern

for β values equal to 1, 2, 3, and 4, respectively. Similarly, Fig. 4 presents the index for

Example 1 under the S-O flow pattern for β values equal to 1, 2, 3, and 4, respectively.
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Figure 3: Relative Total Cost Index Under the U-O Flow Pattern for Example 1
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Figure 4: Relative Total Cost Index Under the S-O Flow Pattern for Example 1
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Interestingly, we can see from Figs. 3 and 4 that, although under the S-O flow pattern,

the total cost of the entire transportation network is minimized, the relative total cost index

under the U-O flow pattern is lower given the same capacity retention ratio γ. Therefore,

this transportation network under the U-O solution concept is more robust than under the

S-O solution concept.

Example 2: The Braess Network

We now consider the Braess Paradox network after the addition of a new link e and as

depicted in Fig. 5 (see also Braess, 1968, and Braess, Nagurney, and Wakolbinger, 2005).

There are four nodes: 1, 2, 3, 4; five links: a, b, c, d, e; and a single O/D pair w1 = (1, 4).

There are, hence, three paths connecting the single O/D pair, which are denoted, respectively,

by: p1 = (a, c), p2 = (b, d), and p3 = (a, e, d).

µ´
¶³

µ´
¶³

µ´
¶³

2 3







À

J
J
J

J
JĴ

-

µ´
¶³
1

a b

e

4

J
J

J
J

JĴ







À

c d

Figure 5: The Braess Network Topology

Instead of using the original Braess (1968) link cost functions, since they are not of BPR

form, we construct a set of BPR functions under which the Braess Paradox still occurs

(without any capacity reduction). We assume that k = 1. Let t0a = t0d = 1; t0b = t0c = 50,

and t0e = 10. Furthermore, let ua = ud = 20; ub = uc = 50, and ue = 100. The user link cost

functions are, thus, given by:

ca(fa) = 1 + (
fa

20
)β, cb(fb) = 50[1 + (

fb

50
)β],

cc(fc) = 50[1 + (
fb

50
)β], cd(fd) = 1 + (

fd

20
)β,

ce(fe) = 10[1 + (
fe

100
)β].

The demand is given by dw1 = 110. Fig. 6 presents the relative total cost index for the

Braess network under the U-O flow pattern for β values equal to 1, 2, 3, and 4, respectively.
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Similarly, Fig. 7 presents the index for the Braess network under the S-O flow pattern for β

values equal to 1, 2, 3, and 4, respectively.
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Figure 6: Relative Total Cost Index Under the U-O Flow Pattern for the Braess Network
Example
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Figure 7: Relative Total Cost Index Under the S-O Flow Pattern for the Braess Network
Example

In the above example, when β = 2 or 3, the relative total cost index under the U-O flow

pattern is lower than that under the S-O flow pattern, which means that the network with

user behavior associated with the U-O condition is more robust when β = 2 or 3.
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Example 3: The Sioux-Falls Network

We now consider the Sioux-Falls network (cf. LeBlanc, Morlok, and Pierskalla, 1975).

The network topology is shown in Figure 8.

Figure 8: The Sioux-Falls Network (Friesz et al., 1994)

There are 528 O/D pairs, 24 nodes, and 76 links in the Sioux-Falls network. For the

relevant data see LeBlanc, Morlok, and Pierskalla (1975) and the transportation network

datasets maintained by Bar-Gera: http://www.bgu.ac.il/ bargera/tntp/.

Fig. 9 presents the relative total cost index for the Sioux-Falls network under the U-O

flow pattern for β values equal to 1, 2, 3, and 4, respectively. Similarly, Fig. 10 presents the

index for the Sioux-Falls network under the S-O flow pattern for β values equal to 1, 2, 3,

and 4, respectively.
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Figure 9: Relative Total Cost Index Under the U-O Flow Pattern for the Sioux-Falls Network
Example
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Figure 10: Relative Total Cost Index Under the S-O Flow Pattern for the Sioux-Falls Network
Example

To compare the two indices under different β values and capacity retention ratios, we

exhibit the ratio of Iγ
S−O to Iγ

U−O in Fig. 11 below.
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Figure 11: Ratio of Iγ
S−O to Iγ

U−O for the Sioux-Falls Network Example

From Fig. 11, we can see that the Sioux-Falls network is always more robust under U-O

behavior except when β is equal to 2 and the capacity retention ratio is between 0.5 and 0.9.

One can also see that Theorem 3 applies to both Examples 1, 2 and 3 in that it provides

an upper bound on Iγ
S−O as reflected by the results in Figures 4, 7 and 10.

5. Summary and Conclusions

In this paper, we presented two relative total cost indices to analyze transportation net-

work robustness associated with either system-optimal or user-optimal user behavior. As-

suming that the user link cost functions for the transportation network are of BPR form, we

examined the impacts of the degradation of the links in terms of capacity reductions on the

relative total cost in the network at the original capacities and at the degraded capacities.

We established new theoretical results and also provided numerical examples.

For future research, we plan on assessing the robustness of transportation networks with

asymmetric BPR-type link cost functions (see http://www.bgu.ac.il/ bargera/tntp/ for ex-

amples of such link cost functions) and with multiple modes of transportation. Furthermore,

we would also like to study the robustness of transportation networks in the case of stochas-

tic costs (and demands). Of course, the derivation of additional theoretical results would

22



also be valuable.
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