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Abstract:

In this paper, we develop a framework for the modeling, analysis, and computation of
solutions to international financial networks with intermediation. We consider three tiers of
decision-makers consisting of: source agents in different countries, financial intermediaries,
and consumers associated with the demand markets for different products in distinct cur-
rencies and countries. We model the behavior of the decision-makers, derive the equilibrium
conditions, and establish the variational inequality formulation. We then utilize the varia-
tional inequality formulation to obtain qualitative properties of the equilibrium financial flow
and price pattern as well as to propose an algorithm along with convergence results. Numer-
ical examples are presented to illustrate both the model and the computational procedure.
This research extends the recent results surrounding the modeling of financial networks with
intermediation to the international dimension.
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1. Introduction

Financial networks have been utilized in the study of financial systems since the work
of Quesnay in 1758, who depicted the circular flow of funds in an economy as a network.
Quesnay’s basic idea was subsequently applied in the construction of flow of funds accounts,
which are a statistical description of the flows of money and credit in an economy (cf.
Board of Governors (1980), Cohen (1987), Nagurney and Hughes (1992)). However, since
the flow of funds accounts are in matrix form, and, hence, two-dimensional, they fail to
capture the behavior on a micro level of the various financial agents/sectors in an economy,
such as banks, households, insurance companies, etc. Moreover, as noted by the Board of
Governors (1980), “the generality of the matrix tends to obscure certain structural aspects of
the financial system that are of continuing interest in analysis,” with the structural concepts
of concern including those of financial intermediation.

Thore, in (1980), recognized some of the shortcomings of financial flow of funds accounts
and developed, instead, network models of linked portfolios with financial intermediation, us-
ing decentralization/decomposition theory. Note that, intermediation is typically associated
with financial businesses, including banks, savings institutions, investment and insurance
companies, etc., and the term implies borrowing for the purpose of lending, rather than for
nonfinancial purposes. However, the algorithmic techniques at that time were not sufficiently
advanced for the solution of general models.

Thore (1969) had earlier introduced networks, along with the mathematics, for the study
of systems of linked portfolios (see also Charnes and Cooper (1967)) in the context of credit
networks and made use of linear programming. Storoy, Thore, and Boyer (1975), in turn,
presented a network model of the interconnection of capital markets and demonstrated how
decomposition theory of mathematical programming could be exploited for the computation
of equilibrium. The utility functions facing a sector were no longer restricted to being linear
functions.

Nagurney, Dong, and Hughes (1992) developed a multi-sector, multi-instrument finan-
cial equilibrium model and recognized the network structure underlying the subproblems
encountered in their proposed decomposition scheme, which was based on finite-dimensional
variational inequality theory. Hence, financial models that were not limited to optimization

2



formulations could now be handled in the more general equilibrium setting. The book by
Nagurney and Siokos (1997) contains a plethora of financial network models, both single-
country and international ones, as well as many references to the literature to that date. An
overview of finance and variational inequalities can also be found in the paper by Nagurney
(2001).

Nagurney and Ke (2001), in turn, presented a general model of financial intermediation
consisting of three tiers of decision-makers, identified the network structure of the problem
and studied the equilibrium price and financial flow pattern both qualitatively as well as
numerically using finite-dimensional variational inequality theory. Their focus, however, was
on a single country and on a single currency.

In this paper, we build upon the recent work of Nagurney and Ke (2001) and develop an
international financial network model with intermediation. The development of such a model
is timely for several reasons: the introduction and use of new currencies such as the euro,
the proliferation of new financial products in different countries (and in different currencies),
and the growth in technology which allows access to intermediaries not only in one’s country.

The paper is organized as follows. In Section 2, we develop the model, describe the
various decision-makers and their behaviors, and construct the equilibrium conditions, along
with the variational inequality formulation. The variables are the equilibrium prices, as well
as the equilibrium financial flows between the tiers of decision-makers. The model allows
one to handle as many countries, source agents, financial intermediaries, as well as financial
products and currencies as mandated by the particular application.

In Section 3, we derive qualitative properties of the equilibrium pattern, under appro-
priate assumptions, notably, the existence and uniqueness of a solution to the governing
variational inequality. We also establish properties of the function that enters the varia-
tional inequality needed for proving convergence of the algorithmic scheme. In Section 4, we
discuss the algorithm, which is then applied in Section 5 to several international financial
network examples. We conclude the paper with Section 6 in which we summarize our results
and suggest directions for future research.
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2. The International Financial Network Model with Intermediation

In this Section, we develop the international financial network model with intermediation.
The model consists of L countries, with a typical country denoted by l; I “source” agents
in each country with sources of funds, with a typical source agent denoted by i, and J

financial intermediaries with a typical financial intermediary denoted by j. As mentioned
in the Introduction, examples of source agents include households and businesses, whereas
examples of financial intermediaries include banks, insurance companies, and investment
companies, etc.

We assume that each source agent can transact with the financial intermediaries in differ-
ent currencies with there being H currencies in the international economy and with a typical
currency being denoted by h. Finally, we assume that there are K financial products which
can be in distinct currencies and in different countries with a typical financial product (and
associated with a demand market) being denoted by k. Hence, the financial intermediaries in
the model, in addition to transacting with the source agents, also determine how to allocate
the incoming financial resources among distinct uses, which are represented by the demand
markets with a demand market corresponding to, for example, the market for real estate
loans, household loans, or business loans, etc., which, as mentioned, can be associated with
a distinct country and a distinct currency combination.

The international financial network is now described and depicted graphically in Figure
1. The top tier of nodes consists of the agents in the different countries with sources of funds,
with agent i in country l being referred to as agent il and associated with node il. There are,
hence, IL top-tiered nodes in the network. The middle tier of nodes consists of the financial
intermediaries (which need not be country specific), with a typical intermediary j associated
with node j in this (second) tier of nodes in the network. The bottom tier of nodes consists
of the demand markets, with a typical demand market denoted for product k in currency
h and country l, being associated with node khl in the bottom tier of nodes. There are, as
depicted in Figure 1, J middle (or second) tiered nodes corresponding to the intermediaries
and KHL bottom (or third) tiered nodes in the financial network. In addition, we add a
node J + 1 to the middle tier of nodes in order to represent the possible non-investment (of
a portion or all of the funds) by one or more of the source agents.
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Figure 1: The Network Structure of the International Financial Economy with Intermedia-
tion and with Non-investment Allowed
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We have identified the nodes in the international financial network and now we turn to
the identification of the links joining the nodes in a given tier with those in the next tier.
We also associate the financial flows with the appropriate links. We assume that each agent
i in country l has an amount of funds Sil in a base currency. Since we allow for h currencies,
there are H links joining each top tier node with each middle tier node j; j = 1, . . . , J .
The flow on such a link h joining node il with node j is denoted by xil

jh and represents the
nonnegative amount invested (across all financial instruments) by agent i in country l in
currency h transacted through intermediary j. We group the financial flows associated with
agent i in country l into the column vector xil ∈ RJH

+ . We then further group all such flows
for all agents in all countries into the column vector x ∈ RILJH

+ . In addition, we construct
a link from each top tiered node to the second tiered node J + 1 and associate a flow sil

on such a link emanating from node il to represent the possible nonnegative amount not
invested by agent i in country l.

From each intermediary node j; j = 1, . . . , J , we then construct a single link to each node
khl with the flow on such a link being denoted by yj

khl and corresponding to the amount
of the financial product k in currency h and country l transacted from intermediary j. We
group the financial flows between node j and the bottom tier nodes into the column vector
yj ∈ RKHL

+ . All such financial flows for all the intermediaries are then further grouped into
the column vector y ∈ RJKHL

+ .

Note that here we have assumed that there is a single instrument in each currency that a
given source agent in a country can transact with a particular intermediary for. Of course,
one could include multiple instruments in distinct currencies that could be invested in by a
source agent transacting with a given intermediary pair (with a concommitant increase in
notation) which would be represented by adding additional sets (as many as there are new
instruments) of H links between each such pair of first and second tier nodes to the financial
network in Figure 1.

The notation for the prices is now given. Note that there will be prices associated with
each of the tiers of nodes in the international financial network. Let ρil

1jh denote a price
associated with the financial instrument in currency h as quoted by intermediary j to agent
il and we group the top tier prices into the column vector ρ1 ∈ RILJH

+ . Let ρj
2khl, in turn,

6



denote a price associated with intermediary j for product k in currency h and country l and
group all such prices into the column vector ρ2 ∈ RJKHL

+ . Also, let ρ3khl denote a price of the
financial product k in currency h and in country l, and group all such prices into the column
vector ρ3 ∈ RKHL

+ . Finally, let eh denote the rate of appreciation of currency h against the
basic currency, which can be interpreted as the rate of return earned due to exchange rate
fluctuations (see Nagurney and Siokos (1997)). These “exchange” rates are grouped into the
column vector e ∈ RH

+ .

We now turn to describing the behavior of the various economic agents represented by
the three tiers of nodes in Figure 1. We first focus on the top-tier agents. We then turn to
the intermediaries and, subsequently, to the consumers at the demand markets.

The Behavior of the Agents with Sources of Funds and their Optimality Condi-
tions

We denote the transaction cost associated with source agent il transacting with interme-
diary j for the instrument in currency h by cil

jh and assume that:

cil
jh = cil

jh(xil
jh), ∀i, l, j, h, (1)

that is, the cost associated with source agent i in country l transacting with intermediary
j for the instrument in currency h depends on the volume of flow of the transaction. The
transaction cost functions are assumed to be convex and continuously differentiable.

The total transaction costs incurred by source agent il are equal to the sum of all of
his transaction costs associated with dealing with the distinct intermediaries in the different
currencies. His revenue, in turn, is equal to the sum of the price (rate of return plus the rate of
appreciation) that the agent can obtain for the financial instrument times the total quantity
obtained/purchased of that instrument. Let now ρil∗

1jh denote the actual price charged agent
il for the instrument in currency h by intermediary j. Similarly, let e∗h denote the actual
rate of appreciation in currency h. We later discuss how such prices are recovered.

We assume that each such source agent seeks to maximize net return while, simulta-
neously, minimizing the risk, with source agent il’s utility function denoted by U il. In
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particular, we assume, as given, a risk function for sector il and denoted by ril, such that

ril = ril(xil), ∀i, l, (2)

where ril is assumed to be strictly concave and continuously differentiable. Clearly, a possible
risk function could be constructed as follows. Assume a variance-covariance matrix Qil

associated with agent il, which is of dimension JH × JH, symmetric, and positive definite.
Then a possible risk function for source agent i in country l would be given by:

ril(xil) = xilT Qilxil, ∀i, l. (3)

In such a case, one assumes that each source agent’s uncertainty, or assessment of risk,
is based on a variance-covariance matrix representing the source agent’s assessment of the
standard deviation of the prices of the financial instruments in the distinct currencies (see
also Markowitz (1959)).

We now construct the utility maximization problem facing a sector i in country l. In
particular, we can express the optimization problem facing agent il as:

Maximize U il(xil) =
J∑

j=1

H∑

h=1

(ρil∗
1jh + e∗h)xil

jh −
J∑

j=1

H∑

h=1

cil
jh(xil

jh) − ril(xil), (4)

subject to xil
jh ≥ 0, for all j, h, and to the constraint:

J∑

j=1

H∑

h=1

xil
jh ≤ Sil, (5)

that is, the allocations of agent il’s funds among those available from the different intermedi-
aries in distinct currencies cannot exceed his holdings. The first term in the utility function
(4) denotes the revenue whereas the second term denotes the transaction costs and the last
term denotes the risk. Note that the utility function given in (4) is strictly concave in the xil

variables. Note also that constraint (5) allows a source agent not to invest a portion (or all)
of his funds, with the “slack,” that is, the funds not invested by agent i in country l being
given by sil.
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Optimality Conditions for All Source Agents

The optimality conditions of all source agents i; i = 1, . . . , I; in all countries: l; l =
1, . . . , L (see also Bazaraa, Sherali, and Shetty (1993) and Bertsekas and Tsitsiklis (1992)),
under the above stated assumptions on the underlying functions, can be expressed as: de-
termine x∗ ∈ K1, satisfying

I∑

i=1

L∑

l=1

J∑

j=1

H∑

h=1

[
∂ril(xil∗)

∂xil
jh

+
∂cil

jh(xil∗
jh)

∂xil
jh

− ρil∗
1jh − e∗h

]
×

[
xil

jh − xil∗
jh

]
≥ 0, ∀x ∈ K1, (6)

where the feasible set K1 ≡ {x|x ∈ RILJH
+ and satisfies (3), ∀i, l}.

The Behavior of the Intermediaries and their Optimality Conditions

The intermediaries (cf. Figure 1), in turn, are involved in transactions both with the
source agents in the different countries, as well as with the users of the funds, that is, with
the ultimate consumers associated with the markets for the distinct types of loans/products
in different currencies and countries and represented by the bottom tier of nodes of the
network. Thus, an intermediary conducts transactions both with the “source” agents as well
as with the consumers at the demand markets.

An intermediary j is faced with what we term a handling/conversion cost, which may
include, for example, the cost of converting the incoming financial flows into the finan-
cial loans/products associated with the demand markets. We denote such a cost faced
by intermediary j by cj and, in the simplest case, we would have that cj is a function of
∑I

i=1

∑L
l=1

∑H
h=1 xil

jh, that is, the holding/conversion cost of an intermediary is a function of
how much he has obtained in the different currencies from the various source agents in the
different countries. For the sake of generality, however, we allow the function to depend also
on the amounts held by other intermediaries and, therefore, we may write:

cj = cj(x), ∀j. (7)

The intermediaries also have associated transaction costs in regards to transacting with
the source agents, which we assume can be dependent on the type of currency as well as
the source agent. We denote the transaction cost associated with intermediary j transacting
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with agent il associated with currency h by ĉil
jh and we assume that it is of the form

ĉil
jh = ĉil

jh(xil
jh), ∀i, l, j, h, (8)

that is, such a transaction cost is allowed to depend on the amount allocated by the par-
ticular agent to the financial instrument in a currency and transacted with the particular
intermediary. In addition, we assume that an intermediary j also incurs a transaction cost
cj
khl associated with transacting with demand market khl, where

cj
khl = cj

khl(y
j
khl), ∀j, k, h, l. (9)

Hence, the transaction costs given in (9) can vary according to the intermediary/product/
currency/country combination and are a function of the volume of the product transacted.
We assume that the cost functions (7) – (9) are convex and continuously differentiable.

The actual price charged for the financial products by the intermediaries is denoted by
ρj∗

2khl, for intermediary j and associated with transacting with consumers for product k in
currency h and country l. Subsequently, we discuss how such prices are arrived at. We
assume that the intermediaries are also utility maximizers with the utility functions for each
being comprised of net revenue maximization as well as risk minimization.

We assume that the intermediaries have risk associated both with transacting with the
various source agents in the different countries and with the consumers for the products
in the different currencies and countries. Hence, we assume for each intermediary j a risk
function rj, which is strictly concave in its variables and continuously differentiable, and of
the form:

rj = rj(x, y), ∀j. (10)

For example, the risk for intermediary j could be represented by a variance-covariance
matrix denoted by Qj with this matrix being positive definite and of dimensions (IL +
KHL) × (IL + KHL) for each intermediary j. Such a matrix would reflect the risk associ-
ated with transacting with the various source agents in the different countries and with the
consumers at the demand markets for the products in different currencies and in different
countries. If we let xj, without any loss in generality, denote the ILH-dimensional column
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vector with the ilh-th component given by xil
jh. Indeed, then a possible risk function for

intermediary j could be represented by the function:

ril(x, y) =
[

xj

yj

]T

Qj

[
xj

yj

]
. (11)

Note that, for the sake of modeling generality and flexibility, we allow the risk function
for an intermediary to depend not only on the financial flows flowing “into” and “out of”
that intermediary but on the other financial flows as well. The risk function given by (11)
is actually a special case of the one in (10) in that it depends only on the financial volumes
that the particular intermediary actually deals with.

The utility maximization problem for intermediary j, with his utility function expressed
by U j, and assuming net revenue maximization and risk minimization can, hence, be ex-
pressed as:

Maximize U j(xj, y
j) =

k∑

k=1

H∑

h=1

L∑

l=1

(ρj∗
2khl + e∗h)xil

jh − cj(x) −
I∑

i=1

L∑

l=1

H∑

h=1

ĉil
jh(xil

jh)

−
K∑

k=1

H∑

h=1

L∑

l=1

cj
khl(y

j
khl) −

I∑

i=1

L∑

l=1

H∑

h=1

(ρil∗
1jh + e∗h)xil

jh − rj(x, y) (12)

subject to: the nonnegativity constraints: xil
jh ≥ 0, yj

khl ≥ 0, for all i, l, h, and

K∑

k=1

H∑

h=1

L∑

l=1

yj
khl ≤

I∑

i=1

L∑

l=1

H∑

h=1

xil
jh. (13)

Objective function (12) expresses that the difference between the revenues (given by the
first term) minus the handling cost, the two sets of transaction costs, and the payout to
the source agents (given by the subsequent four terms, respectively) should be maximized,
whereas the risk (see the last term in (12)) should be minimized. The utility function in (12)
is concave in its variables under the above posed assumptions.

Here we assume that the financial intermediaries can compete, with the governing opti-
mality/equilibrium concept underlying noncooperative behavior being that of Nash (1950,
1951), which states that each decision-maker (intermediary) will determine his optimal
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strategies, given the optimal ones of his competitors. The optimality conditions for all
financial intermediaries simultaneously, under the above stated assumptions, can be com-
pactly expressed as (see also Gabay and Moulin (1980), Dafermos and Nagurney (1987), and
Nagurney and Ke (2001)): determine (x∗, y∗, γ∗) ∈ RILJH+JKHL+J

+ , such that

J∑

j=1

I∑

i=1

L∑

l=

H∑

h=1

[
∂rj(x∗, y∗)

∂xil
jh

+
∂cj(x∗)
∂xil

jh

+ ρil∗
1jh + e∗h +

∂ĉil
jh(xil∗

jh)
∂xil

jh

− γ∗
j

]
×

[
xil

jh − xil∗
jh

]

+
J∑

j=1

K∑

k=1

H∑

h=1

L∑

l=1

[
∂rj(x∗, y∗)

∂yj
khl

+
∂cj

khl(y
j∗
khl)

∂yj
khl

− ρj∗
2khl − e∗h + γ∗

j

]
×

[
yj

khl − yj∗
khl

]

+
J∑

j=1

[
I∑

i=1

L∑

l=1

H∑

h=1

xil∗
jh −

K∑

k=1

H∑

h=1

L∑

l=1

yj∗
khl

]
×

[
γj − γ∗

j

]
≥ 0, ∀(x, y, γ) ∈ RILJH+JKHL+J

+ , (14)

where γj is the Lagrange multiplier associated with constraint (9) (see Bazaraa, Sherali, and
Shetty (1993)), and γ is the J-dimensional column vector of Lagrange multiplers of all the
intermediaries with γ∗ denoting the vector of optimal multipliers.

The Consumers at the Demand Markets and the Equilibrium Conditions

We now describe the consumers located at the demand markets. The consumers take into
account in making their consumption decisions not only the price charged for the financial
product by the intermediaries but also their transaction costs associated with obtaining the
product. Recall that there is a distinct product k in currency h and country l.

We let ĉj
khl denote the transaction cost associated with obtaining product k in currency h

in country l from intermediary j and recall that yj
klh is the amount of the financial product k

in currency h flowing between intermediary j and consumers in country l. We assume that
the transaction cost is continuous and of the general form:

ĉj
khl = ĉj

khl(y), ∀j, k, h, l. (15)

Hence, we allow for the transaction cost (from the perspective of consumers) to depend
not only upon the flow of the financial product from an intermediary in the currency to
the country but also on other product flows in other currencies between intermediaries and
consumers in other countries.
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Denote the demand for product k in currency h in country l by dkhl and assume, as given,
the continuous demand functions:

dkhl = dkhl(ρ3), ∀k, h, l. (16)

Thus, according to (16), the demand of consumers for the product in a currency and country
depends, in general, not only on the price of the product at that demand market (and
currency and country) but also on the prices of the other products at the other demand
markets (and in other countries and currencies). Consequently, consumers at a demand
market, in a sense, also compete with consumers at other demand markets.

The consumers take the price charged by the intermediary, which was denoted by ρj∗
2khl

for intermediary j, product k, currency h, and country l, and the rate of appreciation
in the currency, plus the transaction cost, in making their consumption decisions. The
equilibrium conditions for the consumers at demand market khl, thus, take the form: for all
intermediaries: j = 1, . . . , J :

ρj∗
2khl + e∗h + ĉj

khl(y
∗)

{
= ρ∗

3khl, if yj∗
khl > 0

≥ ρ∗
3khl, if yj∗

khl = 0,
(17)

and

dkhl(ρ∗
3)





=
J∑

j=1

yj∗
khl, if ρ∗

3khl > 0

≤
J∑

j=1

yj∗
khl, if ρ∗

3khl = 0.
(18)

Conditions (17) state that consumers at demand market khl will purchase the product
from intermediary j, if the price charged by the intermediary for the product and the appreci-
ation rate for the currency plus the transaction cost (from the perspective of the consumer)
does not exceed the price that the consumers are willing to pay for the product in that
currency and country, i.e., ρ∗

3khl. Note that, according to (17), if the transaction costs are
identically equal to zero, then the price faced by the consumers for a given product is the
price charged by the intermediary for the particular product and currency in the country
plus the rate of appreciation in the currency.

Condition (18), on the other hand, states that, if the price the consumers are willing to
pay for the financial product at a demand market is positive, then the quantity of the product
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transacted by the intermediaries with the consumers at the demand market is precisely equal
to the demand. Hence, the prices are the market clearing prices for the distinct financial
products.

Observe that, in the context of consumption decisions in the form of the ultimate uses
of funds, we have utilized demand functions, rather than utility functions, as was the case
for the source agents and the intermediaries, who were assumed to be faced with utility
functions composed of a net revenue term to be maximized and a risk term to be minimized.
We expect the number of consumers to be much greater than that of the source agents and
the intermediaries and, thus, believe that the above formulation is the more natural and
tractable one.

In equilibrium, conditions (17) and (18) will have to hold for all intermediaries and for
all demand markets and these, in turn, can be expressed also as an inequality analogous to
those in (6) and (14) and given by: determine (y∗, ρ∗

3) ∈ R
(J+1)KHL
+ , such that

J∑

j=1

K∑

k=1

H∑

h=1

L∑

l=1

[
ρj∗

2khl + e∗h + ĉj
khl(y

∗) − ρ∗
3khl

]
×

[
yj

khl − yj∗
khl

]

+
K∑

k=1

H∑

h=1

L∑

l=1




J∑

j=1

yj∗
khl − dkhl(ρ∗

3)


 × [ρ3khl − ρ∗

3khl] ≥ 0, ∀(y, ρ3) ∈ R
(J+1)KHL
+ . (19)

The Equilibrium Conditions for the International Financial Economy

In equilibrium, the financial flows that the source agents in different countries transact
with the intermediaries must coincide with those that the intermediaries actually accept from
them. In addition, the amounts of the financial products that are obtained by the consumers
in the different countries and currencies must be equal to the amounts that the intermediaries
actually provide. Hence, although there may be competition between decision-makers at the
same level of tier of nodes of the financial network there must be, in a sense, cooperation
between decision-makers associated with pairs of nodes (through positive flows on the links
joining them). Thus, in equilibrium, the prices and financial flows must satisfy the sum of
the optimality conditions (6) and (14) and the equilibrium conditions (19). We make these
relationships rigorous through the subsequent definition and variational inequality derivation
below.
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Definition 1: International Financial Network Equilibrium with Intermediation

The equilibrium state of the international financial network with intermediation is one where
the financial flows between the tiers of the network coincide and the financial flows and prices
satisfy the sum of conditions (6), (14), and (19).

The equilibrium state is equivalent to the following:

Theorem 1: Variational Inequality Formulation

The equilibrium conditions governing the international financial network with intermediation
according to Definition 1 are equivalent to the solution of the variational inequality given by:
determine (x∗, y∗, γ∗, ρ∗

3)∈K, satisfying:
I∑

i=1

L∑

l=1

J∑

j=1

H∑

h=1

[
∂ril(xil∗)

∂xil
jh

+
∂rj(x∗, y∗)

∂xil
jh

+
∂cil

jh(xil∗
jh)

∂xil
jh

+
∂cj(x∗)
∂xil

jh

+
∂ĉil

jh(xil∗
jh)

∂xil
jh

− γ∗
j

]
×

[
xil

jh − xil∗
jh

]

+
J∑

j=1

K∑

k=1

H∑

h=1

L∑

l=1

[
∂rj(x∗, y∗)

∂yj
khl

+
∂cj

khl(y
j∗
khl)

∂yj
khl

+ γ∗
j + ĉj

khl(y
∗) − ρ∗

3khl

]
×

[
yj

khl − yj∗
khl

]

+
J∑

j=1

[
I∑

i=1

L∑

l=1

H∑

h=1

xil∗
jh −

K∑

k=1

H∑

h=1

L∑

l=1

yj∗
khl

]
×

[
γj − γ∗

j

]

+
K∑

k=1

H∑

h=1

L∑

l=1




J∑

j=1

yj∗
khl − dkhl(ρ∗

3)


 × [ρ3khl − ρ∗

3khl] ≥ 0, ∀(x, y, γ, ρ3) ∈ K, (20)

where K ≡ {K1 × K2}, where K2 ≡ {(y, γ, ρ3)|(y, γ, ρ3) ∈ RJKHL+J+KHL
+ }.

Proof:

We first establish that the equilibrium conditions imply variational inequality (20). In-
deed, summation of inequalities (6), (14), and (19), after algebraic simplifications, yields
variational inequality (20).

We now establish the converse, that is, that a solution to variational inequality (20)
satisfies the sum of conditions (6), (14), and (19), and is, hence, an equilibrium.

To inequality (20), add the term: −ρil∗
1jh−e∗h+ρil∗

1jh+e∗h to the term in the first set of brackets
(preceding the first multiplication sign). Similarly, add the term: −ρj∗

2khl − e∗h + ρj∗
2khl + e∗h to
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the term in brackets preceding the second multiplication sign in (20). The addition of such
terms does not change (20) since the value of these terms is zero and yields:

I∑

i=1

L∑

l=1

J∑

j=1

H∑

h=1

[
∂ril(xil∗)

∂xil
jh

+
∂rj(x∗, y∗)

∂xil
jh

+
∂cil

jh(xil∗
jh)

∂xil
jh

+
∂cj(x∗)
∂xil

jh

+
∂ĉil

jh(xil∗
jh)

∂xil
jh

− γ∗
j − ρil∗

1jh − e∗h + ρil∗
1jh + e∗h

]

×
[
xil

jh − xil∗
jh

]

+
J∑

j=1

K∑

k=1

H∑

h=1

L∑

l=1

[
∂rj(x∗, y∗)

∂yj
khl

+
∂cj

khl(y
j∗
khl)

∂yj
khl

+ γ∗
j + ĉj

khl(y
∗) − ρ∗

3khl − ρj∗
2khl − e∗h + ρj∗

2khl + e∗h

]

×
[
yj

khl − yj∗
khl

]

+
J∑

j=1

[
I∑

i=1

L∑

l=1

H∑

h=1

xil∗
jh −

K∑

k=1

H∑

h=1

L∑

l=1

yj∗
khl

]
×

[
γj − γ∗

j

]

+
K∑

k=1

H∑

h=1

L∑

l=1




J∑

j=1

yj∗
khl − dkhl(ρ∗

3)


 × [ρ3khl − ρ∗

3khl] ≥ 0, ∀(x, y, γ, ρ3) ∈ K, (21)

which, in turn, can be rewritten as:

I∑

i=1

L∑

l=1

J∑

j=1

H∑

h=1

[
∂ril(xil∗)

∂xil
jh

+
∂cil

jh(xil∗
jh)

∂xil
jh

− ρil∗
1jh − e∗h

]
×

[
xil

jh − xil∗
jh

]

+
J∑

j=1

I∑

i=1

L∑

l=

H∑

h=1

[
∂rj(x∗, y∗)

∂xil
jh

+
∂cj(x∗)
∂xil

jh

+ ρil∗
1jh + e∗h +

∂ĉil
jh(xil∗

jh)
∂xil

jh

− γ∗
j

]
×

[
xil

jh − xil∗
jh

]

+
J∑

j=1

K∑

k=1

H∑

h=1

L∑

l=1

[
∂rj(x∗, y∗)

∂yj
khl

+
∂cj

khl(y
j∗
khl)

∂yj
khl

− ρj∗
2khl − e∗h + γ∗

j

]
×

[
yj

khl − yj∗
khl

]

+
J∑

j=1

K∑

k=1

H∑

h=1

L∑

l=1

[
ρj∗

2khl + e∗h + ĉj
khl(y

∗) − ρ∗
3khl

]
×

[
yj

khl − yj∗
khl

]

+
J∑

j=1

[
I∑

i=1

L∑

l=1

H∑

h=1

xil∗
jh −

K∑

k=1

H∑

h=1

L∑

l=1

yj∗
khl

]
×

[
γj − γ∗

j

]

+
K∑

k=1

H∑

h=1

L∑

l=1




J∑

j=1

yj∗
khl − dkhl(ρ∗

3)


 × [ρ3khl − ρ∗

3khl] ≥ 0. (22)

But inequality (22) is equivalent to the sum of conditions (6), (14), and (19), and hence
that financial flow and price pattern is an equilibrium according to Definition 1. 2
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We now put variational inequality (20) into standard form which will be utilized in the
subsequent sections. For additional background on variational inequalities and their appli-
cations, see the book by Nagurney (1999). In paricular, we have that variational inequality
(20) can be expressed as:

〈F (X∗)T , X − X∗〉 ≥ 0, ∀X ∈ K, (23)

where X ≡ (x, y, γ, ρ3) and F (X) ≡ (Filjh, Fjkhl, Fj, Fkhl)i=1,...,I;l=1,...,L;j=1,...,J ;h=1,...,H , and the
specific components of F are given by the functional terms preceding the multiplication signs
in (20), respectively. The term 〈·, ·〉 denotes the inner product in N -dimensional Euclidean
space.

We now describe how to recover the prices associated with the first two tiers of nodes in
the international financial network. Clearly, the components of the vector ρ∗

3 are obtained
directly from the solution of variational inequality (20) as will be demonstrated explicitly
through several numerical examples in Section 5. In order to recover the second tier prices
associated with the intermediaries and the exchange rates one can (after solving variational
inequality (20) for the particular numerical problem) either (cf. (17)) set ρj∗

2khl + e∗h =
ρ∗

3khl − ĉkhl(y∗), for any j, k, h, l such that yj∗
khl > 0, or (cf. (14)) for any yj∗

khl > 0, set
ρj∗

2khl + e∗h = ∂rj(x∗,y∗)

∂yj
khl

+ ∂cj
khl

(yj∗
khl

)

∂yj
khl

− γ∗
j .

Similarly, from (14) we can infer that the top tier prices comprising the vector ρ∗
1 can be

recovered (once the variational inequality (20) is solved with particular data) thus: for any
i, l, j, h, such that xil∗

jh > 0, set ρil∗
1jh + e∗h=γ∗

j −
∂rj(x∗,y∗)

∂xil
jh

− ∂cj(x∗)

∂xil
jh

− ∂ĉil
jh(xil∗

jh )

∂xil
jh

.
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3. Qualitative Properties

In this Section, we provide some qualitative properties of the solution to variational
inequality (20). In particular, we derive existence and uniqueness results. We also investigate
properties of the function F (cf. (23)) that enters the variational inequality of interest here.

Since the feasible set is not compact we cannot derive existence simply from the assump-
tion of continuity of the functions. Nevertheless, we can impose a rather weak condition to
guarantee existence of a solution pattern. Let

Kb = {(x, y, γ, ρ3)|0 ≤ x ≤ b1; 0 ≤ y ≤ b2; 0 ≤ γ ≤ b3; 0 ≤ ρ3 ≤ b4}, (24)

where b = (b1, b2, b3, b4) ≥ 0 and x ≤ b1; y ≤ b2; γ ≤ b3; ρ3 ≤ b4 means that xil
jh ≤ b1;

yj
khl ≤ b2; γj ≤ b3; and ρ3khl ≤ b4 for all i, l, j, k, h. Then Kb is a bounded closed convex

subset of RILJH+JKHL+J+KHL. Thus, the following variational inequality

〈F (Xb)T , X − Xb〉 ≥ 0, ∀Xb ∈ Kb, (25)

admits at least one solution Xb ∈ Kb, from the standard theory of variational inequalities,
since Kb is compact and F is continuous. Following Kinderlehrer and Stampacchia (1980)
(see also Theorem 1.5 in Nagurney (1999)), we then have:

Theorem 2

Variational inequality (20) admits a solution if and only if there exists a b > 0, such that
variational inequality (25) admits a solution in Kb with

xb < b1, yb < b2, γb < b3, ρb
3 < b4. (26)

Theorem 3: Existence

Suppose that there exist positive constants M , N , R, with R > 0, such that:

∂ril(xil∗)
∂xil

jh

+
∂rj(x∗, y∗)

∂xil
jh

+
∂cil

jh(xil∗
jh )

∂xil
jh

+
∂cj(x∗)
∂xil

jh

+
∂ĉil

jh(xil∗
jh )

∂xil
jh

≥ M, ∀x with xil
jh ≥ N, ∀i, l, j, h,

(27)
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∂rj(x∗, y∗)
∂yj

khl

+
∂cj

khl(y
j∗
khl)

∂yj
khl

+ ĉj
khl(y

∗) ≥ M, ∀y with yj
khl ≥ N, ∀j, k, h, l, (28)

dk(ρ∗
3) ≤ N, ∀ρ3 with ρ3khl > R, ∀k, h, l. (29)

Then variational inequality (20); equivalently, variational inequality (23), admits at least
one solution.

Proof: Follows using analogous arguments as the proof of existence for Proposition 1 in
Nagurney and Zhao (1993) (see also the existence proof in Nagurney and Ke (2001)). 2

Assumptions (27) and (28) are reasonable from an economics perspective, since when
the financial flow between a source agent and intermediary or an intermediary and demand
market is large, we can expect the corresponding sum of the associated marginal risks and
marginal costs of transaction and handling to exceed a positive lower bound. Moreover,
in the case where the demand price of the financial product in a currency and country as
perceived by consumers at a demand market is high, we can expect that the demand for the
financial product at the demand market to not exceed a positive bound.

We now establish additional qualitative properties both of the function F that enters the
variational inequality problem (cf. (20) and (23)), as well as uniqueness of the equilibrium
pattern. Monotonicity and Lipschitz continuity of F will be utilized in Section 4 to establish
convergence of the proposed algorithmic scheme. Since the proofs of Theorems 4 and 5
below are similar to the analogous proofs in Nagurney and Ke (2001) they are omitted
here. Additional background on the properties establish below can be found in the books by
Nagurney and Siokos (1997) and Nagurney (1999).

Theorem 4: Monotonicity

Suppose that the risk function ril; i = 1, . . . , I; l = 1, . . . , L, and rj; j = 1, . . . , J , are strictly
convex and that the cil

jh, cj, ĉil
jh, and cj

khl functions are convex; the ĉj
khl functions are monotone

increasing, and the dk functions are monotone decreasing functions, for all i, l, j, h, k. Then
the vector function F that enters the variational inequality (20) is monotone, that is,

〈(F (X ′) − F (X ′′))T , X ′ − X ′′〉 ≥ 0, ∀X ′, X ′′ ∈ K. (30)
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Monotonicity plays a role in the qualitative analysis of variational inequality problems
similar to that played by convexity in the context of optimization problems.

Theorem 5: Strict Monotonicity

Assume all the conditions of Theorem 4. In addition, suppose that one of the families of
convex functions cil

jh; i = 1, ..., I; l = 1, . . . , L; j = 1, ..., J ; h = 1, . . . , H, cj; j = 1, ..., J ; ĉil
jh;

i = 1, . . . , I; l = 1, . . . , L; j = 1, , . . . , J; h = 1, . . . , H, and cj
khl; j = 1, . . . , J ; k = 1, . . . , K;

h = 1, . . . , H, and l = 1, . . . , L, is a family of strictly convex functions. Suppose also that
ĉj
khl; j = 1, ..., J ; k = 1, ..., K; h = 1, . . . , H; l = 1, . . . , L, and -dk; k = 1, ..., K, are strictly

monotone. Then, the vector function F that enters the variational inequality (20) is strictly
monotone, with respect to (x, y, ρ3), that is, for any two X ′, X ′′ with (x′

, y
′
, ρ′

3) 6= (x′′
, y

′′
, ρ3

′′)

〈(F (X ′) − F (X ′′))T , X ′ − X ′′〉 > 0. (31)

Theorem 6: Uniqueness

Assuming the conditions of Theorem 5, there must be a unique financial flow pattern (x∗, y∗),
and a unique demand price price vector ρ∗

3 satisfying the equilibrium conditions of the inter-
national financial network with intermerdiation. In other words, if the variational inequality
(20) admits a solution, then that is the only solution in (x, y, ρ3).

Proof: Under the strict monotonicity result of Theorem 5, uniqueness follows from the
standard variational inequality theory (cf. Kinderlehrer and Stampacchia (1980)) 2
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Theorem 7: Lipschitz Continuity

The function that enters the variational inequality problem (20) is Lipschitz continuous, that
is,

‖F (X ′) − F (X ′′)‖ ≤ L‖X ′ − X ′′‖, ∀X ′, X ′′ ∈ K, where L > 0, (32)

under the following conditions:

(i). ril, rj, cil
jh, cj, ĉil

jh, cj
khl have bounded second-order derivatives, for all i, l, j, h, k;

(ii). ĉj
khl, and dk have bounded first-order derivatives for all j, k, h, l.

Proof: The result is direct by applying a mid-value theorem from calculus to the vector
function F that enters the variational inequality problem (20). 2

It is worth noting that the risk functions of the form (3) and (11) have bounded second-
order derivatives.

In the next Section, we will utilize the conditions of monotonicity and Lipschitz continuity
in order to establish the convergence of the algorithm for the solution of the equilibrium
financial flows and prices satisfying variational inequality (20).
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4. The Algorithm

In this Section, we consider the computation of solutions to variational inequality (20).
The algorithm that we propose is the modified projection method of Korpelevich (1977),
which is guaranteed to solve any variational inequality problem in standard form (see (23))
provided that certain conditions are satisfied by the function F that enters the variational
inequality problem and that a solution exists. The realization of the modified projection
method for the variational inequality (20) (for further details see also Nagurney and Siokos
(1997)) is as follows, where T denotes an iteration counter:

Modified Projection Method for the Solution of Variational Inequality (20)

Step 0: Initialization

Set (x0, y0, γ0, ρ0
3) ∈ K. Let T = 1 and set α such that 0 < α ≤ 1

L
, where L is the Lipschitz

constant for the problem.

Step 1: Computation

Compute (x̄T , ȳT , γ̄T , ρ̄3
T ) ∈ K by solving the variational inequality subproblem:

I∑

i=1

L∑

l=1

J∑

j=1

H∑

h=1

[
x̄ilT

jh + α(
∂ril(x̄ilT −1)

∂xil
jh

+
∂rj(x̄T −1, ȳT −1)

∂xil
jh

+
∂cil

jh(x̄il
jh

T −1)
∂xil

jh

+
∂cj(x̄T −1)

∂xil
jh

+
∂ĉil

jh(x̄ilT −1
jh )

∂xil
jh

−γ̄j
T −1) − x̄il

jh
T −1

]
×

[
xil

jh − x̄il
jh

T
]

+
J∑

j=1

K∑

k=1

H∑

h=1

L∑

l=1

[
ȳjT

khl + α(
∂rj(x̄T −1, ȳT −1)

∂yj
khl

+
∂cj

khl(ȳ
jT −1
khl )

∂yj
khl

+ γ̄j
T −1 + ĉj

khl(ȳ
T −1) − ρ̄T −1

3khl ) − ȳjT −1
khl

]

×
[
yj

khl − ȳjT
khl

]

+
J∑

j=1

[
γ̄T

j + α(
I∑

i=1

L∑

l=1

H∑

h=1

x̄ilT −1
jh −

K∑

k=1

H∑

h=1

L∑

l=1

ȳjT −1
khl ) − γ̄j

T −1

]
×

[
γj − γ̄j

T
]

+
K∑

k=1

H∑

h=1

L∑

l=1


ρ̄T

3khl + α(
J∑

j=1

ȳjT −1
khl − dkhl(ρ̄3

T −1)) − ρ̄T −1
3khl


 ×

[
ρ3khl − ρ̄T

3khl

]
≥ 0,

∀(x, y, γ, ρ3) ∈ K. (33)
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Step 2: Adaptation

Compute (xT , yT , γT , ρT
3 ) ∈ K by solving the variational inequality subproblem:

I∑

i=1

L∑

l=1

J∑

j=1

H∑

h=1

[
xilT

jh + α(
∂ril(x̄ilT )

∂xil
jh

+
∂rj(x̄T , ȳT )

∂xil
jh

+
∂cil

jh(x̄ilT
jh )

∂xil
jh

+
∂cj(x̄T )

∂xil
jh

+
∂ĉil

jh(x̄ilT
jh )

∂xil
jh

−γ̄T
j ) − xilT −1

jh

]
×

[
xil

jh − xilT
jh

]

+
J∑

j=1

K∑

k=1

H∑

h=1

L∑

l=1

[
yjT

khl + α(
∂rj(x̄T , ȳT )

∂yj
khl

+
∂cj

khl(ȳ
jT
khl)

∂yj
khl

+ γ̄T
j + ĉj

khl(ȳ
T ) − ρ̄T

3khl) − yjT −1
khl

]

×
[
yj

khl − yjT
khl

]

+
J∑

j=1

[
γT

j + α(
I∑

i=1

L∑

l=1

H∑

h=1

x̄ilT
jh −

K∑

k=1

H∑

h=1

L∑

l=1

ȳjT
khl) − γT −1

j

]
×

[
γj − γT

j

]

+
K∑

k=1

H∑

h=1

L∑

l=1


ρT

3khl + α(
J∑

j=1

ȳjT
khl − dkhl(ρ̄T

3 )) − ρT −1
3khl


 ×

[
ρ3khl − ρT

3khl

]
≥ 0,

∀(x, y, γ, ρ3) ∈ K. (34)

Step 3: Convergence Verification

If |xilT
jh −xilT −1

jh | ≤ ε, |yjT
khl−yjT −1

khl | ≤ ε, |γT
j −γT −1

j | ≤ ε, |ρT
3khl−ρT −1

3khl | ≤ ε, for all i = 1, · · · , I;
l = 1, . . . , L; j = 1, · · · , J ; h = 1, . . . , H; k = 1, · · · , K, with ε > 0, a pre-specified tolerance,
then stop; otherwise, set T := T + 1, and go to Step 1.

Both variational inequality subproblems (33) and (34) can be solved explicitly and in
closed form since they are actually quadratic programming problems and the feasible set is a
Cartesian product consisting of the the product of K1 and K2 The former has a simple net-
work structure, whereas the latter consists of the cross product of the nonnegative orthants:
RJKHL

+ , RJ
+, and RJKHL

+ , and corresponding to the variables x, y, γ, and ρ3, respectively. In
fact, the subproblems in (33) and (34) corresponding to the x variables can be solved using
exact equilibration (cf. Dafermos and Sparrow (1969) and Nagurney (1999)), whereas the
remainder of the variables in (33) and (34) can be obtained by explicit formulae.

We now, for completeness, and also to illustrate the simplicity of the proposed compu-
tational procedure in the context of the international financial network model, state the
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explicit formulae for the computation of the ȳT , the γ̄T , and the ρ̄T
3 (cf. (33)). The yT , γT ,

and ρT
3 can then be computed for (34) in an analogous fashion.

Computation of the Financial Products from the Intermediaries

In particular, compute, at iteration T , the ȳjT
khls, according to:

ȳjT
khl = max{0, ȳjT −1

khl − α(
∂rj(x̄T −1, ȳT −1)

∂yj
khl

+
∂cj

khl(ȳ
jT −1
khl )

∂yj
khl

+ γ̄T −1
j + ĉj

khl(ȳ
T −1) − ρ̄T −1

3khl )},

∀j, k, h, l. (35)

Computation of the Prices

At iteration T , compute the γ̄T
j s according to:

γ̄T
j = max{0, γ̄T −1

j − α(
I∑

i=1

L∑

l=1

H∑

h=1

x̄ilT −1
jh −

K∑

k=1

H∑

h=1

L∑

l=1

ȳjT −1
khl )}, ∀j, (36)

whereas the ρ̄T
3khls are computed explicitly and in closed form according to:

ρ̄T
3khl = max{0, ρ̄T −1

3khl − α(
J∑

j=1

ȳjT −1
khl − dkhl(ρ̄T −1

3 ))}, ∀k, h, l. (37)

In the next Section, we apply the modified projection method to solve several international
financial network examples.

We now state the convergence result for the modified projection method for this model.

Theorem 8: Convergence

Assume that the function that enters the variational inequality (20) (or (23)) has at least
one solution and satisfies the conditions in Theorem 4 and in Theorem 7. Then the modified
projection method described above converges to the solution of the variational inequality (20)
or (23).

Proof: According to Korpelevich (1977), the modified projection method converges to the
solution of the variational inequality problem of the form (20), provided that the function
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F that enters the variational inequality is monotone and Lipschitz continuous and that
a solution exists. Existence of a solution follows from Theorem 3, monotonicity follows
Theorem 4, and Lipschitz continuity, in turn, follows from Theorem 7. The proof is complete.
2

Of course, the algorithm may converge even if the conditions in Theorems 4 and 7 do not
hold in which case the algorithm, nevertheless, converges to the equilibrium solution.
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5. Numerical Examples

In this Section, we apply the modified projection method to several numerical examples.
The modified projection method was implemented in FORTRAN and the computer system
used was a DEC Alpha system located at the University of Massachusetts at Amherst.
For the solution of the induced network subproblems in the x variables we utilized the
exact equilibration algorithm (see Dafermos and Sparrow (1969), Nagurney (1999), and the
references therein). The other variables were determined in the computation and adaptation
steps of the modified projection method explicitly and in closed form as described in the
preceding section.

The convergence criterion used was that the absolute value of the flows and prices between
two successive iterations differed by no more than 10−4. For the examples, α was set to .01
in the algorithm.

We assumed in all the examples that the risk functions were of the form (3) and (11),
that is, that risk was represented through variance-covariance matrices for both the source
agents in the countries and for the intermediaries.

We initialized the modified projection method as follows: We set xil
jh = Sil

JH
for each source

agent i and country l. All the other variables, that is, the initial vectors y, γ, and ρ3 were
all set to zero.

We solved two sets of numerical examples, with three examples each. Detailed descriptions
are given below.

Example 1

The first set of numerical examples consisted of one country, two source agents, two
currencies, two intermediaries, and two financial products. Hence, L = 1, I = 2, H = 2,
J = 2, and K = 2, for this and the subsequent two numerical examples. The international
financial network for the first three examples is depicted in Figure 2.

The data for the first example were constructed for easy interpretation purposes. The
financial holdings of the two source agents were: S11 = 20 and S21 = 20. The variance-
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Figure 2: International Financial Network for the First Set of Numerical Examples

27



covariance matrices Qil and Qj were equal to the identity matrices (appropriately dimen-
sioned) for all source agents and all intermediaries, respectively.

The transaction cost functions faced by the source agents associated with transacting
with the intermediaries (cf. (1)) were given by:

cil
jh(qil

jh) = .5(qil
jh)2 + 3.5qil

jh, for i = 1, 2; l = 1; j = 1, 2; h = 1, 2.

The handling costs of the intermediaries, in turn (see (7)), were given by:

cj(x) = .5(
2∑

i=1

2∑

h=1

xi1
jh)2, for j = 1, 2.

The transaction costs of the intermediaries associated with transacting with the source
agents were (cf. (8)) given by:

ĉil
jh(qil

jh) = 1.5qil
jh

2 + 3qil
jh, for i = 1, 2; l = 1; j = 1, 2; h = 1, 2.

The demand functions at the demand markets (refer to (16)) were:

d111(ρ3) = −2ρ3111 − 1.5ρ3121 + 1000, d121(ρ3) = −2ρ3121 − 1.5ρ3111 + 1000,

d211(ρ3) = −2ρ3211 − 1.5ρ3221 + 1000, d221(ρ3) = −2ρ3221 − 1.5ρ3211 + 1000.

and the transaction costs between the intermediaries and the consumers at the demand
markets (see (11)) were given by:

ĉjkl(qjkl) = qjkl + 5, for j = 1, 2; k = 1, 2; l = 1.

We assumed for this and the subsequent examples that the transaction costs as perceived
by the intermediaries and associated with transacting with the demand markets were all
zero, that is, cj

khl(x
j
khl) = 0, for all j, k, l.

The modified projection method converged and yielded the following equilibrium financial
flow pattern:

x∗ := x11
11

∗ = x11
12

∗ = x11
21

∗ = x11
22

∗ = x21
11

∗ = x21
22

∗ = x21
21

∗ = x21
22

∗ = 5.0000;
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y∗ := y1∗
111 = y1∗

121 = y1∗
211 = y1∗

221 = y2∗
111 = y2∗

121 = y2∗
211 = y2∗

221 = 5.0000.

The vector γ∗ had components: γ∗
1 = γ∗

2 = 262.8566, and the computed demand prices at
the demand markets were: ρ∗

3111 = ρ∗
3121 = ρ∗

3211 = ρ∗
3221 = 282.856.

We also, for completeness, recover the equilibrium prices associated with the source agents
according to the discussion following (23). In particular, we had that all components of the
vector ρ∗

1 were identically equal to 214.8566.

It is easy to verify that the optimality/equilibrium conditions were satisfied with good
accuracy. Note that in this example, constraint (5) was tight for both source agents, that
is, there was zero flow on the links connecting node 3 with top tier nodes. Thus, it was
optimal for both source agents to invest their entire financial holdings in the instrument
made available by each of the two intermediaries in each of the two currencies. Clearly,
due to the input data in this highly stylized example, the equilibrium financial flow pattern
could have been “predicted” even without any computations; however, the same does not
hold (even in this quite “symmetric”) example for the prices.

Example 2

In the second example, we kept the data as in Example 1 except for the following changes:
we increased the demand associated with the first product in the first currency so that the
new demand functions were now given by:

d111(ρ3) = −2ρ3111 − 1.5ρ3121 + 1010,

with the demand functions for the second product (and second currency) remaining un-
changed.

The modified projection method converged and yielded the following equilibrium financial
flow pattern:

x∗ := x11
11

∗ = x11
12

∗ = x11
21

∗ = x11
22

∗ = x21
11

∗ = x21
22

∗ = x21
21

∗ = x21
22

∗ = 5.0000;

y∗ := y1∗
111 = 6.6288, y1∗

121 = 3.7717, y1∗
211 = 4.8003, y1∗

221 = 4.8003,

y2∗
111 = 6.6288, y2∗

121 = 3.7717, y2∗
211 = 4.8003, y2∗

221 = 4.8003.
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As was the case in Example 1, both source agents allocated the entirety of their funds to
the instrument in the two currencies; thus, there was no non-investment.

The vector γ∗ had components: γ∗
1 = γ∗

2 = 914.9965, and the computed demand prices
at the demand markets were: ρ∗

3111 = 979.9990, ρ∗
3121 = 0.0000, ρ∗

3211 = 285.7142, ρ∗
3221 =

285.7142.

Clearly, since the demand for the first product in the first country and currency increased,
the financial flows between the two intermediaries and that demand market increased (as
did the equilibrium price at that demand market), whereas the others decreased vis a vis
the analogous ones in Example 1.

We also computed (as discussed in Example 1 and following (23)) the new equilibrium
prices associated with the top tier of nodes in the international financial network and now
the new equilibrium vector ρ∗

1 had all of its components equal to 215.5708.

Example 3

In the third and final example in this set, we kept the data as in Example 2 except for
the following changes: we increased the risk associated with source agent 1 in country 1
transacting with intermediary 1 and 2 in currency 1. Hence, rather than having the first
source agent’s variance-covariance matrix now being equal to the identity matrix, the first
two diagonal elements of its matrix were now set to 2.

The modified projection method converged and yielded the following new equilibrium
financial flow pattern:

x∗ := x11
11

∗ = 4.2857, x11
12

∗ = 5.7143, x11
21

∗ = 4.2857, x11
22

∗ = 5.7143,

x21
11

∗ = x21
22

∗ = x21
21

∗ = x21
22

∗ = 5.0000.

Again, there was no non-investment.

The vectors: y∗, γ∗, and ρ∗
3 remained identical to those obtained in Example 2. Thus, as

expected, since the risk associated with the first currency increased, as perceived by the first
source agent, he reallocated his financial funds so that a greater volume was now placed in
the second currency.
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Figure 3: International Financial Network for the Second Set of Numerical Examples

The equilibrium prices associated with the source agents remained as those in Example
2 except that now the prices associated with the first source agent were now all equal to
210.5709.

Example 4

In the second set of numerical examples, the internationaal financial network was as given
in Figure 3. These three examples consisted of two countries with two source agents in each
country; two currencies, two intermediaries, and two financial products. Hence, L = 2,
I = 2, H = 2, J = 2, and K = 2.

The data for the first example in this set was constructed for easy interpretation pur-
poses and to create a baseline from which the simulations could be conducted. In fact, we
essentially “replicated” the data for the first country as it appeared in Example 1 in order
to construct the data for the second country.
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Specifically, the financial holdings of the source agents were: S11 = 20, S21 = 20, S12 = 20,
and S22 = 20. The variance-covariance matrices Qil and Qj were equal to the identity ma-
trices (appropriately dimensioned) for all source agents in each country and for all interme-
diaries, respectively.

The transaction cost functions faced by the source agents associated with transacting
with the intermediaries were given by:

cil
jh(qil

jh) = .5(qil
jh)2 + 3.5qil

jh, for i = 1, 2; l = 1, 2; j = 1, 2; h = 1, 2.

The handling costs of the intermediaries (since the number of intermediaries in this set
is still equal to two) remained as in Example 1, that is, they were given by:

cj(x) = .5(
2∑

i=1

2∑

h=1

xi1
jh)2, for j = 1, 2.

The transaction costs of the intermediaries associated with transacting with the source
agents in the two countries were given by:

ĉil
jh(qil

jh) = 1.5qil
jh

2 + 3qil
jh, for i = 1, 2; l = 1, 2; j = 1, 2; h = 1, 2.

The demand functions at the demand markets were:

d111(ρ3) = −2ρ3111 − 1.5ρ3121 + 1000, d121(ρ3) = −2ρ3121 − 1.5ρ3111 + 1000,

d211(ρ3) = −2ρ3211 − 1.5ρ3221 + 1000, d221(ρ3) = −2ρ3221 − 1.5ρ3211 + 1000,

d112(ρ3) = −2ρ3112 − 1.5ρ3122 + 1000, d122(ρ3) = −2ρ3122 − 1.5ρ3112 + 1000,

d212(ρ3) = −2ρ3212 − 1.5ρ3222 + 1000, d222(ρ3) = −2ρ3222 − 1.5ρ3212 + 1000,

and the transaction costs between the intermediaries and the consumers at the demand
markets were given by:

ĉjkl(qjkl) = qjkl + 5, for j = 1, 2; k = 1, 2; l = 1, 2.
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The modified projection method converged and yielded the following equilibrium financial
flow pattern:

x∗ := x11
11

∗ = x11
12

∗ = x11
21

∗ = x11
22

∗ = x21
11

∗ = x21
22

∗ = x21
21

∗ = x21
22

∗ = 5.0000,

x12
11

∗ = x12
12

∗ = x12
21

∗ = x12
22

∗ = x22
11

∗ = x22
22

∗ = x21
22

∗ = x22
22

∗ = 5.0000;

y∗ := y1∗
111 = y1∗

121 = y1∗
211 = y1∗

221 = y2∗
111 = y2∗

121 = y2∗
211 = y2∗

221 = 5.0000,

y1∗
112 = y1∗

122 = y1∗
212 = y1∗

222 = y2∗
112 = y2∗

122 = y2∗
212 = y2∗

222 = 5.0000.

The vector γ∗ had components: γ∗
1 = γ∗

2 = 262.8486, and the computed demand prices
at the demand markets were: ρ∗

3111 = ρ∗
3121 = ρ∗

3211 = ρ∗
3221 ρ∗

3112 = ρ∗
3122 = ρ∗

3212 = ρ∗
3222 =

282.8591.

The components of the vector ρ∗
1 were identically equal to 194.8486.

Example 5

Example 5 was constructed from the preceding example as follows. We kept the data
as in Example 4 except that we changed the demand functions associated with the second
country so that:

d112(ρ3) = −2ρ3112 − 1.5ρ3122 + 1010, d122(ρ3) = −2ρ3122 − 1.5ρ3112 + 1020,

d212(ρ3) = −2ρ3212 − 1.5ρ3222 + 1030, d222(ρ3) = −2ρ3222 − 1.5ρ3212 + 1040.

The modified projection method converged and yielded the following equilibrium financial
flow pattern:

x∗ := x11
11

∗ = x11
12

∗ = x11
21

∗ = x11
22

∗ = x21
11

∗ = x21
22

∗ = x21
21

∗ = x21
22

∗ =

x12
11

∗ = x12
12

∗ = x12
21

∗ = x12
22

∗ = x22
11

∗ = x22
22

∗ = x21
22

∗ = x22
22

∗ = 5.0000;

y∗ := y1∗
111 = y1∗

121 = y1∗
211 = y1∗

221 = 3.9999,

y1∗
112 = 3.7712, y1∗

122 = 6.6286, y1∗
212 = 5.3712, y1∗

222 = 8.2286,

y2∗
111 = y2∗

121 = y2∗
211 = y2∗

221 = 3.999,
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y2∗
112 = 3.7712, y2∗

122 = 6.6286, y2∗
212 = 5.3712, y2∗

222 = 8.2286.

The vector γ∗ had components: γ∗
1 = γ∗

2 = 266.4286, and the computed demand prices at
the demand markets were: ρ∗

3111 = ρ∗
3121 = ρ∗

3211 = ρ∗
3221 = 283.4285 ρ∗

3112 = 282.7425, ρ∗
3122 =

291.3144, ρ∗
3212 = 287.5425, ρ∗

3222 = 296.144.

The components of the vector ρ∗
1 were identically equal to 198.4286.

Hence, in this example, vis a vis the solution of Example 4, the financial flows between the
intermediaries and the demand markets were reallocated to satisfy the increased demand.

Example 6

Example 6 was constructed from the preceding example as follows. We kept the data as
in Example 5 except that we increased the first diagonal element of the variance-covariance
matrix for the first source agent in the first country from 1 to 2.

The modified projection method converged and yielded the following equilibrium financial
flow pattern: all the components of the vector x∗ corresponding to the flow into intermediary
1 were equal to 4.0476 whereas all those into intermediary 2 were equal to 5.9524.

y∗ := y1∗
111 = y1∗

121 = y1∗
211 = y1∗

221 = 3.0475,

y1∗
112 = 2.8188, y1∗

122 = 5.6762, y1∗
212 = 4.4188, y1∗

222 = 7.2672,

y2∗
111 = y2∗

121 = y2∗
211 = y2∗

221 = 4.9523,

y2∗
112 = 4.7236, y2∗

122 = 7.5809, y2∗
212 = 6.3236, y2∗

222 = 9.1809.

The vector γ∗ had components: γ∗
1 = 269.2857, γ∗

2 = 263.5715, and the computed demand
prices at the demand markets remained as in the solution of Example 5.

These examples have been presented to show both the model and the computational
procedure. Obviously, different input data and dimensions of the problems solved will affect
the equilibrium financial flow and price patterns. One now has a powerful tool with which
to explore the effects of perturbations to the data as well as the effects of changes in the
number of source agents, countries, currencies, and/or products.
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6. Summary and Conclusions

In this paper, we have developed a framework for the modeling, analysis, and computa-
tion of solutions to international financial problems with intermediation in the context of
the medium of networks. In particular, we have proposed an international financial network
model consisting of three tiers of decision-makers: the source agents, the financial intermedi-
aries, and the consumers associated with the demand markets for distinct financial products
in distinct currencies and countries. We modeled the behavior of the decision-makers, de-
rived the optimality conditions as well as the governing equilibrium conditions which reflect
(possible) competition among decision-makers at the same tier of nodes but cooperation be-
tween tiers of nodes. The framework allows for the handling of as many countries, as many
source agents in each country, as many currencies in which the financial products can be
obtained, and as many financial intermediaries, as mandated by the specific application.

The formulation of the equilibrium conditions was shown to be equivalent to a finite-
dimensional variational inequality problem. The variational inequality problem was then
utilized to obtain qualitative properties of the equilibrium financial flow and price pattern
as well as to propose a computational procedure for the numerical determination of the
equilibrium flows in particular examples. The algorithm was subsequently applied to sev-
eral international financial network examples to illustrate both the model as well as the
computational procedure.

This framework generalizes the recent work of Nagurney and Ke (2001) in financial net-
works with intermediation to the international dimension.
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